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Abstract 
A solution of the intensification problem of the column chemical reactors is presented in the ap-
proximation of the mechanics of continua. The effect of the radial non-uniformity of the velocity 
distribution, the effect of the tangential flow and simultaneous mass, and heat transfer processes 
are analyzed. A theoretical analysis of the simultaneous mass and heat transfer processes in col-
umn reactors is presented. 

 
Keywords 
Intensification, Column Reactor, Radial Non-Uniformity, Tangential Flow, Mass Transfer, Heat 
Transfer 

 
 

1. Introduction 
A fundamental problem in the column chemical reactors is the radial non-uniformity of the axial velocity distri-
bution. The theoretical analysis of this problem is possible to be made, using a new approach on the base of the 
approximations of the mechanics of continua [1]-[4], where the mathematical point is equivalent to a small 
(elementary) physical volume, which is sufficiently small with respect to the apparatus volume, but at the same 
time sufficiently large with respect to the intermolecular volumes of the medium. As a result the mathematical 
description of the processes is mass balance in this elementary volume in the form of a convection-diffusion 
type of models, using the convection-diffusion equations. These models [1]-[4] permit to be made a qualitative 
analysis of the process for to be obtained the main, small and slight physical effects (mathematical operators in 
the models), and to be rejected the slight effects (operators). 

The using of the convection-diffusion type of models for a quantitative analysis of the processes in column 
apparatuses is not possible because the velocity function in the convection-diffusion equations is unknown. The 
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problem can be avoided if the average values of the velocities and concentrations over the cross-sectional area of 
the columns are used, i.e. the medium elementary volume (in the physical approximations of the mechanics of 
continua [1]-[4]) will be equivalent to a small cylinder with radius 0r  and a height, which is sufficiently small 
with respect to the column height and at the same time sufficiently large with respect to the intermolecular dis-
tances in the medium.  

A main problem in the column chemical reactors is the decrease of the processes efficiency as a result of the 
effect of the radial non-uniformity of the axial velocity distribution. This problem can be avoided using a tan-
gential inlet of the flow in the column, which is very useful in the cases of simultaneous mass and heat transfer 
processes. 

2. Chemical Reactor Modeling 
Let’s consider a liquid (gas) motion in a column reactor with radius 0r  (m) and height l  (m), where a homo-
geneous chemical reaction between two fluid components is realized. If the difference between the component 
concentrations is very large, then the chemical reaction will be first order. 

2.1. Convection-Diffusion Type of Model 
If the velocity u  (m·s−1) and concentration c  (kg·m−3) distributions in the column are defined as: 

( ) ( ), , ,u u r c c r z= =                                   (1) 

the convection-diffusion type of model [4] can be expressed as: 

( )

2 2

2 2

0 0 0

0

1 ;

0, ,0 , ;

0, 0; , 0,

c c c cu D kc
z r rz r

cz c r c uc uc D
z

c cr r r
r r

 ∂ ∂ ∂ ∂
= + + − ∂ ∂∂ ∂ 

∂
= ≡ ≡ −

∂
∂ ∂

= ≡ = ≡
∂ ∂

                          (2) 

where D  (m2·s−1) is diffusivity, k  (s−1)—chemical reaction rate constant, 0,u c —input values of the average 
velocity and concentration. 

The mass transfer efficiency ( )g  in the column and conversion degree ( )G  is possible to be obtained [4],  
using the input and outlet average convective mass fluxes at the cross-sectional area surface in the column: 

( )
0

0 2
000

2 , d ,
r gg uc ruc r l r G

ucr
= − =∫ .                          (3) 

The qualitative analysis of the model (2) will be made, using generalized variables: 

( ) ( ) ( )

( ) ( ) ( )

0 0

2
0

0 0

, , ,

, , , , ,

r r R z lZ u r u r R uU R

r
c r z c r R lZ c C R Z

l
ε

= = = =

 = = =  
 

                       (4) 

where 0 0, , ,r l u c  are the characteristic (inherent) scales (maximal or average values) of the variables. The in-
troducing of the generalized variables (4) in (2) leads to: 

( )
2 2

2 2

1

1Fo Da ;

0, 1, 1 Pe ;

0, 0; 1, 0,

C C C CU R C
Z R RZ R

CZ C U
Z

C CR R
R R

ε

−

 ∂ ∂ ∂ ∂
= + + − ∂ ∂∂ ∂ 

∂
= ≡ ≡ −

∂
∂ ∂

= ≡ = ≡
∂ ∂

                      (5) 
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where 1 1Fo Peε − −= , 2
0

Fo , Pe , DaDl ul kl
D uur

= = =  are the Fourier, Damkohler and Peclet numbers, respec-

tively. 
In the cases of big values of the average velocity ( )20 Fo 10−= ≤ , from the convection-diffusion type of 

model (5) is possible to be obtained a convection type of model if put Fo 0= : 

( ) Da ; 0, 1CU R C Z C
Z
∂

= − = ≡
∂

.                            (6) 

The effect of the chemical reaction rate is negligible if 20 Da 10−= ≤  and as a result 1.C ≡  
When a fast chemical reactions take place ( )2Da 10≥ , the terms in the model must be divided by Da and the 

approximation 1 20 Da 10− −= ≤  has to be applied and as a result: 
2

2

Fo 1 d d d d0 ; 0, 0; 1, 0,
Da d d dd

C C C CC R R
R R R RR

 
= + − = = = = 

 
                 (7) 

i.e. the model (6) is diffusion type. 

2.2. Average Concentration Model 
The average velocity and concentration at the column cross-sectional area can be presented as 

( ) ( ) ( )
0 0

2 2
0 00 0

2 2d , , d .
r r

u ru r r c z rc r z r
r r

= =∫ ∫                         (8) 

The velocities and concentration distributions in the convection-diffusion type of model (2) assume to be pre-
sented [3] [4] by the average functions (8): 

( ) ( ) ( ) ( ) ( ), , , ,u r uu r c r z c z c r z= =                            (9) 

where ( )u r  and ( ),c r z  represent the radial nonuniformity of both the velocity and the concentration distri-
butions, satisfying the conditions: 

( ) ( )
0 0

2 2
0 00 0

2 2d 1, , d 1.
r r

ru r r rc r z r
r r

= =∫ ∫                          (10) 

An average concentration model may be obtained [1]-[4] if put the Expression (9) into the model Equation (2) 
and then multiply by r and integrate with respect to r over the interval [ ]00, r . As a result: 

( )
2

02

d ; 0, 0 , 0,
d

c c cu uc D kc z c c
z z zz

αα ∂ ∂ ∂
+ = − = = =

∂ ∂∂
                (11) 

where 

( )
0

2
00

2 d .
r

z ruc r
r

α α= = ∫                                (12) 

A using of the generalized variables: 

( ) ( ) ( )
0

, ,z cZ C z lZ A Z
l c

α α= = = = ,                       (13) 

leads to: 
2

1
2

d d d dPe Da ; 0, 1, 0.
d d dd
C A C CA C C Z C
Z Z ZZ

−+ = − = = =                (14) 

In the cases 2 1 20 Fo 10 , 0 Pe Fo 10 , 1ε ε− − −= ≤ = = ≤ <  (see (6)) the model (14) has the convective form: 

d d Da ; 0, 1.
d d
C AA C C Z C
Z Z
+ = − = =                       (15) 
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The function ( )A Z  in (14) and (15) represents the effect of the velocity radial non-uniformity on the mass 
transfer efficiency in the column apparatus: 

( ) ( )
0

2
00

2 d ,
r

A Z z ruc r
r

α= = ∫                             (16) 

where  

( ) ( ) ( )

( ) ( )
( )

( )
( )

( ) ( ) ( )
1

0 0

,

, ,
, ,

2 , d

u r
u r U R

u
c r z C R Z

c r z
c z C Z

c z
C Z RC R Z R

c

= =

= =

= = ∫



                          (17) 

and as a result: 

( ) ( ) ( )
( )

1

0

,
2 d

C R Z
A Z RU R R

C Z
= ∫ .                         (18) 

2.3. Effect of the Radial Non-Uniformity of the Velocity Distribution 
As an example will be used the case of parabolic velocity distribution (Poiseuille flow): 

( )
2

22 2 .
o

ru r u
r

 
= − 

 
                              (19) 

From (4) and (19) follows: 

( ) 22 2U R R= − .                               (20) 

The solutions of the problems (5) for Da 1,2=  and Fo 0,0.1,1.0=  permits to be obtained ( ) ( ), ,C R Z C Z  
and results for ( ) 1A Z ≥  are presented, using different approximations: 

( ) ( )

( ) ( )

0 0
1

1

1Fo 1, Da 1,2, , ;

11Fo 0, 0.1, Da 1,2, 1 , ; 0 1.

N

n
n

N
n

n
n n

A Z a a A Z
N

A Z
A Z aZ a Z

N Z

=

=

= = = =

−
= = = + = < <

∑

∑
       (21) 

The obtained values of 0,a a  in (21) are shown in Table 1.  
The Equations (14) and (15) permit to be obtained expressions for the concentration axial gradient: 

2
1 1 1 1

2

1 1

d d dPe Da ;
d d d
d d Da .
d d

C A CA C A A C
Z Z Z
C AA C A C
Z Z

− − − −

− −

= − + −

= − −

                   (22) 

 
Table 1. Parameters values and values of process efficiencies (conversion degree).                                    

 a a0 G G0 

Da = 1, Fo = 0 0.5511  0.5568 0.6734 

Da = 1, Fo = 0.1 0.2463  0.5938 0.6452 

Da = 1, Fo = 1  1.02 0.6211 0.6281 

Da = 2, Fo = 0 1.3623  0.7806 0.8516 

Da = 2, Fo = 0.l 0.4547  0.8115 0.8502 

Da = 2, Fo = 1  1.04 0.8481 0.8538 
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From (9) it follows, that 1u =  if the velocity radial non-uniformity is absent ( )u u= , i.e. 1A α= =  (see 
((10), (12), (16)). The presence of a radial non-uniformity of the axial velocity in the columns leads to 1A > , 
i.e. a decrease of the concentration axial gradient and process efficiency [4]. The using ((3), (4), (13)) permits to 
be obtained the process efficiencies (conversion degree) in the cases of presence ( )G  and absence ( )0G  of a 
radial non-uniformity of the axial velocity in the column:  

( ) ( ) ( )
1

0
0

1 2 ,1 d , 1 1G RU R C R R G C= − = −∫ .                     (23) 

The results are shown in the Table 1, where is seen, that the radial non-uniformity of the axial velocity com-
ponent leads to a substantially decrease of the conversion degree. 

2.4. Effect of the Tangential Flow 
Let’s consider a cylindrical column with axial input of the gas (liquid) flow (Figure 1(a)). The axial and radial 
velocity components ( ) ( ), , ,z z r ru u r z u u r z= =  satisfy the continuity equation: 

( ) ( ) ( )0
0 00, 0, ,0 , , , 0,z r r

z z r
u u u z u r u r r r u r z
z r r

∂ ∂
+ + = = = = ≡

∂ ∂
             (24) 

where ( )0
zu r  is the input distribution of the axial velocity component and is a result of the geometric condi-

tions at the axial input of the column. The velocity components ( ) ( ), , ,z ru r z u r z  are possible to be obtained as 
a solution of the Navier-Stokes equations in boundary layer approximation, i.e. to solve the problem of the gas 
(liquid) jet in immobile gas (liquid). As a result the radial non-uniformity of the axial velocity component exists 
for the columns with limit height. In these conditions the conversion degree increase is related with the decrease 
of the radial non-uniformity of the axial velocity component (special geometric conditions at the axial input of 
the column). 

A possibility for a partial reduction of the radial non-uniformity of the axial velocity component is the using 
of a column with tangential enter [5] of the gas (liquid) flow (Figure 1(b)) in the column input. 

A maximal reduction of the radial nonuniformity of the axial velocity component is the using of a column 
with tangential enter [6] of the gas (liquid) flow (Figure 1(c)) in the column working area. 

In the cases of tangential input of the flow in the column, the velocity components  
( ) ( ) ( ), , , , , , , ,z z r ru u z r u u z r u z rϕϕ ϕ ϕ= =  satisfy the continuity equation: 

( )

( )

( )

0 2
0

0 0

0
0 2

00

1 0;

0, 0 , 0 2π, 0, , ;
π

, 0 , 0 2π, , , 0;

0, 0, ,0 ,
π

z r r

z

r

uu u u
z r r r

Qz r r u r u
r

r r z l u z r
Qu r u
r

ϕ

ϕ ϕ

ϕ

ϕ ϕ

ϕ ϕ

ϕ

∂∂ ∂
+ + + =

∂ ∂ ∂

= ≤ < ≤ ≤ ≡ =

= < ≤ ≤ ≤ ≡

= ≡ =

                   (25) 

where Q  (m3·s−1) is gas (liquid) flow rate in the column, 00r —column input radius. 
The using of the generalized variables: 

00
0, , 2π , , ,z z r r

r
z lZ r r R u uU u u U u u U

l ϕ ϕ ϕϕ= = = Φ = = = ,             (26) 

leads to 

( )
( )

( )

0
0

1 2π 0;

0, 0 1, 0 1, 0, , 1;

1, 0 1, 0 1, ,1, 0;

0, 0,1,0 1.

z r r

z

r

U ur U U U
R Z R Ru l

Z R U R

R Z U Z

U

ϕ

ϕ

ϕ

ϕ
∂ ∂ ∂ + + + = ∂ ∂ ∂ 

= ≤ < ≤ Φ ≤ Φ ≡

= < ≤ ≤ Φ ≤ Φ ≡

Φ = ≡

                     (27) 
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(a)                 (b)                   (c) 

Figure 1. Cylindrical column with: (a) Axial gas (liquid) 
flow; (b) Tangential gas (liquid) flow in column input; (c) 
Tangential gas (liquid) flow in column working area.       

 
Practically 0u uϕ  and an approximation is possible to be used: 

20
00 2π 10

ur
u lϕ

−= ≤ ,                                (28) 

i.e. 

0
Uϕ

ϕ
∂

=
∂

                                   (29) 

and from (27) it follows: 

( )
( )

0;

0, 0 1, 0, 1;

1, 0 1, ,1 0.

z r r

z

r

U U U
Z R R

Z R U R

R Z U Z

∂ ∂
+ + =

∂ ∂
= ≤ < ≡

= < ≤ ≡

                           (30) 

From (30) follows, that practically ( ) ( ), 1, , 0z rU R Z U Z R≡ ≡  (except for a thin boundary layer on the 
wall).  

The presented theoretical analysis shows, that the using tangential input of the flows in the columns area lead 
to a significant decrease of the velocity radial non-uniformity and as a result an increase of the conversion de-
gree in the column reactors. 

2.5. Simultaneous Mass and Heat Transfer Processes 
The heat and mass transfer kinetics theory shows [3], that the process rate depends on the characteristic velocity 
in the boundary layer. The big difference between these velocities in the cases of axial and tangential input of  
the flows ( )0u uϕ  leads to a substantial increase of the heat transfer rate through the column wall. 

Let’s consider a simultaneous mass and heat transfer processes in a column chemical reactor, where the ve-
locity, concentration and temperature t  (deg) distributions in the column are denoted as: 

( ) ( ) ( ), , , ,u u r c c r z t r z= = .                         (31) 
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The mass and heat transfer model in the physical approximations of the mechanics of continua [1]-[4] can be 
expressed as: 

( )

2 2

2 2

0 0 0

0

1 ;

0, ,0 , ;

0, 0; , 0.

c c c cu D kc
z r rz r

cz c r c uc uc D
z

c cr r r
r r

 ∂ ∂ ∂ ∂
= + + − ∂ ∂∂ ∂ 

∂
= ≡ ≡ −

∂
∂ ∂

= ≡ = ≡
∂ ∂

                       (32) 

( )

2 2

2 2

0 0 0

0 0

1 ;

0, ,0 , ;

, ; ,

p p

p

s

t t t t qu kc
z c r r cz r

tz t r t ut ut
c z

tr r t t k
r

λ
ρ ρ

λ
ρ

λ

 ∂ ∂ ∂ ∂
= + + + ∂ ∂∂ ∂ 

∂
= ≡ ≡ −

∂
∂

= ≡ − ≡
∂

                      (33) 

where ρ  (kg·m−3) is density, pc  (J·kg−1·deg−1)—specific heat at constant pressure, λ  (J·m−1·s−1·deg−1)— 
thermal conductivity, q  (J·kg−1)—heat effect of the chemical reaction, 0k  (J·m−2·s−1)—local heat transfer 
flux. In the model ((32), (33)) 0, , , , , ,pD k c q kλ ρ  are temperature functions, where 0 st t t≤ ≤  or 0st t t≤ ≤  in 

the case of endothermic ( )0q <  or exothermic ( )0q >  chemical reaction.  

Practically the difference 0 st t−  is not so big and in ((32), (33)) is possible to be used constant values of 

0, , , , , ,pD k c q kλ ρ  at * 0

2
st t

t
+

= . 

From the condition const.st =  follows, that the volume heat generation in the column is equal to the inter-
face heat transfer through the column wall: 

( ) ( )
0

0 0

0
0 0

0

2π d 2π , .
2

r

r r r r

r qkt trqkc r r c z k z
r r

λ λ
= =

∂ ∂   = − − = =   ∂ ∂   ∫             (34) 

A qualitative analysis of the model ((32), (33)) will be made, using generalized variables: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0 0

0 0

*
0

, , ,

, , , ,

, , , ,

r r R z lZ u r u r R uU R

c r z c r R lZ c C R Z

t r z t r R lZ t T R Z

= = = =

= =

= =

                      (35) 

where *
0 0, , , ,r l u c t  are the characteristic (inherent) scales (maximal or average values) of the variables. The in-

troducing the generalized variables (35) in ((32), (33)) leads to: 

( )

( ) ( )

2 2 2
0

2 2 2 2
0

1 ;

0, ,0 1, 1 ;

0, 0; 1, 0.

rC Dl C C C klU R C
Z R R uur l Z R

D CZ C R U R
ul Z

C CR R
R R

 ∂ ∂ ∂ ∂
= + + − 

∂ ∂∂ ∂ 
∂

= ≡ ≡ −
∂

∂ ∂
= ≡ = ≡

∂ ∂

                     (36) 

( )

( ) ( )

( )

2 2 2
0 0

2 2 2 2 *
0

0
0 0 *

0

2
0 0

* *

1 ;

0, ,0 , 1 ,

1, ; , .
2

p p

p

s
s s

r qlkcT l T T TU R C
Z R Ru c r l Z R u c t

tTZ T R T U R T
T u c l Z t

r qkc tTR T T C Z T
R t t

λ
ρ ρ

λ
ρ
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 ∂ ∂ ∂ ∂
= + + + 

∂ ∂∂ ∂ 
∂

= ≡ ≡ − =
∂

∂
= ≡ ≡ − =

∂

                 (37) 
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In the cases of very height column is possible to be used the approximation 
2

20
20 10

r
l

−= ≤  and the models 

((36), (37)) are parabolic type. If average velocity u  is very big, it is possible to be used the approximations 
2

2
0

0 10Dl
ur

−= ≤  and 2
2

0

0 10
p

l
u c r
λ
ρ

−= ≤ , i.e. the models ((33), (34)) are convective type: 

( ) ( ); 0, ,0 1.C klU R C Z C R
Z u
∂

= − = ≡
∂

                       (38) 

( ) ( )0
0* ; 0, ,0 .

p

qlkcTU R C Z T R T
Z u c tρ
∂

= = ≡
∂

                     (39) 

2.6. Average Temperature Model 
The average temperature at the column cross-sectional area can be presented as 

( ) ( )
0

2
00

2 , d .
r

t z rt r z r
r

= ∫                                (40) 

The velocities and temperature distributions assume to be presented by the average functions ((8), (40)): 

( ) ( ) ( ) ( ) ( ), , , ,u r uu r t r z t z t r z= = 

                          (41) 

where ( ),u r z  and ( ),t r z  represent the radial non-uniformity of both the velocity and the temperature dis-
tributions, satisfying the conditions: 

( ) ( )
0 0

2 2
0 00 0

2 2d 1, , d 1.
r r

ru r r rt r z r
r r

= =∫ ∫                          (42) 

An average temperature model may be obtained if put the Expression (41) into the model Equation (33) and 
then multiply by r and integrate with respect to r over the interval [ ]00, r . The result is: 

( )
2

02

dd d d; 0, 0 , 0,
d d dd

t
t

p

t t tu ut z t t
z z c zz

α λα
ρ

+ = = = =                  (43) 

where 

( )
0

2
00

2 d .
r

t t z rut r
r

α α= = ∫ 

                                (44) 

A using of the generalized variables: 

( ) ( ) ( )
0

, , ,t t t
z tZ T z lZ A Z
l t

α α= = = =                        (45) 

leads to: 
2

0
2 2

dd d d; 0, 1, 0.
d d dd

t
t

p

A tT T TA T Z T
Z Z Zc ul Z

λ
ρ

+ = = = =                    (46) 

Similar to (18) the function ( )tA Z  is possible to be obtained after solution of the problems (36) and (37): 

( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

*
0 0

,
2 d , 2 , d .t

T R Z t z
A Z RU R R T Z RT R Z R

T Z t
= = =∫ ∫                (47) 

3. Conclusions 
The solution of the modeling problem of the column chemical reactors is presented in the approximation of the 
mechanics of continua, where diffusion type of model and average concentration model are proposed for the qu-
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alitative and the quantitative analysis of the processes in column reactors, respectively. 
The presented theoretical analysis shows that the conversion degree in the column chemical reactors decreas-

es as a result of the radial non-uniformity of the axial velocity component. 
A theoretical analysis of the simultaneous mass and heat transfer processes in column reactors is presented. 
A method for substantially reducing the radial non-uniformity, and using a tangential introduction of the fluid 

in the column, is proposed as a utility model (application number 2464 column reactor for chemical processes 
17 June 2013). 

The main claims of the utility model are: 
• a column apparatus for chemical reactions (column chemical reactor), characterized in that the fluid (reaction 

mixture) goes into the bottom of the column working zone directly and tangentially; 
• a column apparatus for chemical reactions (column chemical reactor), characterized in that the radial non- 

uniformity of the velocity distribution over the cross-sectional area in the working zone of the column is mi-
nimized and the chemical processes rate is maximal; 

• a column apparatus for chemical reactions (column chemical reactor), characterized in that the generated 
angular velocity component leads to an intensification of heat transfer through the walls of the column in the 
cases of the heating (cooling) of the reaction mixture. 
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