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Abstract 

We developed energy profiles for the fractional quantized states both on the surface of electron 
due to overwhelming centrifugal potentials and inside the electron at different locations of the 
quantum well due to overwhelming attractive electrodynamic potentials. The charge as a physical 
constant and single entity is taken as density and segments on their respective sub-quanta (floats 
on sub quanta) and hence the fractional charge quantiz at in. There is an integrated oscillatory ef-
fect which ties all fractional quantized states both on the surface and in the interior of the volume 
of an electron. The eigenfunctions, i.e., the energy profiles for the electron show the shape of a 
string or a quantum wire in which fractional quantized states are beaded. We followed an entirely 
different approach and indeed thesis to reproducing the eigenfunctions for the fractional quan-
tized states for a single electron. We produced very fascinating mathematical formulas for all such 
cases by using Hermite and Laguerre polynomials, spherical based and Neumann functions and 
indeed asymptotic behavior of Bessel and Neumann functions. Our quantization theory is dealt in 
the momentum space. 
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1. Introduction 
The inside of the electron is treated like a potential well with its depth equivalent to radius er  and that the 
charge above it is fractionally quantized. The bounded electron having orbit angular and rotational momentum 
will have a continuous change of its surface, as a consequence of which, charges as a constant entity will 
rearrange in its fragmented form and hence the fractional quantized states above its surface. Each fractional 
quantized state is a manifestation of sub quanta due to change in mass distribution. This happens in the 
momentum space just like the Compton and Photoelectric effects. We are refereing to momentum space because 
some kind of external momentum, may be due to photons, will cause the charge on an electron to become 
degenerate, of course, only above the surface. The fractional charge floats on the surface of sub quanta (energy 
becomes oscillatory due to segmented masses of electron but coupled with a string or a quanta wire). The 
question why and how this happens could be answered by considering that the centrifugal potential is 
dominating over the electrodynamic potential, as a consequence of which,quantum well with a depth er  is 
becoming shallow and that the segmented masses of electron are shifting on the surface but coupled with a  

string. This coupling, in fact, is due to gyroscopic behaviour of an electron. The coupling constant 
2 1~

137
e

c
 
 ′ 

 

is overwhelmed by the gyroscopic constant, ( )
2

0.2 0.8g
c

−


. The gyroscopic behaviour of an electron causes the  

constant entity of charge to become degenerate and fractionally quantized above its surface (of course due to 
segmented mass distribution but coupled with a string at different locations just above the surface). 

The radial eigen function ElR  inside the quantum well (with depth equivalent to radius of an electron) 
follows strips of whirling pool as a manifestation of competing centrifugal force and attractive electrodynamic 
potentials. The charges always reside either on the surface of the electron or on the surface of a quanta.With this 
competing behaviour the shape of the surface of an electron is changed preferably due to the shallowing of 
quantum well. The brim of quantum well becomes effective due to overwhelming behaviour of the centrifugal 
potential over the attractive electrodynamic potential and hence the spitting of the segmented masses (sub quanta) 
above the surface. But all the erupted segmented masses are coupled with a central force and indeed with a 
string. Each segmented mass of an electron is equivalent to its sub quanta. These sub quanta of electrons are tied 
with each other with a gyroscopic behaviour. The charge is also fragmented and floats on their respective sub 
quanta. 

2. Theory 
For er r< , i.e..,less than the radius or depth of the quantum well of an electron, the radial eigen function 
follows the equation [1]-[3].  

( ) ( ) ( ) ( )
22 2

, 0 ,2

1d 2 d
2 d d 2 E ER r E V R r

r r r rµ µ
 + −

+ + = +  
  

 

  

  

( ) ( ) ( ) ( )
2

0 ,2 2

1d 2 d 2
d d El ER r E V R r
r r r r

µ + 
⇒ − + + = +  

  


 



                   (1) 

where µ  is the reduced or segmented masses, ( ) 2

2

1
2 rµ
+    the centrifugal potential on each strip of the 

whirling pool inside the electron (quantum well), 
2

0
e

e V
r

− =  the electrodynamic potential and l the azimuthal  

quantum number (determines the shape of the whirling strips in the quantum well). We roughly estimated the 
radius or depth of the quantum well of an electron by considering the charge as density of electron  
( )~ 10 -15 m .er µ  Our assumption for treating the charge as density is due to very small volume of the electron.  
Each of the broken sub quanta are woven in a string due to whirling and swirling effects (electro weak 
interactions) on an electron and is manifestation of gyroscopic behaviour. Equation (1) can be rewritten as  
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( ) ( ) ( )
2

2
,2

1d 2 d
d d E ER r K R r

r r r r
 + 
− + + =  
  

 

 

                          (2) 

where  

( )
2

0 0

1 2

2
2 and

e

eK E V V
r

µ = + = −  

                               (3) 

When broken sub quanta above the surface of an electron are woven in a string, they should have an 
integrated oscillatory effects. 

Writing  

( )
2

21 e
2 ! π

x

n nn
H x

n
ψ

−
=                                    (4) 

The exponent n of 2 will have fractional quantization, 0.1 0.9fn≤ ≤  where as ! 0! 1n = =  for integrated 
oscillatory behaviour. This would work for Equation (4). The quantum of dipole moment leads to charge 
quantization [4]-[7]  

x hq=                                            (5) 

where quantum dipole momentx = , h is Planck’s constant(quantum action) and q the charge. 
The matter energy such as of an electron exists in the form of transverse wave.This is oscillatory (quantum 

action) and configures a space called a wave packet or “quanta”. We consider that the charge on an electron is 
treated as its density which is not only smeared on the surface but also inside the volume despite the fact that 
charges always reside on the surface. This is the reason that fractional charges float on their respective 
segmented masses above the surface of an electron. Considering the symmetry of the harmonic oscillator 
potential,solution for eigen function exists in the form  

( ) ( ), ,m
m R rψ ψ= Θ Φ
 

                                    (6) 

in which the differential equation for the radial eigen function (on the surface of an electron) ( )R r  is 

( ) ( ) ( )2
2 2 2

11 d d 2 ,
d d e

R mr E V r R r r r
r rr r

+  + − = =     

 



                       (7) 

Modifying Equation (4) with Equation (5) for fractional charge quantized states having an integrated 
oscillatory effect at the surface of an electron.  

( )
2

21 e
2 0! π

f ff

hq

n nn
H hqψ

 − 
 =                               (8) 

We have calculated ( )
fnH hq  for 0.1 0.9fn≤ ≤  and reproduced the shape of the eigen function on the 

surface of the electron [7], i.e., case I ( er r= ).  

2.1. Case I ( er r= ) 

( ) ( )
2

1
2

20.17 1.53 e
2 0! πf ff

hq

n nnhq H hq
ααψ α

 −  
  ≤ ≤

=  
 

                       (9) 

where α  is a rotation vector to locate the fractional quantized states on the surface of an electron. The rotation 
vector, “α ” in complex plane ( ),t w  is determined from the Fractional Fourier Transform analysis [8]. we  
found ( ) 2 f

f

n
nH hqα =  for the fractional quantized states, 0.1 0.9fn≤ ≤  with 0.17 1.53α≤ ≤  [8]. The term 

in Equation (9), i.e..,  
2

2 2exp exp
2

hqα α
  − ≡ −  
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tends to unity and is valid for Equation (8). The reason for the convergence in the above expression is explained 
in [8]. The eigenfunction ( )

fn hqψ  in Equation (9) with oscillatory function ( )
fnH hqα , Hermite function,  

shows the energy profile as a straight line with fractional quantum states and that the profile is a tangent on the 
surface of an electron. The fractional quantum states fn  are beaded in a string (quantum wire in the form of a 
straight line energy profile). e fin α , when plotted against, fn  the fractional quantized states, shows the 
logarithmic profile for the rotation vector, α  [9]. We will have the admissible solution of Equation (7) in the 
form  

er r≡                                            (10) 

Writing the series for Equation (10), i.e..,  

k
k e

k l
a rφ

∞

=

= −∑                                       (11) 

Using this series Equation (11) and making it to terminate with asymptotic condition, we have the recurrence 
relation (to reproduce the more appropriate shape of the string on the surface of an electron). 

( ) ( )
( ) ( ) 2

2 3
, 1

1k k
a k

a a k
k k

λ
−

− − −
= > +

− + +


 

                           (12) 

2 1asymptotic condition.fnλ = +  

and Ultimately,we get the series in the form  
2

power series in
2e

hqrφ
  = ×      

  

2

2 2e e
hq

r
e er rφ

 − −  = × = ×                                 (13) 

When centrifugal potential dominates over the attractive electrodynamic potential in the quantum well with its 
depth equal to radius of an electron swirling causes the strips of the whirlpool to change into elliptic orbits with 
enhanced Eulerian angles. Thus we have  

( ) ( )
2

2
, , e , ; , 0.1 0.9

f f

hq
l m

n m n l f fr Y n nψ φ
 − 
 = Θ Φ ≥ ≤ ≤




                    (14) 

With Equation (14), ( )n f
rφ   will change into Lagueree polynomials. Solution of Equation (14) becomes 

more complicated. We shall have a shallowing of a quantum well continuously, therefore,treatment of ( ),mY Θ Φ


 
along with Eulerian angle would becomes cumbersome. This problem can be overcome by defining  

Krρ =  

and  

( ) ( ),ER R rρ ≡
 

                                   (15) 

With Equation (15) and er r<  (less than the depth of the quantum well),the radial eigen function ( )eR ρ  
satisfies the spherical Bessel differential equation [1]-[3] 

( ) ( )
2

2 2

1d 2 d 1 0.
dd

R ρ
ρ ρρ ρ

 + 
+ + − =  

   


 

                         (16) 

The particular solutions of Equation (16) are spherical Bessel functions  

( ) ( )
1
2

1
2

π
2

j Jρ ρ
ρ +

 
=  
 





                                (17) 

and the spherical Neumann functions  
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( ) ( ) ( )
1
21

1
2

π1
2

Jη ρ ρ
ρ

+

− −

 
= −  

 







                               (18) 

Just as in the case of the free particle the condition that ( )lR ρ  must be finite everywhere including the base 
of the quantum well (origin or centre of the electron)restricts us to only spherical Bessel functions, lj  
(Equation (17)) and we have inside the well  

( ) ( ), ;E eR r Aj Kr r r= <
 

                                  (19) 

where A is complex constant and can be determined by normalizing the eigen functions ( ),ER r


. With our 
conjecture of fractional quantization on the surface of an electron due to over whelming swirling effect and 
indeed to shallowing of quantum well, we can determine constant “A” of Equation (19) by considering  

( )
2

2e , ,
f

hq

n e er r r rφ
 − 
 = × =   [Equation (13)] 

by using momentum operator for fractional charge quantization  

( )

2 2

2

* 2 2

2
* 2

*

e e d
;

e e d
2

f

hq hq

e e

n ehq

e e

e e
e

r i r s
rr r r

hqr r s

ii r i r
r

φ

   −   ∞    
−∞

 − ∞  
−∞

−

∂ 
 ∂ = =

 × ×  
 

= ⋅ = =

∫

∫

 



 

 







 

 

fn
e

iA
r

φ≡ =



                                     (20) 

Putting Equation (20) in Equation (19), we have  

( ) ( )
1
2

, 1
2

π ;
2E e

e

iR r J Kr r r
Krr +

 = ≤ 
 







                           (21) 

Equation (21) represents the eigenfunction of the swirling strips of the whirl pool in the quantum well. Using 
Equation (15) in Equation (17) and modifying Equation (21), we have  

( ) ( ), ;E e
e

iR r j Kr r r
r

= <
 



                                (22) 

For 0≠ , 1i → , Equation (22) becomes case II ( er r< ).  

2.2. Case II ( er r< ) 

( ) ( )
1
2

, 1
2

π ;
2E e eR r r J Kr r r

Kr
−

+

 = < 
 







                           (23) 

The value of K expressed in Equation (3) will further be modified for Equation (23)  

( ) ( )
1 22 22

0 02
2 where and

2 2e

Ke pK E V V E
r

µ
µ µ

 = + = − = =  





 

For fractional charge quantization,  

( )2
2 2

,
2 2

f f

f

n n
n

k k
E

µ µ
= =
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we have  
1

2 2 22

2

1
2 2

2 2
2

1
22

2

1
2

2 2
2

2
2

2 ;

2 ; , 0.1 0.9
2π

2 2π 4π

f

f

n f

f f

n

e

n f
e

f
f

e

f f
n n

ee

k eK
r

ek fe n hq
r

n hq hk n
r

n q n q
k k

rr

µ
µ

µ

µ

µ µ

  
  = −

    

 
= − ≡ 
 

 
= − × = ≤ ≤ 
 

×   
= − = −   

  















                      (24) 

We consider 2
fe n hq≡  for fractional charge quantization and indeed for electrodynamic behaviour with 

integrated oscillatory characteristic. The energy levels are obtained by requiring that the eigen function ( ),ER r


 
[Equation (23)] with Equation (24) and its derivatives be continuous at the discontinuity of the potential well.  

Thus the logarithmic derivative ,

,

d1
d

E

E

R
R r

  
     





 must be continuous at er r= . For er r> , Equation (1) with 

0 0V =  is identical to a free particle, but 0E < . It is convenient to write 
2

2
E λ

µ
 

= − 
 

 ; opE E= , λ ≡ ∇  so that  

1.
2

2
2 Eµλ − =  

 

                                     (25) 

Equation (1) with 0oV =  can be put in the form of spherical Bessel equation by changing i rρ λ=  which 
amounts to replacing K in Equation (15) by iλ . The domain of ρ  does not extend down to zero, as a 
consequence of which, we take a linear combination of the functions j



 (Equation (17)) and n


 (Equation 
(18)). Using the asymptotic formulas for spherical Bessel and Neumann functions with ρ →∞   

( ) 1 πsin
2

j ρ ρ
ρ

 → − 
 



  

( ) 1 πcos
2

η ρ ρ
ρ

 → − − 
 



                                (26) 

The asymptotic behaviour of the spherical Hankel functions of first and second kind with ρ →∞  are  

( ) ( )1

πexp
2

i
h i

ρ
ρ

ρ

  −    → −




 

( ) ( )2

πexp
2

i
h i

ρ
ρ

ρ

  −    →




                               (27) 

With i rρ λ= , we observe that for large r, i.e., er r , the functions ( )j i rλ


, ( )i rη λ


 and ( ) ( )2h i rλ


 

increases exponentially like ( )exp r
r
λ

 and must, therefore, be excluded. The admissible solution is ( ) ( )1h i rλ


, 

which is proportional to ( )exp r
r
λ−

 for er r  because ( )exp rλ−  is a convergent series. Hence, the desired 
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solution of Equation (1) with 0oV = , i.e., out side the quantum well, is case III ( er r ). 

2.3. Case III ( er r
) 

( ) ( ) ( ) ( ) ( )1
, ;E l l eR r Bh i r B j i r i r r rλ λ η λ= = +   

                       (28) 

where B is a complex constant and can be determined by normalizing the eigenfunction ( ),ER r


. At er r , we 
found the normalized eigen function [6], i.e., 

( ) ( )2
4 1

0

4 1
, ef

f

fn im
n

r e

n
r r

r
φψ φ

∞
±

+
=

+
= ∑                                 (29) 

with theoretical eigenvalues  

( ) ( ) 2

4

2 1
; 0.1 0.9

2 sinf

f f
n f

n n
E n

µ θ

+ +
= ≤ ≤



                           (30) 

The complex constant B in Equation (28) at er r  is equivalent to  

( )
( )

2 4 1

4 12 !

1 f ff

ff
n nn

e

nn
B

rβ+ +

+
=

−
                                (31) 

with  
12

1 2
12 2 2

22 sin 2, ,
sin

EE E kµβ µ θ µβ β β β
θ

= = = ⇒ = ≡
 

 

(for a free particle). 
Remember θ α≡ , in our present case, and can be used to locate the effect of sub quanta and fractional 

charge quantization at er r . Equation (29) can be used to monitor the effect of fractional charge quantization 
in terms of azimuthal angle φ  and also in terms θ α≡  for each radial strip of the electron. By applying the 
conditions of continuity to Equation (23) and Equation (28), we have  

( )
( )

( ) ( )
( ) ( )

1

1

d d d d

o or r r r

j Kr r h i r r
j Kr h i r

λ
λ= =

  
=   
    

 





                           (32) 

Equation (32) is the transcendental equation for arbitrary  . In an ideal case, for 0= , we shall have no 
surface fractional charge quantization, as a result of which, the attractive electrodynamic potential well dominate 
over the centrifugal potential and the quantum well becomes more deep with radius of the electron becoming 
more smaller (charge, i.e., density will increase within a smaller volume). Hence, with 0= , we can determine 
the strength of the potential well, i.e., quantum potential well with in an electron, are  

( ) ( ) ( ) ( )1sin cos 1, , e r
o o oj h i r

r
λρ ρρ η ρ λ

ρ ρ λ
−= = − = −                      (33) 

and  
cot eK Kr λ= −                                      (34) 

Equation (34) refers to odd parity solution to quantum potential well. Thus, setting eKrξ =  and erη λ= , 
and using Equations (24) and Equation (25)  

cotξ ξ η= −                                       (35) 

with  

2 2 2 2
2

2
o eV rµξ η γ+ = =



                                (36) 

where 

1
2 2

2
2 o eV rµ 

 
 

 is the strength parameter of quantum well of an electron. There is no ( )0=  bound state 
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if π
2

γ <  (boundary condition of Fractional Fourier Transform (FRFT)) but one ( )0=  bounds state exists if 

π 3π
2 2

γ< ≤ , and so on  

2 2πf f
o

e e e

n hq n qeV
r r r

− −
= − = =



                              (37) 

(by ignoring the negative sign because it shows attractive electrodynamic potential) in  
11 1

22 22 2

2 2 2

2 2π 4π2 e f e fo e

e

r n q r n qV r
r

µ µµγ
 ×   

= = =          

 

  

 

( )
1
22 π , 0.1 0.9nf e f fr n nγ µ⇒ = ≤ ≤



                            (38) 

Equation (38) shows the strength of the quantum well at different depths for whirling strips corresponding to 
fractional quantized states inside the electron. 

3. Conclusion 
The energy profile (eigenfunctions) of the quasi particle nature of electron quanta is obtained. These energy pro-
files of stretched electron quanta with sub-quanta (twiggs) on the lateral surface in the momentum space due to 
twisting (gyroscopic behaviour) will pave a new dimension in theoretical physics to let us know about how par-
ticles and sub particles settle in the lowest energy state. With our conjuncture of fractional charge quantization, 
the shape of the energy profile and energy eigenvalues above the surface of quasi particle nature of an electron 
quanta in chromotized water sample (confirmed with absorption and Fourier transform inferred (FTIR) spec-
troscopies) is verified. The other results of energy profiles such as on the surface and inside the surface of quasi 
particle behaviour of an electron quanta will decipher new physics for understanding the complex nature of ex-
change energy fields, may be the intermediatory nature of strong forces in the nucleus of the atom due to quarks. 
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