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Abstract 
In the first part of this work, a convex partition of a compact subset is constructed. Minimum- 
length surrounding curve and minimum-area surrounding surfaces for a compact set are con- 
structed too. In the second part, one writes the perimeter of an ellipse as the sum of an alternate 
series. On the other hand, we deduce related “sandwich” inequalities for the perimeter, involving 
Jensen’s inequality and logarithmic function respectively. We discuss the values of the ordinate of 
the gravity center of the upper semiellipse at the ends of the positive semiaxes, in terms of the 
scale ratio b a . 
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1. Introduction 
Classical and relative recent evaluations and inequalities for the perimeter of the ellipse are recalled and proved 
in [1]-[3]. We continue this type of results by writing the perimeter of the ellipse as a sum of an alternate series. 
One proves two sandwich-type inequalities. The first one involves irrational functions of the semiaxes, while the 
second one uses the logarithmic function. Many authors have studied the applications of results on non-convex 
compact spaces. This paper shows how to decompose an arbitrary compact set into its “convex components”. 
Based on the convexity of the subsets, we can then derive properties of the whole non-convex set. Strassen has 
presented a disintegration theorem for representing a function dominated by a sum, as a sum of functions with 
some properties [4]. The current paper shifts the discussion from functions to sets and presents the decomposi- 
tion of a set into convex sets. The general idea is similar to the partition of an open subset, formed by its con- 
nected components. 

Next, I consider the convex hull of a compact set and propose a minimal-length surrounding curve and mini- 
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mum-area surrounding surface for a compact set. In [5], a similar minimal surface problem is considered in the 
setting of differential geometry and calculus of variations. Local affine approximation methods are used in [6] 
[7]. For practical reasons, in this work I use smooth approximations of convex (or concave) maps obtained from 
the convex hull (see also [8]). The importance of Krein Milman and Caratheodory’s theorems is pointed out in 
[6] [7] [9], and in the present work too. Jensen’s inequality [9] plays a central role in analysis, with applications 
in other fields. It appears in this work, related to the perimeter of the ellipse. The following works deal with 
smooth approximation, not only on compact, but also on unbounded subsets of Rn: [8] [10]. 

The background for this work is contained in [6] [9] [11]. The present work follows the way of real analysis, 
as well as elements of topology and complex analysis. The paper is organized as follows. In Section 2, we point 
out convex partitions of a compact subset. Section 3 deals with the minimal-length surrounding curve and mi- 
nimal area surrounding surface. In Section 4, I introduce three types of approximations for the perimeter of the 
ellipse. Section 5 concludes the paper. 

2. Constructing Convex Partition of a Compact Set 
The following theorem shows the decomposition of a compact non-convex set into convex subsets. The proof 
not only shows the existence of the decomposition but also gives a method for constructing the convex sets. The 
word “maximal” in the theorem’s statement refers to the set-inclusion order relation. 

Theorem 1. Let S be a compact subset of the locally convex space X, such that the interior of S is dense in S. 
There exists a partition of intS formed by maximal convex subsets, having in common at most parts of the boun- 
daries. If the space S is separable, the partition is at most countable. 

Proof. We give the proof only for the separable case. Let { }n n
x S

∈Ν
⊂  be a dense subset and assume x0 to be 

a point of intS. Denote by ( )0C x  the family of all convex, closed subsets of S, containing x0 in their relative 
interior with respect to S. Endow the nonempty family ( )0C x  with the order relation defined by set inclusion 
relation. Every totally ordered family ( ) ( )0

j j
K C x⊂  is bounded from above by 

( ) ( )0 .j J jK cl K C x∈= ∈  

The application of Zorn lemma yields the existence of a maximal element ( )0M x  in ( )0C x . Choose 
( )1 0\ ,kx S M x∈  where k1 is the smallest integer such that ( )1 0 .kx M x∉  There is a closed convex neighbor- 

hood ( )1kV x  of 1kx  in S, that is not intersecting ( )0 .M x  Application of Zorn lemma to the family of all 
closed convex subsets containing 1kx  in their interior, such that the intersection of their interior with the inte- 
rior of ( )0M x  is empty, leads to a maximal element ( ) ( )1 1 ,M x C x∈  and so on. The step n consists of ap- 
plication of Zorn lemma to the family of convex closed subsets not intersecting the subset 

( )( )1 int jk
j n M x≤ −  

and which contain ,nkx  where nk  is the smallest natural number such that 

( )1
jn kk

j nx M x≤ −∉ . 

Thanks to the density of the sequence { }n

n
x

∈Ν
 in S, the above considerations lead to the existence of a sub- 

sequence ( )nk

n
x

∈Ν
 such that 

( )( ) ( )( ) ( )( ), int int .n m nk k k
ncl M x S m n M x M x∈Ν = ≠ ⇒ = Φ 

 

Hence, ( ){ }nk

n
M x  form a “convex partition” of the interior of S, with the properties mentioned in the state-  

ment. From a geometric point of view, there are “large” convex components having the barycenters situated far 
from the boundary. Some components may be “thin” convex components, having the sequence of barycenters 
converging to a boundary point. This concludes the proof. ◊ 

3. On Minimal Length and Minimal Area of Surrounding Curves and Surfaces 
Let 2K R⊂  be a simply connected compact subset defined by 

{ } { } ( ) ( )2 21 , 1 , , \ ,K F K F F C R F x x K S= ≤ ∂ = = ∈ ∇ ≠ ∀ ∈0                 (1) 
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where S is the set of minimum points of F situated in K. Consider the problem of surrounding  
( ){ }; ,K x d x Kε ε= ≤  by a closed path γ  of minimal length. A variation of the problem is determining only 

“a half” of such a path. The problem has practical significance. 
Theorem 2. Let ( ) ( )C conv K conv Kε ε= =  be the (closed) convex hull of subset .Kε  Then the path 

Cγ = ∂  is the shortest curve surrounding .Kε  The concave (respectively convex) “branches” defined by this 
path are uniformly approximated by concavity (convexity) preserving polynomials. 

Proof. Due to Caratheodory’s theorem ([6], p. 10), or [7], we have: 

( )
3 3

1 1
; , , 1 ,j j j j j

j j
C x x Extr K Rεα α α+

= =

 
= ∈ ∈ = 
 
∑ ∑  

so that ( ):C conv Kε=  is not only convex, but also compact. The geometric meaning of the above equality is 
that constructing C  is equivalent to joining some “convex components” to Kε , wherever the latter subset is 
not convex. Recall that for a finite dimensional compact subset K one has ( ) ( )( ).co K co Extr K=  This is a 
consequence of Caratheodory’s theorem too. In order to form the boundary of the convex hull, we replace the 
arches of “non-convexity” by line segments. Any point 

\x C Kε∈  

lies in a triangle having such a line segment as one of the edges, with extreme points of Kε  as the segment’s 
ends. The third vertex of this triangle is also an extreme point in .Kε  Clearly, Cγ = ∂  does not intersect the 
interior of .K Cε ⊂  From the above arguments, the path γ  is formed by joining the arches of Kε∂  with the 
new added line segments as described above. Because these line segments represent the shortest path between 
the segment’s ends, and because obviously γ  surrounds ,C Kε⊃  the first assertion in the statement follows. 
The points at which the Hessian of F is positive semidefinite remain unchanged when constructing the convex 
hull of .Kε  

Consider the concave function having as graph the “upper branch” and the convex function defined by the 
“lower branch” of .γ  In order to avoid non-smooth paths, the function for the “upper branch” is approximated 
by the corresponding Bernstein polynomials, which preserve the concavity of any concave continuous function. 
By also approximating the convex function defined by the “lower branch” of γ  with Bernstein polynomials, 
the conclusion follows. ◊ 

Remark 3. The following variant of Theorem 2 is natural and useful in applications, due to its iterative cha- 
racter: the boundary of Kε  is usually a continuous piecewise smooth curve, which is uniformly approximated 
by polygonal lines. Given a non-convex polygon, it is easy to describe an algorithm of constructing its convex 
hull, simply dropping out some edges and vertices of “non-convexity”. The convex hull of Kε  is approximated 
by such convex polygons. 

The method from theorem 2 works for compact subsets ,nK R⊂  defined by means of a C2-function on 
,nR  similarly to (1). 

Theorem 4. Let consider a compact subset ( ){ }, 3, ; , .nK R n K x d x Kε ε⊂ ≥ = ≤  Then ( )( )conv Kε∂  has 
a minimum surface area among hypersurfaces surrounding .Kε  

Proof. One uses Caratheodory’s theorem. The 1n −  dimensional simplexes, which compose part of 
( )( )conv Kε∂  have smaller surface-area than any other hypersurfaces containing their vertices. The other part 

of ( )( ) ,conv Kε∂  where the Hessian of F is positive semidefinite, is part of Kε∂  as well. If the boundary of 
( )conv Kε  is not smooth, it can be approximated by smooth hypersurfaces [8]. ◊ 

4. Approximating the Perimeter of the Ellipse 
We start by proposing an exact formula for the perimeter of an ellipse 

2 2 2 2 1, 5 ,x a y b a b a+ = < <  

by means of an alternate series. The motivation is approximating the perimeter, with the control of the error. 
Theorem 5. If 1 5 b a< , the perimeter lE of the ellipse is 

( ) ( ) ( ) ( )
2 2

1 22 2 2
2 2

2

20
2 π 1 , , 1 , 1.

!4 4

nn

E
n

nc cl b c a b z z z
nnb b

ψ
ψ

∞

=

      = + + ⋅ ⋅ = − = + <         
∑         (2) 
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Proof. The following computations hold 

( ) ( )

( )

( )

( ) ( )
( ) ( )

1 221 2π 2 π 22 2 2 2 2
20 0

1 22 2 12
2 2

2 2

2 2 22

2 2
1

2 12

4 sin cos d 4 1 1 cos d

2 1 1 d
1

1 12 d 2 d
21 1

2 3 !!
2 1 d , tg .

2 !! 1

E

R

R R

n n
n

n n
R

cl a t b t t b t t
b

c ub u u
b u

c ub u b u
u b u

n c ub u u t
n b u

−

−

+

 
= + = + − 

 

 
= + ⋅ + 

+ 

 = + ⋅ ⋅ ⋅ + +  +

−
+ ⋅ − ⋅ ⋅ ⋅ + =

+

∫ ∫

∫

∫ ∫

∫





 

Each of the integrals in the last sum is computed below using residues theorem on the contour formed by a line 
segment [ ],R R−  of the real axes and the upper semicircle of radius R. Due to Jordan’s lemma, the integral on the 
semicircle converges to zero as .R →∞  Residues formula and Leibniz rule for derivation of a product yield 

( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( )

2 2

1 12
|

1

2

1 dd 2π
! d1

2π 2 2 1 1 11
1 1

22 ! 2 2

2π π2 2 1 1 .
2 ! 4

n n n

n n n
R z i

n
k

n k n

n n

u zu i
n z z iu

n n
i n n n k

n i

n
n n n

nn

+ +

=

+

 
 = ⋅
 ++  

    
    − + −    = − + + − ⋅ + +
 ⋅
 
  

 
= − + =  

 

∫



 



 

Substitution of these values of the integrals into the series giving the perimeter of the ellipse leads to 

( ) ( )
( )

( ) ( )

2 2
1

2 2

2 2

2 2

2 3 !! 212 π 1 1
2 2 !!2 4

0 2
2 π 1 .

!4 4

n
n

E n n

nn

n nc cl b
nnb b

nc cb
nnb b

ψ

− −  
= + ⋅ + + − ⋅ ⋅ +  

   
   
 = + + + ⋅ ⋅ +  
     

 

 

 

Thus (2) is proved. This concludes the proof. ◊ 
The next results concern the approximation of the perimeter of the ellipse by means of homogeneous inequa- 

lities. 
Theorem 6. The following estimations hold 

( ) ( )1 2 1 42 2 4 44 2π .Ea b l a b+ ≤ ≤ +  

Proof. One uses the following form of Jensen’s inequality ([9], Section 2.7.2). For any convex positive ho- 
mogeneous function : ,R R Rϕ + + +× →  any positive Radon measure μ on a Hausdorff locally compact space S, 
and all μ-integrable functions 1 2,f f  on S one has: 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 2 1 2, d d , d .
S S S

f t f t t f t t f t tϕ µ ϕ µ µ
 

≥  
 

∫ ∫ ∫  

Applying this to 

[ ] ( ) ( ) ( ) ( )
1 22 2 2 2

1 20, π 2 , d d , , , sin , cos ,S t x y a x b y f t t f t tµ ϕ= = = + = =  

one obtains: 
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( )
[ ] [ ] [ ]

( )
1 22 2

1 2 1 22 2 2 2 2 2 2 2

0,π 2 0,π 2 0,π 2

4 sin cos d 4 sin cos 4 .El a t b t t a t b t a b
        = + ≥ + = +

        
∫ ∫ ∫  

The second relation is a consequence of Schwarz inequality. ◊ 
The next result gives evaluation formulae of the perimeter of the ellipse, involving “ln”-function. We start by 

recalling the following well-known expansion-formula, based on the binomial series too. This time the series is 
not alternate. One has 

( ) ( )( )
( )( )

22 21 2π 2 2 2
20

1 22 2

2

2 1 !!
4 1 sin d 2 π 1 ,

4 2 12 !!

: 1, 0 .

n

E

ne el a e t t a
nn

a be b a
a

 −
 = − = − − − ⋅ −
 −
 

 −
= < < < 
 

∫  

             (3) 

Theorem 7. The following evaluations hold 

( ) ( )2 11 12 π 2 ln 2 ln 1 2 π 2 ln
1 1E

e ea ae a e l a a a e e
e e

−+ +   − − − ≤ ≤ − + −   − −   
 

Proof. One uses the inequalities related to Wallis’ relations: 

( )
( )

2
2 1 !!1 π 1 , 1.

2 1 2 !! 2 2
n

n
n n n

 −
< ⋅ < ≥  +  

                           (4) 

Multiplying the first of the inequalities (4) with ( )24 2 1nae n− −  and inserting into (3) yield: 

( )( )

( ) ( )

( )

2

1

2 1 2 1

1 1

2 2 4
0 0

1

π4
2 2 1 2 1

π 14
2 2 2 1 2 2 1

π 14 1 d d
2 2 2

12 π 2 ln .
1

n

E
n

n n

n n

e e

el a
n n

e e ea
n e n

ea t t t t t
e

ea a a e e
e

∞

=

− +∞ ∞

= =

−

 
< − 

− +  
    

= − +    − +     
 = − ⋅ + + + + +  

+ = − + −  − 

∑

∑ ∑

∫ ∫ 

 

The first relation of the statement one proves in a similar way. Namely, multiplying by ( )24 2 1nae n− −  the 
second inequality (4), one obtains, also using (3) 

( )
( )
( )

( )

( ) ( )

22 2

2

1

2 1 2

1 1

2 2 2 3 2 1
0 0

2 1 !!4 2π
2 2 1 2 1 2 !!

2 π 4
2 2 1

2 π 4 4
2 1 2

2 π 4 1 d 4 d

12 π 2 ln
1

n n

n

E
n

n n

n n

e en n

nae ae
n n n n

el a a
n n

e ea ae a
n n

a ae t t t a t t t t

ea ae
e

∞

=

−∞ ∞

= =

− −

 −
− < − ⋅  ⋅ − −  

 
⇒ ≥ − ⋅  ⋅ − 

   
= − ⋅ + ⋅   −   

= − ⋅ + + + + + ⋅ + + + +

+ = − ⋅  −

∑

∑ ∑

∫ ∫   

( )22 ln 1 .a e− ⋅ −


 

This concludes the proof. ◊ 
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Theorem 8. Let Gy  be the ordinate of the gravity center of the upper semiellipse. Then for fixed 0,b >  we 
have: 

( ) ( )
0

πlim , , lim , 2.
4a aG Gy a b b y a b b

→∞ →
= =  

Proof. A straightforward application of the Guldin’s formula leads to: 

( ) ( )
2

12π sin 2π π ,
2
E

G E G
laA S b b c a y l y

c
− 

= + = ⋅ ⋅ = ⋅ ⋅ 
 

 

where ( )A S  is the area of the rotation surface obtained by rotation of the upper semiellipse around Ox axes, 
2 2 2 .c a b= −  From this formula, we derive 

( )

( )( )

1

1 2π 2 2 2 2
π

2 sin
.

sin cos d
G

ab b a c a
cy

b aθ θ θ

−

−

 +  =
+∫

 

When , 0, 1,a b a c a→∞ → →  so that an application of Lebesgue dominated convergence theorem yields: 

( ) ( )2 π 2 πlim , .
4 4a G

b by a b→∞

⋅
= =  

Next one considers the case 0.a →  The formula for Gy  is 
1 2 1 22 2 2 2π 2 2 2

2 2 2 20

1 2 1 222 2 2 π 2 2 2
22 2 2 0

1 d 1 cos cos sin d
.

sin cos d1 1 d

a

a

G
a

a

x b x bb x b
a a a a

y
bb x x x aa a a

θ θ θ θ

θ θ θ

−

−

   
⋅ − + ⋅ − +   

   = =
      ++ ⋅ −            

∫ ∫

∫∫

 

Next, we multiply the nominator and the denominator by the scale ratio 0.a b →  Application of the Lebes- 
gue dominated convergence theorem yields 

( )
π 2

0
0 π 2

0

cos sin d
lim , 2.

cos d
a G

b
y a b b

θ θ θ

θ θ
→

⋅ ⋅
= =∫

∫
 

This concludes the proof. ◊ 

5. Conclusion 
We construct a convex partition of an arbitrary compact subset, similarly to decomposition of an open subset 
into its connected components. Minimal-length surrounding curves and minimal-area surrounding surfaces are 
constructed too. Next, one deduces a formula for the perimeter of the ellipse, as the sum of an alternate series. 
Consequently, one can evaluate the error easily in approximating by partial sums. One proves two other ap- 
proximation results based on appropriate “sandwich” type inequalities. We discuss the ordinate of the upper se- 
miellipse at the ends of the positive semiaxes in terms of the ratio b a , b fixed, ( )0, .a∈ ∞  
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