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Abstract 
With conjecture of fractional charge quantization (quantum dipole/multiple moments), Fourier 
transform stretching, twisting and twigging of an electron quanta and waver strings of electron 
quanta, the mathematical expressions for mesoscopic fractional electron fields in a cavity of visc-
ous medium and the associated quantum dielectric susceptibility are developed. Agreement of this 
approach is experimentally evidenced on barite and Fanja site molecular sieves. These findings 
are in conformity with experimental results of 2012 Physics Nobel prize winning scientists, Serge 
Haroche and David J. Wineland especially for cavity quantum electro-dynamics electron and its 
associated mesoscopic electric fields. The mover electron quanta strings lead to warping of space 
and time following the behaviour of quantum electron dynamics. 
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1. Introduction 
Jonscher [1] [2] studied the diverse dielectric properties extensively by using Fourier transform. The quantum 
behaviour of dielectricity was deciphered by exploiting the conjecture of fractional change quantization (quan-
tum mechanical dipole moment) [3]-[5]. With this conjecture [3]-[5], a theory of “quantum dielectricity” is 
floated [6]. The same theory is further extended by using the Fourier transform. The concepts of electron quanta 
stretching, twisting and twigging giant magneto resistance (GMR) due to fractional change distribution on twigs 
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and the mesoscopic fractional electric fields due to woven electron strings and their corresponding twigs (sub 
quanta) in a cavity are evolved [7]-[9]. In this manuscript, the mesoscopic electric fields due to fractional quan-
tization and the quantum mechanical dielectric susceptibility (imaginary part of susceptibility) are theoretically 
calculated and evidenced with experimental results on barite. The theory is found in agreement with experimental  

results. The orientation polarizability, i.e., 
2 2

orient 3
h Q

kT
α =  (where k is the Boltzmann’s constant, T is the tem-

perature in Kelvin and 0.9
0.1 ff nnQ q

=
= ∑  is the total charge, where 

fnq  is the fragmented of fractional charges)  

and the deformation polarizibility, i.e., 36q oh Rα ′′=   (where oR  is the radial function for a space quantization) 
are calculated following the quantum theory of dielectricity in Faunja site-typed molecular sieves [10]. The be-
haviour of quantum capacitance is experimentally evidenced [10]. Dielectric anomalies [11] [12] can be re-
solved by considering quantum observations [6] [7] [10].  

2. Theory of Mesoscopic Fractional Electric Fields in a Cavity of Viscous Medium 
When a dielectric material at a fixed voltage is subjected to varying frequencies, polarization occurs with dif-
ferent magnitude of energies [1] [2]. The Debye classical model of relaxation deals with the rate equation for the 
polarization ( )p t  of single dipole floating in a viscous medium, i.e., 

( ) ( )d
d
p t p t

t τ
−

=                                       (1) 

( ) ( )exp tp t p o
τ

 ⇒ = −  
                                 (2) 

where τ  is relaxation time. But the polarization is directly proportional to electric field.  
p Eχ=                                          (3) 

where χ  is the dielectric susceptibility and E the applied electric field. It is conjectured that electric field is 
fractionally quantized (quantum dipole moment) in a cavity of a viscus medium [3]-[6].  

0.9

0.1
quantum dipole moment ,

f
f

n
n

h q dl λ
=

= ≡∑                          (4) 

where in Equation (4), h is a plank’s constant (quantum action), dl  the polarized displacement, λ  the wave 
length of photon causing fractional change quantization in a single electron or many electron systems and, ≡, the 
congruent operator. With momentum impact, the electron quanta is first stretched, twisted and then twigged. The 
momentum impact causes the oscillatory energy (quantum action) of the electron quanta to loose energy, as a 
consequence of which, wavelength of the quanta increases thereby maintaining C λν= . The hypothetical wall 
of the electron quanta behaves like an adiabatic wall. The increase in wave length and decrease in energy or in 
frequency causes stretching of electron quanta (remember C λν=  is maintained). When stretching is accom-
plished, the string of the electron quanta is twisted (Wiener space is transformed in to Wigner space) and then 
twigged. These twigs are fractional sub quanta on the Lateral surface of an electron string. The total change on 
an electron remains constant or same but fractionally distributed on twigs [7]. The paradox obeys quantum scat-
tering and indeed the photo electric effect, in the momentum space. The quantum dipole moment is a manifesta-
tion of functional charge quantization. The quantum mechanical momentum is a manifestation of fractional 
charge quantization on their respective sub quanta (twigs). 

Due to fractional charge quantization or sub quanta or twigs of an electron string, electric field is also frac-
tionally quantized. Thus Equation (3) changed into  

n fqp Eχ=                                       (5) 

putting Equation (5) in Equation (2), we have  

( ) ( )0 exp
n fq

tE p t pχ
τ

 = = − 
 

                              (6) 
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Equation (6) can be transformed into frequency domain by taking its Fourier transform [1] and the final re-
sults are  

( ) ( )( ) 12 20 1χ ω χ ω τ
−

′ = +                                (7) 

( ) ( ) ( ) 12 20 1tχ ω χ ω ω τ
−

′′ = +                               (8) 

The imaginary part of dielectric susceptibility ( )χ ω′′  is considered because it deals with quantum mechani-
cal effects at molecular or atomic level. considering the quantum mechanical time dependent eigenfunction 
(energy profile),  

( ) ( ) ( ), ,0 exp ir t r E tψ ψ ω = − ⋅ 
 

                          (9) 

For our case, the above equation is written as follows  

( ) ( ) ( ), ,0 exp op op
ir t r p r E tψ ψ  = ± ⋅ − ×  

                      (10) 

where opp i= − ∇  is the momentum operator, ( )0opr i r rδ= −  the position operator and E the frequency de- 
pendent energy. Assume that the time dependent eigenfunction is congruent to polarization at molecule or 
atomic level.  

The time dependent eigenfunction would lead to fractional quantization of electric fields within molecules or 
atoms. Using  

( ) ( ),
n fqr t p t Eψ χ= =  

One would have  

( ) ( ) ( ),0 exp ,0 exp
n fq

i i EE r p r E t r r h
c

χ ψ ψ ν    = − ⋅ − × = − −        

               (11) 

where p k=   is crystal momentum, i.e.,  

2π 2π and
2π

h E hp k
c c c

ν
λ ν

  = = = = = =  
   

     

The fractional quantum electric fields have already been obtained [6], i.e.,  
0.9

0.1

2 , 0.1 0.9
4π

f
f

n f

f n
n

q f

n h q
E n=

 
 
 = ≤ ≤
 ′ ′′
 
 

∑

 
                          (12) 

where fn  stand for fractional quantum numbers, ′  the real permittivity, ′′  the imaginary permittivity of 
the viscus medium (dielectric materials) and h the Planck’s constant. Putting Equation (12) in Equation (11), we 
have the fractional quantum electric fields has already been obtained [6], i.e.,  

( ) ( )
1
3

,0 exp
4π n f

f
q

n hQ ir p r E t Eχ ψ χ
   = − ⋅ − × =   ′ ′′     

                    (13) 

where 0.9
0.1fnQ

=
= ∑  with our quantum theory of dielectrics [6],  

n fM qhQ E α=                                    (14) 

where 
n fqα  is the fractional charge electronic polarizability and ME  the molecular or atomic level mesos-

copic electric field. Using Equation (14) in Equation (13) we have  
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( ) ( )

1
3

,0 exp
4π

n ff M qn E ir p r E t
α

χ ψ
     = − ⋅ − × ′ ′′      

                    (15) 

where r equivalent to displacement due to polarization ( )n fqr D E′′≡ ≡  . Equation (15) and Equation (2) are 
considered together, i.e., in Equation (13) we have  

( ) ( ) ( )

1
3

,0 exp 0 exp
4π

n ff M qn E i tr p r E t p
α

χ ψ
τ

       = − ⋅ − × = −  ′ ′′        
               (16) 

The relaxation time in classical wave mechanics is defined by 1 .
ω

 We disagree with this notion in quantum  

mechanical system. With quantum action, energies oscillate between two arbitrary fixed points at the atomic or 
molecular level. Atoms or molecules when polarized and fractionally quantized behave like micro wave cavity 
resonators (mesoscopic fluid resonators) with their sub-quanta or twigs on an electron quanta string or many 
electron woven quanta string. So, a new definition of relaxation time for quantum behaviour is introduced, i.e., 

( ) 11
n fqEτ

ω

−

= =


                                   (17) 

Equation (17) shows relaxation time for quantum action of atoms, molecules or ions in the viscous medium 
and is inversely proportional to applied frequencies. Using Equation (17) in Equation (16), i.e.,  

( ) ( ) ( )
( )

1
3

1,0 exp 0 exp
4π

n ff M q

q

n E i tr p r E t p
E

α
χ ψ −

        = − ⋅ − × = −   ′ ′′      
 

            (18) 

The term τ  is now viscosity independent relaxation time. At quantum level, the Equation (8) is modified for 
imaginary part of dielectric susceptibility and written like  

( ) ( )( )( ) 11 2 2 2 20 1 4π , 2π ,
2πq q
hh E h Eχ ω χ ν ν ω ν

−− −′′ = + = =                    (19) 

Equation (19) is obtained by using Fourier transformed with new definition of relaxation time in a mesoscopic 
cavity resonator with woven electron string and their corresponding twigs (sub-quanta) for fractional charge 
quantization.  

The Equation (18) can be re written in this form  

( )
( )

( ) ( )

1
3

10 exp ,0 exp
4π

n ff M q

q

n E t ip r p r E t
E

α
χ ψ−

   −   ′′   = = − ⋅ − ×  ′ ′′      
 

 

the negative sign for eigenfunction ( ),r tψ  is considered to make the energy profile convergent. The above 
expression for energy profile at 0t =  becomes  

( ) ( ) ( ) ( ) ( ),0 0 exp exp 0 expq q
i ir p tE p r E t p tE p r E tψ     = − ⋅ − × = − + ⋅ − ×         

         (20) 

where ( )0p  is the polarization at zero Calvin temperature, p k=   is crystal momentum associated with 
woven electron strings and their corresponding twigs or sub-quanta. ( ),0rψ  in Equation (20) is the eigenfunc-
tion or energy profile for quantized electric fields due to twigs on each of the woven electron quanta strings. Si-
milarly, Equation (18) yields  

( )
( )

( )

1
3

12 0 exp 0 exp
4π

n ff m q

q

q

n E tp p tE
E

α
χ −

   − ′′    = = −  ′ ′′    
 

 

Taking cube of both sides  
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( ) ( ) ( )
33 3 3

2 0 exp 0 exp 3
4π

n ff m q

q q

n E
p tE p tE

α
χ

 
 ′′    = − = −  ′ ′′   

 

( ) ( )
2 3

3

4π 0
exp 3

n f

m q
f q

p
E tE

n α χ
′ ′′

⇒ = −
′′

 
                          (21) 

Equation (21) is the expression for mesoscopic electric fields due to fractional charge quantization of atoms, 
molecules or ions only due to woven electron quanta string. This observation is consistent [9]. Considering the 
term ( )3 qtE−  in Equation (22), i.e.,  

( ) ( )1exp 3 exp 3 2π exp 2π 3q
app

tE ν
ν

 
− = − ⋅ ⋅ = − ×  

 
 

 

The negative sign shows quantum wells with woven electron strings of varying lengths in a cavity for mesos-
copic electric fields and follows periodicity of 2π  (concentric quantum wells). Thus  

( ) ( )exp 2π 3 exp 3− × ≡ −                               (22) 

  is the quantum action for each of the quantum well in the cavity and can be normalized to unity with unitary 
operator.  

( )exp 3−  yields the value of 0.5 which is in between 0.2 and 0.8. Looking close to these numerical values, 
we can say that ( )qtE−  yields Gyroscopic constant  

2

0.2 0.8g
c

≤ ≤


                                  (23) 

Rewriting Equation (21) for molecular field  

( ) ( ) ( )
2 3 2

3

4π
, 0 at

n f

m app
f q

p t gE p t p t
n cα χ
′ ′′

= ⋅ ≡
′′



 
                      (24) 

Now rewriting Equation (21) for χ′′ , i.e., the imaginary part of dielectric susceptibility  

( )
( )

3 2
3 4π 1,

exp 3
n f

app
appf q m app q

p t
t

n E t E
ε ε

χ
να

′ ′′
′′ = =                        (25) 

The term 
( )

1
exp 3 app qt E

 has already been interpreted as ( )exp 3− , i.e., equivalent to 
2g
c

. Thus Equation 

(25) becomes  
( )3 2 2

3 4π

n ff q m

p t g
n E c

χ
α

′ ′′
′′ = ⋅



 
                               (26) 

Taking the cube root of Equation (26) we have  

( ) ( )

( )

1 3 1 3
3 2 2 2

3 1 3 2 3

1 3 2 3
constant

4π 4π

GMR

n nf ff q m f q m

p t g g p t
n E c n E c

χ
α α

   ′ ′′   ′′ ′ ′′= ⋅ = ⋅
   
   

′ ′′= ×

 

 
 

 

               (27) 

Equation (27) shows that the giant magnate resistance (GMR) [8] appears as constant for imaginary part of 
dielectric susceptibility i.e.,  

( ) ( )
1/3

2

constant

4πGMR =
n ff q m

g hc p t
n Eα

 
 
 
 

                          (28) 
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Hence, the imaginary dielectric susceptibility in a viscous medium is directly proportional to the cube root of 
real permittivity and square cube root of imaginary permittivity  

1 3 2 3 1 3 2 3GMRχ′′ ′ ′′ ′ ′′∝ =     

where χ′′ , i.e., the imaginary dielectric susceptibility is considered as quantum dielectric susceptibility for me-
soscopic fractionally quantized electric fields in a cavity. The quantum theory of dielectric is extended by using 
chirp fractional Fourier transform (CFRFT) analysis and applied on experimental results of barite at relatively 
low temperatures, i.e., 220 K 273 KT≤ ≤  and in the frequency range of 1 kHZ. These experimental results are 
found in conformity with our relatively old quantum theory [6]. The total quantum dielectric susceptibility ac-
cording to our theory is shown to follow decaying Gaussian profile with respect to fractional quantum numbers 

2 3′′  is experimentally confirmed on barite in the temperature range 220 K 273 KT≤ ≤  and in the frequency 
range of 30 Hz 31 kHzν≤ ≤  the polarizabilities of various kinds and the quantum mechanical parameters were 
determined in Faunja site molecular sieves by using Fermi Dirac statistics and quantum theory of dielectricity, 
respectively [10]. Dielectric responses [11] [12] can be resolved by considering quantum behaviour [6] [7] [10]. 

3. Conclusion 
The mathematical result for electrical susceptibility is obtained in terms of giant magneto resistance (GMR), real 
permittivity and the imaginary permittivity and the imaginary permittivity, i.e., 1 3 2 3GMRχ′′ ′ ′′=    where  

GMR is given in Equation (28), the polarization at zero frequency ( )0P t = , 
2

0.02 0.08,0.1 0.9f
g n

c
≤ ≤ ≤ ≤


  

and ( ) ,
n fq mp Eν α=  the polarization at frequency ν . Mesoscopic fractional electrical field in a cavity of 

viscous medium (dielectric materials) is produced and responsible for GMR. The theoretical findings are in 
agreement with experimental results on barite and Fanjasite molecular sieves. 
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