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Abstract 
Outlier detection is an important data screening type. RIM is a mechanism of outlier detection that 
identifies the contribution of data points in a regression model. A BIC-based RIM is essentially a 
technique developed in this work to simultaneously detect influential data points and select op-
timal predictor variables. It is an addition to the body of existing literature in this area of study to 
both having an alternative to the AIC and Mallow’s Cp Statistic-based RIM as well as conditions of 
no influence, some sort of influence and perfectly single outlier data point in an entire data set 
which are proposed in this work. The method is implemented in R by an algorithm that iterates 
over all data points; deleting data points one at a time while computing BICs and selecting optimal 
predictors alongside RIMs. From the analyses done using evaporation data to compare the pro-
posed method and the existing methods, the results show that the same data cases selected as 
having high influences by the two existing methods are also selected by the proposed method. The 
three methods show same performance; hence the relevance of the BIC-based RIM cannot be un-
dermined. 
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1. Introduction 
Model selection (variable selection) in regression has received great attention in literature in the recent times. A 
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large number of predictors usually are introduced at the initial stage of modeling to attenuate possible modeling 
biases [1]. As noted by [2], inference under models with too few parameters (variables) can be biased while with 
models having too many parameters (variables), there may be poor precision or identification of effects. Hence, 
the need for a balance between under- and over-fitted models is known as variable selection. 

Influential observation is a special case of outliers. In the simplest sense, outlying or extreme values are ob-
servations which are well separated from the remainder of the data. Outliers result from either (1) the errors of 
measurement or (2) intrinsic variability (mean shift-inflation of variances or others) and appear either in the 
form of (i) change in the direction of response (Y) variable, (ii) deviation in the space of explanatory variables, 
deviated points in X-direction called leverage points or (iii) change in both the directions (direction of the ex-
planatory variable(s) and the response variable). These outlying observations may involve large residuals and 
often have dramatic effects on the fitted least squares regression function. The influence of an individual case 
(data point) in a regression model can be adverse causing a significant shift (upward or downward) in the value 
of the parameters of a model in turn reducing the predictive power of the model. Only few papers dealing with 
the influence of individual data cases in regression explicitly take an initial variable selection step into account. 
This problem is handled by [3]-[6]. 

One objective of regression variable selection is to reduce the predictors to some optimal subset of the availa-
ble regressors [3]. In literature, several approaches of variable selection exist, which include the stepwise dele-
tion and subset selection. Stepwise deletion includes regression models in which the choice of predictive va-
riables is carried out by an automatic procedure. Usually, this takes the form of a sequence of F-tests or t-tests, 
but other techniques are possible, such as adjusted R-square, AIC, BIC, Mallow’s statistic, PRESS or false dis-
covery rate [7]. 

[8] proposed the coefficient of determination ratio (CDR) which was based on the value coefficient of deter-
mination (R2) of the linear regression model. [9] developed an outlier detection and robust selection method that 
combined robust least angle regression with least trimmed squares regression on jack-knife subset. When the 
detected outliers are removed, the standard least angle regression is applied on the cleaned data to robustly se-
quence the predictor variables in order of importance. [3] proposed a method called the Relative Influence 
Measure using the Mallow’s pC  and AIC Statistics. These methods are dimensionally consistent, computa-
tionally efficient and able to identify influential case, though, failed in asymptotic consistency. [10] in compar-
ing the BIC and AIC, stated that the AIC was not consistent. That is, as the number of observations n grows very 
large, the probability that AIC recovers a true low-dimensional model does not approach unity [11]. [12] sup-
ported same argument that the BIC has the advantage of being asymptotically consistent: as n →∞ , BIC will 
select the correct model. 

Hence, the specific objectives of this paper are to propose a relative influence measurewith an indication of 
whether the fit of the selected model improves or deteriorates owing to the presence of an observation (case) and 
that retains asymptotic consistency and hence not violating the sampling properties of the model parameters. 

2. Existing Methods 
2.1. Cook’s Distance and the Influence Measure 
Let V be the set of indices corresponding to the predictor variables selected from the full data set and let ( )ŷ V  
be the prediction vector based on the selected variables and calculated from the full data set. Also let ( ) ( )ˆ iy V−  
be the prediction vector based on the variables corresponding to V, but calculated from the full data set without 
case i. [3] noted that ( ) ( )ˆ iy V−  contains prediction for case i, although this case is not used in calculating 

( ) ( )ˆ iy V− . The conditional Cook’s distance for the thi  case is 

( ) ( ) ( )
2

ˆ ˆ iy V y V−−                                      (1) 

approximately scaled. Here, •  denotes the Euclidean norm. Repeating the variable selection using the data 
without case i as pointed out by [12], this selection yields a subset ( )iV −  of indices with ( )iV −  possibly differ-
ent from V. Hence, the unconditional Cook’s distance is  

( ) ( ) ( )( ) 2
ˆ ˆ i iy V y V− −−                                     (2) 
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approximately scaled. Since the unconditional version explicitly takes the selection effect into account [13] ar-
gued that it is preferable. As explained in the literature, a measure say M calculated from the complete data set 
can as well be calculated from the reduced data set as ( )iM −  and then quantify the influence of case i in terms 
of a function ( )•f  of M and ( )iM − . The ( )•f  has to be based on the difference in the value of the selection 
criterion before and after omitting case i. This difference ( )iM M −−  may then be divided by M in order to cal-
culate the relative change in the selection criterion. As proposed by [3], the influence measure for the thi  case 
when the Cook’s distance is used becomes 

( )( ) ( ), i
i

M M
f M M

M
−

−

−
=                                   (3) 

2.2. Mallow’s Cp Estimate and the Influence Measure 
Let Y be an 1n×  vector of response in a linear regression with corresponding n p×  design matrix X of ex-
planatory variables. A traditional model is 

Y X β ε= +                                         (4) 

where ( )2~ 0,N εε σ , β  and 2
εσ  are unknown parameters. Usually, β  is a 1k ×  vector of parameters and 

1k p= + . n pX ×  often contains redundant or unimportant variables. Let RSS be the usual sum of squares from 

the OLS fit of (4), then 2ˆ
1

RSS
n p

σ =
− −

 is the commonly used unbiased estimator of 2σ . Consider the subset 

V of { }1, , p  and let ( )RSS V  be the residual sum of squares from the least squares fit using only the re-
gressors corresponding to the indices in V together with an intercept. The pC  statistic corresponding model is 

( ) ( ) ( )2 2 1
ˆp

RSS V
C V v n

σ
= + + −                               (5) 

where v is the number of indices in V. Variable selection based on (5) entails calculating ( )pC V  for each sub-
set of { }1, , p  and selecting the variables corresponding to V̂ ; the subset minimizing (5). This approach is 
based on the fact that for a given V, ( )2ˆ pC Vσ  is an estimate of the expected squared error if a (multiple) linear 
regression function based on the variables corresponding to V is used to predict *Y , a new (future) observation 
of the response random vector Y. Therefore, choosing V̂  to minimize (5) is equivalent to selecting the va-
riables which minimize the estimated expected prediction error. As proposed by [3], the influence measure for 
the thi  case when the pC  criterion is used becomes 

( ) ( )( )( ) ( ) ( )( )
( )

,
p p i

p p i
p

C V C V
f C V C V

C V
−

−

−
=                          (6) 

where ( )( )p iC V −  is calculated as in (5) but with the thi  case omitted. In calculating ( )( )p iC V − , the estimator 
for the error variance 2σ̂  is obtained from the full data set. 

2.3. The AIC Estimate and the Influence Measure 
The AIC is based on the maximized log-likelihood function of the model under consideration. Suppose

( )2~ 0,N εε σ , and ignoring constant terms, the maximized log-likelihood for the model corresponding to a sub- 

set V is given by 
( ){ }

log
2

RSS V n
n− . This is a non-decreasing function of the number of selected regressors.  

[13] therefore included a penalty termviz; 2v + , which equals the number of parameters which have to be es-
timated. Multiplying the resulting expression by −2 yields 

 ( ) ( ) ( )log 2 2
RSS V

AIC V n v
n

 
= + + 

 
                            (7) 

See [14] for details. It is known that ( )AIC V  does not perform when the number of parameters to be esti-
mated is large compared to the sample size (typically cases where ( )40 2v n+ > . In such a case, a modified 
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version of (7) should be 

( ) ( ) ( )2 2
log

3
RSS V n v

AIC V n
n n v

+ 
= + 

− − 
                            (8) 

Variable selection based on (5) and (8) calculating the criterion for each subset V of { }1, , p  and selecting 
the variables corresponding to the minimizing subset. This is equivalent to selecting the variables which max-
imize a penalized version of the maximum log-likelihood. As proposed by [3], the influence measure for the thi  
case when the AIC criterion is used becomes 

( ) ( )( )( ) ( ) ( )( )
( )

,
i

i

AIC V AIC V
f AIC V AIC V

AIC V
−

−

−
=                          (9) 

The value of ( )( )iAIC V −  in (9) is obtained by using either (7) or (8) but with the thi  case omitted. 

2.4. The Proposed BIC-Based Relative Influence Measure 
A popular alternative to AIC as proposed by [15] is the Bayesian Information Criterion (BIC) [16]-[18]. 

The BIC is formally defined as 
ˆ2 ln lnBIC L v n= − +                                     (10) 

( )ˆˆ ,L p y Mθ= , where θ̂  are theparameter values that maximize the likelihood function. The BIC is an 
asymptotic result derived under the assumptions that the data distribution is in the exponential family. That is,  
the integral of the likelihood function ( )ˆ,p y Mθ  times the prior probability distribution ( )p Mθ

 
over the  

parameters θ  of the model M for fixed observed data y is approximated as 

( ) ( )ˆ2 ln 2ln ln ln 2πp y M BIC L v n− ≈ = − + −                         (11) 

Under the assumption that the model errors or disturbances are independent and identically distributed ac-
cording to a normal distribution and that the boundary condition that the derivative of the log likelihood with 
respect to the true variance is zero, this becomes (up to an additive constant, which depends only on n and not on 
the model). 

2ˆln lneBIC n v nσ= +                                    (12) 

where 2ˆeσ  is the error variance. The error variance in this case is defined as 

( )22
1

1ˆ ˆn
e i ii

y y
n

σ
=

= −∑                                    (13) 

which is a biased estimator for the true variance. In terms of residual sum of squares, the BIC is defined thus 

( ) ( )log log
RSS V

BIC V n v n
n

 
= + 

 
                              (14) 

The BIC is an increasing function of the error variance 2
eσ  and an increasing function of v. That is, unex-

plained variations in the dependent variable and the number of explanatory variables increase the value of BIC. 
Hence, lower BIC implies either fewer explanatory variables, better fit or both. 

Based on (14), the proposed influence measure for the thi  case when the BIC criterion is used becomes 

( ) ( )( )( ) ( ) ( )( )
( )

,
i

i

BIC V BIC V
f BIC V BIC V

BIC V
−

−

−
=                        (15) 

(2.15) can take the form of 

( ) ( )( )( ) ( )( )
( )

, 1
i

i

BIC V
f BIC V BIC V

BIC V
−

− = −                           (16) 
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Suppose ( )( )
( )

iBIC V
r

BIC V
−

= , by invoking trichotomy law of real numbers, (16) can be rewritten as 

( ) ( )( )( ), 1if BIC V BIC V r− = −                              (17) 

if 1, then observation has no influence
0, observation is the only outlier in the data

0 1, then observation is influential

th

th

th

r i
r i

r i

 =


=
 < <

 

The values of ( )( )iBIC V −  in (15, 16 and 17) are obtained by using (14) but with the thi  case omitted. Steel 
and Uys (2007) claimed that influence measure can be calculated for all selection criteria where the particular 
criterion is a combination of some sort of goodness-of-fit measure and a penalty function (such a penalty func-
tion usually include the number of predictors of the particular selected model as one of its components [19]. 
Closely evaluating (14), it is clear that logv n  is a huge penalty term compared to the penalty term in (5) and 
(8) and hence it gives a good model fit of the data set. 

3. Results 
The results above Table 1 show that the method was able to detect cases 33 and 41 as having high influence on 
the model given that their respective RIMs are relatively larger than others just as the AIC and Mallow’s Cp Sta-
tistic-based RIM detected. The method proposed here for simultaneously detecting influential data points and 
variable selection, detects outliers one at a time. However, further study can be embarked upon to detect mul-
tiple influential data points all at a time while selecting optimal predictor variables. 

The problems of masking and swamping were not covered in this study. Masking occurs when one outlier is 
not detected because of the presence of others; swamping occurs when a non-outlier is wrongly identified owing 
to the effect of some hidden outliers. Therefore, further studies can be carried out to detect influential outliers 
and simultaneously select optimal predictor variables while incorporating the solutions to problems of masking 
and swamping. 
 
Table 1. BIC-based RIM for the Evaporation data contained in [20].                                                  

Case Omitted Variables Selected Influence Measure (BIC)  
1 1, 3, 6, 9 0.01797914  
2 1, 3, 6, 9 0.03826104  
14 1, 3, 6, 9 0.0179898  
15 1, 3, 6, 9 0.01751532  
31 1, 3, 4, 8, 9 0.03268965  
32 1, 3, 6, 9 0.02016968  

33 6, 9, 10 0.05645203 
***high influence measure comparable to 
the Steel & Uys (2007) paper results that 

used the Cp and AIC 

34 1, 3, 6, 9 0.01791702  
40 6, 9, 10 0.03512789  

41 1, 3, 6, 9 0.06042516 
***high influence measure comparable to 
the Steel & Uys (2007) paper results that 

used the Cp and AIC 

42 1, 3, 6, 9 0.02053766  
45 1, 3, 6, 9 0.01754306  
46 1, 3, 6, 9 0.01905877  
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Again, because it was not intended initially to carry out a test of convergence through which we can compare 
the computational cost of the three methods, this work avoided the task of re-sampling which was done by Steel 
and Uys (2007). Meanwhile Steel and Uys (2007) did not run any test of convergence after bootstrapping rather 
they calculated the estimated average prediction error to substantiate their results. Hence, their additional task of 
re-sampling is a repetition of the results they achieved with their methods and as a result it is not necessary in 
this study. One can further implement these existing methods by adding a test of convergence after re-sampling. 

4. Conclusion 
Two things are unique about this paper namely a new approach to detecting influential outlier and then the con-
ditions for the interpretation of the result. The later is achieved by invoking the trichotomy law of real numbers. 
The proposed method penalizes models hugely as the sample size becomes very large and hence has greater 
likelihood of choosing a better model while detecting influential data cases one at a time. 
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