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Abstract 
A standard assumption in the literature of learning theory is the samples which are drawn inde-
pendently from an identical distribution with a uniform bounded output. This excludes the com-
mon case with Gaussian distribution. In this paper we extend these assumptions to a general case. 
To be precise, samples are drawn from a sequence of unbounded and non-identical probability 
distributions. By drift error analysis and Bennett inequality for the unbounded random variables, 
we derive a satisfactory learning rate for the ERM algorithm. 
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1. Introduction 
In learning theory we study the problem of looking for a function or its approximation which reflects the 
relationship between the input and the output via samples. It can be considered as a mathematical analysis of 
artificial intelligence or machine learning. Since the exact distributions of the samples are usually unknown, we 
can only construct algorithms based on an empirical sample set. A typical setting of learning theory in mathe- 
matics can be like this: the input space X is a compact metric space, and the output space Y ⊂   for regression. 
(When { }1, 1 ,Y = + − , it can be regarded as a binary classification problem.) Then :  Z X Y= ×  is the whole 
sample space. We assume a distribution ρ  on Z, which can be decomposed to two parts: marginal distribution 

Xρ  on X and conditional distribution ( )|y xρ  given some x X∈ . This implies  
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( ) ( ) ( )d , d | d XZ X Y
g z g x y y xρ ρ ρ=∫ ∫ ∫  

for any integrable function ( )g z  [1]. 
To evaluate the efficiency of a function :f X Y→  we can choose the generalization error:  

( ) ( )( ) ( )( )2
, d d .

Z Z
f f x y f x yφ ρ ρ= = −∫ ∫  

Here ( )( ),f x yφ  is a loss function which measures the difference between the prediction ( )f x  via f and 
the actual output y. It can be hinge loss in SVM (support vector machine) or pinball loss in quantile learning and 

etc.. In this paper we focus on the classical least square loss ( )( ) ( )( )2
,f x y f x yφ = −  for simplicity. [2] 

shows that  

( ) ( ) ( ) ( )( )2
d .XX

f f f x f xρ ρ ρ= + −∫                            (1) 

From this we can see the regression function  

( ) ( )d |
Y

f x y y xρ ρ= ∫  

is our goal minimizing the generalization error. The empirical risk minimization (ERM) algorithm aims to find a 
function which approximates the goal function fρ  well. While ρ  is always unknown beforehand, a sample 

set { } ( ){ }1 1
,

mm m
i i ii i

z x y Z
= =

= = ∈z  is accessible. Then ERM algorithm can be described as  

( )( )2

1

1arg min ,
m

i if i
f f x y

m∈ =

= −∑
z  

where function space   is the hypothesis space which will be chosen to be a compact subset of ( )C X . 
Then the error produced by ERM algorithm is ( )f z . We expect it is close to the optimal one ( )fρ , 

which means the excess generalization error ( ) ( )f fρ− z  should be small, while the sample size m tends to 
infinity. 

Dependent sampling has considered in some literature such as [3] for concentration inequality and [4] [5] for 
learning. More recently, in [6] and [7], the authors studied learning with non-identical sampling and dependent 
sampling, and obtained satisfactory learning rates. 

In this paper we concentrate on the non-identical setting that each sample iz  is drawn according to a 

different distribution ( )iρ  on Z. And each ( )iρ  can also be decomposed to marginal distribution ( )i
Xρ  and 

conditional distribution ( ) ( )|i y xρ . Assume they are elements of ( )( )*sC X  and ( )( )*sC Y  respectively, 

where ( )sC X  and ( )sC Y  are Hölder spaces with 0 1s≤ ≤ . Hölder spaces ( )sC X  is the set of 
continuous functions with finite norm  

( ) ( ) ( ) ,s s
C C Cf X f X f X= +  

where  

( ) ( ) ( )
sup .s

sC
x x

f x f x
f X

x x′≠

′−
=

′−
 

We assume a polynomial convergence condition for both sequences ( ){ }
1

i
X i

ρ
≥

 and ( ) ( ){ }
1

|i

i
y xρ

≥
, i.e., there 

exist ( )0, 0, s
b Xb C C Xρ> > ∈  and ( ) ( )| sy x C Yρ ∈ , such that  

( ) ( ) ( ) ( ) ( )d d , , .si b s
X X b CX X

f x f x C i f X f C X iρ ρ −− ≤ ∀ ∈ ∈∫ ∫                  (2) 

( ) ( ) ( ) ( ) ( ) ( ) ( )d | d | , , .si b s
b CY Y

g y y x g y y x C i g Y g C Y iρ ρ −− ≤ ∀ ∈ ∈∫ ∫              (3) 
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Power index b measures quantitatively differences between the non-identical setting and the i.i.d. case. The 
distributions are more similar as b is larger, and when b = ∞  it is indeed i.i.d. sampling, i.e. ( )i

X Xρ ρ=  and 
( ) ( ) ( )| |i y x y xρ ρ=  for any i∈ . The following example is taken from [8].  

Example 1. Let ( ){ }ih  be a sequence of bounded functions on X such that ( ) ( )sup i b
ix X h x C−

∈ ≤ . Then the 

sequence ( ){ }
1,2,

i
X i

ρ
= �

 defined by ( ) ( ) ( )d d dt t
X X Xh xρ ρ ρ= +  satisfies (2) for any 0 1s≤ ≤ .  

On the other hand, most literature assume the output space is uniformly bounded, that is, y M≤  for some 
positive constant M and almost surely with respect to ρ . A typical kernel dependent result for the least-squares 
regularization algorithm under this assumption is [9]. There the authors get a learning rate close to 1 under some 
capacity condition for the hypothesis space. However, the most common distribution-Gaussian distribution is 
not bounded. This requirement is from the bounded condition in Bernstein inequality and limits the application 
of algorithms. In [10]-[13], some unbounded conditions for the output space are discussed in different forms, 
which extends the classical bounded condition. Here we will follow the latter one which is more generalized and 
simple in expression, and this is the second novelty of this paper. We assume the moment incremental condition 
for the output space, an extension of that we proposed in [11]: 

( ) ( )| d | ! , 2 ,
Y

y x y y x C Mρ= ≤ ∀ ≤ ∈∫
� � �� �                      (4) 

and  
( ) ( ) ( ) ( )| d | ! , , 2 .i i

Y
y x y y x C M iρ= ≤ ∀ ∈ ≤ ∈∫
� � �� �                  (5) 

We can see the Gaussian distribution satisfies this setting.  
Example 2. Let 0B >  and 0 0B > . If for each ( ),x X f x Bρ∈ ≤  and the condition distribution ( )| xρ ⋅  

is a normal distribution with variance 2
xσ  bounded by 0B , then (4) is satisfied with { }0max 2 ,M B B=  and 

4C = .  
Next we need to introduce the covering number and interpolation space. 
Definition 1. The covering number ( ),η   for a subset   of ( )C X  and 0η >  is defined to be the 

minimal integer N such that there exist N balls with radius η  covering  .  
Let the hypothesis space ( )H C X⊆ , be a compact Banach space with inclusion ( ):I H C X→  bounded 

and compact. We follow the assumption [14] [15] that there exist some constants 0r >  and 0rC > , such that 
the hypothesis space satisfies the capacity condition  

( )1log , , 0,r
rB Cη η η−≤ ∀ >                             (6) 

where { }1 : 1HB f H f= ∈ ≤ . Capacity condition describes the amount of functions in the hypothesis space.  

The sample error will decrease but approximation error will increase when covering number of H is larger (or 
simply say H is larger). So how to choose an appropriate hypothesis space is the key problem of ERM algorithm. 
We will demonstrate this in our main theorem.  

Definition 2. The interpolation space ( )2

,
,

X
L Hρ θ ∞

 is a function space consists of 2
X

f Lρ∈  with norm  

( )
,

0

,
sup ,
t

K f t
f

tθθ ∞
>

= < +∞  

where ( ),K f t  is the K-functional defined as  

( ) { }2, inf , 0.
X

L Hg H
K f t g f t g t

ρ∈
= − + >  

Interpolation space is used to characterize the position of the regression function, and it is related with the 
approximation error. Now we can state our main result as follow.  

Theorem 1. If ( )H C X⊂  with bounded inclusion ( ):I H C X→ , and satisfies (6) with r, 0rC > , 
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( )2

,
,

X
f L Hρ ρ θ ∞
∈  for some 0 1θ< < , the sample distribution satisfies (2), (3) for some 0, 0bb C> >  and 

0 1s< < , (4) and (5). For any 1 p≤ ∈ , choose the hypothesis space   to be the ball of H centered at 0 

with radius ( )( )
21

1
r

R m θγ
 − + − = , where ( ) ( )( )( ) ( ){ }1 1 1max ,

p p r
bm v m mγ

− − +=  and  

( )
1

, 0 1
log , 1.

, 1

b

b

m b
mv m b

m
m b

−

−

 < <

= =


>

 

Moreover, we assume all functions in H and fρ  are Hölder continuous of order s, i.e., there is a constant 
0sC > , such that  

( ) ( ) { }, , .ss

f x f y
C f H f x y X

x y
ρ

−
≤ ∀ ∈ ≠ ∈

−
∪                        (7) 

Then for any 0 1δ< < , with confidence at least 1 δ− , we have  

( ) ( ) ( )( )
2

2
3log .r rf f C m

θ
θ

ρ γ
δ

− +− ≤ � z  

Here C�  is a constant independent with m and δ .  
Remark 1. In [6], the authors pointed out that if we choose the hypothesis space to be the reproducing kernel 

Hilbert space (RKHS) K  on nX ⊂  , and the kernel ( )2K C X X∈ × , then our assumption (7) will hold 
true. In particular, if the kernel is chosen to be Gaussian kernel Kσ , then (7) holds for any 0 1s< ≤ . [16] 
discussed this in detail.  

In all, we extend the polynomial convergence condition on the conditional distribution sequense and 
accordingly, set the moment inremental condition for the sequence in the least squares ERM algorithm. By error 
decomposition, truncate technique and unbounded concentration inequality, we can finally obtain the total error 
bound Theorem 1.  

Compared with the non-identical settings in [6] and [17], our setting is more general since the conditional 
distribution sequence ( ) ( ){ }

1
|i

i
y xρ

≥
 is also a polynomially convergence sequence, but not identical as in their 

settings. This together with unbounded y lead to the main difficulty for the error analysis in this paper. 
For the classical i.i.d. and bounded conditions, [9] indicates that nX R⊂  and kernel K C∞∈  while 

Kfρ ∈ , the rate of least square regularization algorithm is ( )( )11pO m −  for any 0> . [17] shows that  

under some conditions on kernel, object function fρ , exponential convergence condition for distribution 
sequence and choose some special parameters, the optimal rate of online learning algorithm is close to  

( )( )1 41pO m . In [6], the best case occurs when nX R⊂  and kernel K C∞∈ . The rate of least square 

regularization algorithm can be close to ( )( )2 31pO m . However, our result implicates that while 1b > , θ   

tends to 1 and sr,  tends to 0, since p can be any integer, the learning rate can be arbitrarily close to ( )1pO m , 
which is the same as in i.i.d. case [9], and better than the former results with non-identical settings. With this 
result, we can extend the application of learning algorithm to more situations and still keep the best learning rate. 
The explicit expression of C�  in the theorem can be found through the proof of the theorem below. 

2. Error Decomposition 
Our aim, the error ( ) ( )f fρ− z  is hard to bound directly, we need a transitional function for analyzing. By 
the compactness of   and continuity of functional  , we can denote  
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( )arg min .
f

f f
∈

= 
  

Then the generalization error can be written as  

( ) ( ) ( ) ( ){ } ( ) ( ){ }.f f f f f fρ ρ− = − + −      z z  

The first term on the right hand side is the sample error, and the second term ( ) ( )A f fρ= −    is called 
approximation error which is independent with samples. [18] analyzed the approximation error by approxi- 
mation theory. In the following we mainly study the sample error bound. 

Now we break the sample error to some parts which can be bounded using truncate technique and unbounded 
concentration inequality. We refer the error decomposition ( ) ( )f f−  z  to [6]. Denote  

( ) ( )( )2

1

1 m

i i
i

f f x y
m =

= −∑z  

( ) ( )( ) ( )2

1

1 d ,
m

i
m Z

i
f f x y

m
ρ

=

= −∑∫  

then ( )arg min ff f∈=  z z  and we have  

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) .

m m m m

m m m m

m m m m

f f

f f f f f f f f f f

f f f f f f f f

f f f f f f f f

f f f f f f f f

ρ ρ ρ ρ

ρ ρ ρ ρ

−

= − + − + − ≤ − + −

= − − − + − − −

   = − − − + − − −   
   + − − − + − − −   



    

   

   

 

         

       

       

       

z

z z z z z z z z z z z

z z z z z z

z z z z z z

z z

 

In the following, we call the first and fourth brackets drift errors, and the left sample errors. We will bound 
the two types of errors respectively in the following sections, and finally obtain the total error bounds. 

3. Drift Errors 
Firstly we consider the drift error involving f  in this section.To avoid handling two polynomial convergence 
sequences simultaneously, we break the drift errors to two parts. Meanwhile, a truncate technique is used to deal 
with the unbounded assumption. Since   is a subset of ( )C X , functions in   is uniformly bounded. Then 
we have  

Proposition 1. Assume ( )C
f X B≤  for some 0B > , for any 1 ,p≤ ∈   

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )
( )

1

2

2 2

1 2 3 4 2 4

4 6 8 6 2 .

p
p

b
m m b b s

b s

w m
f f f f C B CM pC M C C B

m

C CC p C M CC M

ρ ρ

−

  − − − ≤ + + + + +   
+ + + + 

    
 

Proof. From the definition of m  and  , we know that  

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( ) ( )( )
( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )( ) ( ) ( )( )

2 2

1

2 2

1

2 2

1 2 d

1 2 d | | d

2 d | d .

m
i

m m Z
i

m
i i

XX Y
i

i
X XX Y

f f f f f X f X f X f X y
m

f X f X f X f X y y x y x
m

f X f X f X f X y y x

ρ ρ ρ ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ ρ

ρ ρ ρ

=

=

− − − = − − − −

= − − − −

+ − − − − 

∑∫

∑ ∫ ∫

∫ ∫

   

 

 

   

 

Since ( ) ( ) ( )( ) ( )
22 2 2 2 2, d | d | 2

Y Y
f X B f X y y x y y x CMρ ρ ρ≤ = ≤ ≤∫ ∫ , we can bound the first term inside the 
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bracket as follow.  

( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

2 2

2 2

2 2

2 d | | d

d | | d | |

2 d | | d

2 2 d | | d .

i i
XX Y

i i

X Y Y

i i
XY

i ib
b XX Y

f X f X f X f X y y x y x

f X y x y x f X y x y x

f X f X y y x y x

B CM C i B CM y y x y x

ρ ρ

ρ

ρ

ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ

ρ ρ ρ−

− − − −

≤ − + −
+ − ⋅ − 

≤ + + + −

∫ ∫

∫ ∫ ∫

∫

∫ ∫

 





 

But for any 1K ≥  and 1 p≤ ∈ , there holds  
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
( )1

1 1

d | | d | | d | |

1 d | |

2 ! 2 !
sup 3 .

i i i

Y y K y K

p i b
bp y K sy K C Y

p p
p pb b

b bp s p
y y

y y x y x y y x y x y y x y x

y y x y x y C i
K

C M C My y
K C i KC i

K Ky y

ρ ρ ρ ρ ρ ρ

ρ ρ

> ≤

−
− ≤>

− −
− −

′≠

− ≤ − + −

≤ − +

 ′−
 ≤ + + ≤ +
 ′− 

∫ ∫ ∫

∫  

From (3.12) in [6], we have  

( )

1

1

1 , 0 1,
1
1 log , 1,

, 1.
1

b

m
b

b
i

m b
b

i w m m b
b b

b

−

−

=

 < < −
≤ = + =


 >

−

∑  

Then we can bound the sum of the first term as  

( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

2 2

1

2 2
1

1 2 d | | d

2 !
2 2 3 .

m
i i

XX Y
i

p
pb b

b bp

f X f X f X f X y y x y x
m

C Mw m w m
B CM C B CM KC

m mK

ρ ρ ρ ρ ρ
=

−

− − − −

 
≤ + + + +  

 

∑∫ ∫  

 

Choose K to be ( )( )1 p
bm w m pM , we have  

( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

2 2

1
1

2 2 2

1 2 d | | d

2 3 4 6 .

m
i i

XX Y
i

p
p

b
b p b

f X f X f X f X y y x y x
m

w m
C B C pC MB C CC p M

m

ρ ρ ρ ρ ρ
=

−

− − − −

   ≤ + + + +    

∑∫ ∫  

 

For the second term, notice ( ) ( ) ( ) ( ) ( )s s sC X C X C X C X C Xfg f g f g≤ + , and 
( )

2s sC X
f CM Cρ ≤ +  so  

( ) ( ) ( ) ( )( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )
( ) ( )

( ) ( )( ) ( )
( )

( ) ( ) ( ) ( )( )

2 2

2 2

2 2
2

2

2 d | d

d d 2 d | d

2 2sup

2 2

s s

s s

i
X XX Y

i i i
X X X X X XX X X Y

b b b
b b bs C X C X C Xx x

s C X C X C X C X

f X f X f X f X y y x

f X f X f X f X y y x

f X f x
B C i f f C i f X f X f X C i

x x

B BC f f f f f f

ρ ρ

ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ

− − −

′≠

− − − −

≤ − + − + − −

 ′−
 ≤ + + + −
 ′− 
≤ + + − + −

∫ ∫

∫ ∫ ∫ ∫

 

 

 


 

( )2 24 2 8 6 2 .

b
b

b
s s b

C i

B C C B CM CC M C i

−

−


  
 ≤ + + + + 

 

Therefore  
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( ) ( ) ( ) ( )( )( ) ( ) ( )( )
( ) ( )

2 2

1

2 2

1 2 d | d

4 2 8 6 2 .

m
i

X XX Y
i

b
s s

f X f X f X f X y y x
m

w m
B C C B CM CC M

m

ρ ρ ρ ρ ρ
=

− − − −

 ≤ + + + + 

∑∫ ∫  

 

Combining the two bounds, we have  

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )
( )

1

2

2 2

1 2 3 4 2 4

4 6 8 6 2 .

m m

p
pb

b b s

b s

f f f f

w m
C B CM pC M C C B

m
C CC p C M CC M

ρ ρ

−

− − −

≤ + + + + +

+ + + + 

    

 

And this is indeed the proposition.  
For the drift error involving fz , we have the same result since f ∈z  as well, i.e.,  
Proposition 2. Assume ( )C Xf B≤z  for some 0B > , for any 1 p≤ ∈ , we have  

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )

( )

1

2

2 2

1 2 3 4 2 4

4 6 8 6 2 .

m m

p
p

b
b b s

b s

f f f f

w m
C B CM pC M C C B

m

C CC p C M CC M

ρ ρ

−

− − −

  ≤ + + + + +   
+ + + + 

   z z

 

4. Sample Error Estimate 
We devote this section to the analysis of the sample errors. For the sample error term involving f , we will use 
the Bennett inequality as in [11] and [19], which is initially introduced in [20]. Since two polynomial 
convergence conditions are posed on the marginal and conditional distribution sequences, we have to modify the  

Bennett inequality to fit our setting. Denote ( )d
Z

g g z ρ= ∫  and ( )1 1mg i g z
m

= =∑z  for an integrable 

function g, the lemma can be stated as follow. 

Lemma 1. Assume 21 !
2

g g M v−− ≤� ��   holds for 2,3,=� �  and some constants , 0M v >  , then we 

have  

{ } ( )
2

Prob exp .
2mZ

mg g
v M
εε

ε∈

  − ≥ ≤ − +  
 zz

 

For our non-identical setting, we can have a similar result from the same idea of proof. By denoting 
( ) ( ) ( )di i

Z
g g z ρ= ∫  and ( ) ( )1 1 d im

m Z
g i g z

m
ρ= =∑ ∫ , the following lemma holds. 

Lemma 2. Assume 21 !
2

g g M v−− ≤� ��   and ( ) ( ) 21 !
2

i ig g M v−− ≤
�

��   for some constants , 0M v >  

and any , 2,3,i∈ =� � � , then we have  

{ } ( )
2

Prob exp .
2m mZ

mg g
v M
εε

ε∈

  − ≥ ≤ − +  
 zz

 

Now we can bound the sample error term ( ) ( )mf f−  z  by applying this lemma. 
Proposition 3. Under the moment incremental condition (4), (5) and notations above, with probability at 

least 1 3δ− , we have  
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( ) ( )( ) ( ) ( )( ) ( )2 2 3 1log ,
2

B
m m

C M
f f f f A

mρ ρ δ
+

− − − ≤ +     z z  

where ( )( )2
6 3BM B C M= + +  and A  is the approximation error.  

Proof. Let  

( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )22
2g z f x y f x y f x f x f x f x yρ ρ ρ= − − − = − + −    , then  

( ) ( )( ) ( ) ( )( ) .m m mf f f f g gρ ρ− − − = −     z z z  

Since ( ) ( ) ( ) ( )2d | | | 2
Y

f x y y x y x y x CMρ ρ= ≤ ≤ ≤∫   , we have  

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( )

( )

1

1

221

21 2

21 2

2 2

2 2 d

2 2 2 d | d

2 3 2 2 d |

2 3 2 2 !

2 ! 6 3

Z

XX Y

Y

g g g g g

f x f x f x f x y

B CM f x f x B CM y y x

B CM f f B C M y y x

B CM A B C M C M

B C

ρ ρ

ρ

ρ

ρ

ρ ρ

ρ

+

+

−+

−+

−+

− ≤ + ≤

= − ⋅ + −

≤ + − + +

 ≤ + − + + 
 

 ≤ + ⋅ ⋅ + + 
 

≤ ⋅ + +

∫

∫ ∫

∫

� � � �� �

� ��

���

�
��� � � � �

�
�� � � � � �

�

�

�

        

 







 

( ) ( )2 2 211 !
2 B BM C A M v

− −+ ≤
� ��

 

for any 1, 2,=� � , where 
1

 and ( )4 1B Bv C M A= +  . In the same way, we have the following bounds  
( ) ( ) 21 ! , , 1, 2,

2
i i

B Bg g M v i−− ≤ =
�

�� � �    

as well. Then from Lemma 2 above, we have  

{ } ( )
2

Prob exp .
2Z m

B B

mg g
v M

εε
ε∈

  − ≥ ≤ − +  
  z z  

Set the right hand side to be 3δ , we can solve that  

( )

( )

221 3 3 3= log 2 loglog

4 12 3 3log log

2 2 3 1log .
2

m B B B

BB

B

g g M M mv
m

C M AM
m m
C M

A
m

ε
δ δ δ

δ δ

δ

 
− ≤ + +  

 

+
≤ +

+
≤ +

  





z

 

Therefore with confidence at least 1 3δ− , there holds  

( )2 2 3 1log .
2

B
m

C M
g g A

m δ
+

− ≤ +   z  

This proves the proposition.  
For the sample error term involving fz , analysis will be more involved since we need a concentration 

inequality for a set of functions. Firstly we have to introduce the ratio inequality [9]. 

Lemma 3. Denote ( ) ( )( ) ( )( )22
g z f x y f x yρ= − − −  for f ∈ , which satisfies 21 !

2
g g M v−− ≤� ��   
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and ( ) ( ) 21 !
2

i ig g M v−− ≤
�

��   for some constants , 0M v >  and , 2,3,i =� � , then we have  

( ){ } ( )
Prob exp .

2 4 5m z mZ

mg g g
M C

εε ε
∈

  − ≥ + ≤ − +  
  

z
 

Proof. Let ε  to be ( ) ( )( )f fρε ε + −   in the Lemma 2, from the proof of the last proposition, we can 
conclude that  

( ) ( )( ){ }
( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )

( )

Prob

exp
2 4 1

exp .
2 4 5

m mZ

B B

B

g g f f

m f f

C M f f M f f

m
M C

ρ

ρ

ρ ρ

ε ε

ε ε

ε

ε

∈
− ≥ + −

 + − ≤ − 
 + − + + −   

  ≤ − +  

   

 

   

zz

 

Note that ( ) ( )f f gρ− =    and the lemma is proved.  

Then we have the following result. 
Lemma 4. For a set of functions { } 1

N
i i

f
=
⊂   with N ∈ , construct functions  

( ) ( )( ) ( )( )( )22
i ig z f x y f x yρ= − − − −  for 1, 2, ,i N= � , with confidence at least 1 3δ− , we have  

( )2 4 5 3 1log , 1, 2, ,
2

B
i m i i

M C Ng g A i N
m δ

+
− ≤ + ∀ = � z  

where ( ) ( )i iA f fρ= −   for any 1, 2, , .i N= �   

Proof. Since if  is an element of  , from Lemma 3 we have  

( )
Prob exp ,

2 4 5m
i m i

Z
Bi

g g m
M Cg

εε
ε∈

   −   ≥ ≤ −   ++      

 


z
z

 

then there holds  

( )1
Prob exp .sup

2 4 5m
i m i

Z i N Bi

g g mN
M Cg

εε
ε∈

≤ ≤

   −   ≥ ≤ −   ++      

 


z
z

 

Set the right hand side to be 3δ  and we have with probability at least 1 3δ− ,  

( )

( )

1
2

2 4 5 3 1log , 1, 2, , .
2

i m i i i

B
i

g g g g

M C N A i N
m

ε ε ε

δ

− ≤ + ≤ +

+
≤ + = �

   z

 

Here ( ) ( )i i iA f f gρ= − =   . And this proves the lemma.  

Now by a covering number argument we can bound the sample error term involving fz . 
Proposition 4. If ( ) { }: :R HB H f H f R= = ∈ ≤  for some 0R > , where H satisfies the capacity 

condition, for any 0 1δ< < , with confidence at least 1 2 3δ− , there holds  

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

1
1 3 1log 5 13 16 2 4 5 1 .

2

m m

rr
B r

f f f f

m B C M M C C R f f

ρ ρ

ρδ
−
+

− − −

≤ + + + + + + −

   

 

z z z z

z
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Proof. Denote ( ),N η=    where η  is to be determined, then we can find an η -net { } 1

N
i i

f
=

 of  , and 

there exist a function { }, 1, 2, ,jf j N∈ � , we have  

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
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z z z z

z z z z z z

z z z z z

 

For the first term, since ( ) ( )d | 2i

Y
y y x CMρ ≤∫  for all 1, 2, ,i m= � , we have  
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1= 2 d | d
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i
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f x f x f x f x y y x
m
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m

ρ ρ

η η

=

=

−

− + −

≤ + = +
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∑

 z

z z  

And for the third term,  
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m
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i
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f f f x y f x y
m
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m m

η

=

= =

− = − − −

 = − + − ≤ + 
 

∑

∑ ∑
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we need to bound  

( )
1

1 .
m

z z
i

y y y y y
m =

= = − +∑      

Let ( )g z y=  and then  

( ) ( ) ( )21 212 2 ! 2 ! 2 16 , 1, 2, .
2

g g y C M M CM−+− ≤ ≤ = =� � ��
�

� � � �    

From Lemma 1 we have  
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2
Prob exp .

2 16 2
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  − ≥ ≤ − 
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 zz
 

Set the right hand side to be 3δ  and with confidence at least 1 3δ−  we have  

( )
2

1

1 4 3 32 3 3d log log 4 1 2 log .
m

Z
i

M CMg g y y C
m m m

ρ ε
δ δ δ=

− = − ≤ ≤ + ≤ +∑ ∫ z  

And this means, 

( ) ( ) ( )
1

1 3 3d | 4 1 2 log 5 9 log
m

Y
i

y y y x M C M C
m

ρ
δ δ=

≤ + + ≤ +∑ ∫  

with probability at least 1 3δ− . 
The second term can be bounded by 4 above. That is, with confidence at least 1 3δ− , we have  

( )2 4 5 3 1log .
2

B
j j j

M C Ng g A
m δ

+
− ≤ + z  

Since ( ) ( ) ( )1log log , log , r
rN B H C R

R
ηη η = = ≤ 

 
    by assumption, and  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 2 ,j j jA f f f f f f B CM f fρ ρ ρη= − = − + − ≤ + + −       z z z  

combining the three parts above, we have the following bound with confidence at least 1 2 3δ− ,  
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By choosing ( )1 1 rmη − +=  for balancing, we have  

( ) ( )( ) ( ) ( )( )
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1 3 1log 5 13 20 2 4 5 1
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 
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with confidence at least 1 2 3δ− , this proves the proposition.  

5. Approximation Error and Total Error 
Combining the results above, we can derive the error bound for the generalization error ( ) ( )f fρ− z . 

Proposition 5. Under the moment condition for the distribution of the sample and capacity condition for the 
hypothesis space  , for any 0 1δ< <  and 1 p≤ ∈ , with confidence at least 1 δ− , we have  
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where ( )( )2
6 3BM B C M= + + .  

What is left to be determined in the proposition is the approximation error A . By the choice of hypothesis 
space we can get our main result. 

Proof of Theorem 1. Let  
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, 0 1,
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, 1,

b
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m b
mv m b

m
m b

−
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and ( ) ( )( )( ) ( ){ }1 1 1max ,
p p r

bm v m mγ
− − += , assume 1B ≥  without loss of generality, and 1R ≥ , Proposition 5 
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indicates that  

( ) ( ) ( ) ( ) ( ) 2
, , , ,

3log 3r
b s r p Mf f f f A m B R C Aρ γ

δ
− = − + ≤ +     z z  

holds with confidence at least 1 δ−  for any 1 p≤ ∈ , where , , , ,b s r p MC  is a constant independent on m or δ . 
For the approximation error A , we can bound it by Theorem 3.1 of [18]. Since the hypothesis space 

( )RB H= , and ( )2

0,
,

X
f L Hρ ρ ∞
∈  with 0 1θ< < , we have  
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The upper bound B is now chosen to be I R  since ( )C Hf X I f I R≤ ⋅ ≤ , then with confidence at 
least 1 δ− , 
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we have  
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3( ) log 3r r b s r p Mf f m C I f
θ

θθρ ργ
δ

−− +
∞

 
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  
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holds with confidence at least 1 δ− . Denote ( )
2

2 1
, , , , , , , , , , 0,

3b s r p M b s r p MC C C I f θ
θ ρ

−

∞
= = +�

 , then the theorem 

is obtained.  

6. Summary and Future Work 
We investigate the least squares ERM algorithm with non-identical and unbounded sample, i.e., polynomial 
convergence for ( ){ }

1

i
X i

ρ
≥

 and ( ) ( ){ }
1

|i

i
y xρ

≥
 and moment inremental condition for the latter ones. Analogue  

error decomposition as classical analysis for least sqaures regularization [9] [11] is conducted. Truncate techni- 
que is introduced for handling unbounded setting, and Bennett concentration inequality is used for the sample 
error. By the above analysis we finally get the error bound and learning rate. 

However, our work only considers the ERM algorithm. It is neccesary for us to extend this to the regulari- 
zation algorithms which are more widely used in practice. A more recent relative reference can be found in [21]. 
Another interesting topic in future study is dependent sampling [7]. 
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