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Abstract 
This article investigates the potential impact of manufacturing uncertainty in composite struc-
tures here in the form of thickness variation in laminate plies, on the robustness of commonly 
used Artificial Neural Networks (ANN) in Structural Health Monitoring (SHM). Namely, the ro-
bustness of an ANN SHM system is assessed through an airfoil case study based on the sensitivity 
of delamination location and size predictions, when the ANN is imposed to noisy input. In light of 
the observed poor performance of the original network, even when its architecture was carefully 
optimized, it had been proposed to weigh the input layer of the ANN by a set of signal-to-noise (SN) 
ratios and then trained the network. Both damage location and size predictions of the latter SHM 
approach were increased to above 90%. Practical aspects of the proposed robust SN-ANN SHM 
have also been discussed. 
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1. Introduction 
The cornerstone of Structural Health Monitoring (SHM) in engineering design is the comparison of data meas-
ured over a pre-defined damaged structure to the same type of information obtained from the healthy (un-dam- 
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aged) structure, when subjected to identical loading/testing conditions [1]-[4]. A main goal in SHM is to seek for 
abnormalities in the structure’s behavior and try to classify or correlate them to the location and extent of dam-
age during the actual service of the same or a similar structure. For this purpose, the machine learning tech-
niques have been developed and widely used by researchers and industry experts [1], by means of simulating the 
learning ability of humans via computer algorithms to analyze the measured input data and gain the correspond-
ing (output) knowledge and skills. More specifically, the ultimate purpose of machine learning algorithms is to 
design computer tools that can effectively find the inherent relations between the inputs and outputs of a given 
complex system, and subsequently predicting the desired unknown data (e.g., the presence or absence of a criti-
cal crack in the current state of a structure) or judging its characteristics (e.g., the crack length). Generalization 
and robustness of the learning algorithms are vital to SHM system designers and require the ability of a chosen 
algorithm to predict the structure’s response when confronted with input data outside the nominal training set 
(i.e., the problem of uncertainty) [5].  

To elaborate on the latter concept of uncertainty, let us consider a sample SHM framework shown in Figure 1. 
The uncertainty in this system may come from the sensing systems by means of inaccurate data transmitted from 
sensors or imprecise database developed during the damage signature development process, manufacturing er-
rors, environmental noises, loading perturbations, or the feature extraction/classification toolboxes; all of which 
can be potentially misleading for the SHM alerts or result in imprecise predictions [2]. Thus, performance and 
robustness of the SHM system in high-risk applications, such as those in aerospace, should be examined in the 
presence of noise and uncertainty of input parameters. Such type of SHM uncertainty has been exemplified ear-
lier via a numerical case study [5] on a composite T-joint [6], which suggested that “the variation caused in the 
response of the structure due to uncertainty sources could be as large as those by the damage it self”, hence a 
clear need for developing more robust SHM systems. 

As a step forward to address the above need, the main aim of this article is to conduct an investigation into the 
development of a robust SHM via a weighted Artificial Neural Network (ANN), which can be immune against 
potential manufacturing errors in the structure. The selected case study is on predicting the location and extent 
of delamination in a composite airfoil [5] with the NACA-0012 profile under tensile loading [6]. Section 2 de-
scribes the experimental setup of the airfoil, the finite element model of the structure, and the developed damage 
signature database (DSD) to train the SHM. Section 3 provides background information on defining the pro-
posed robust ANN SHM of the airfoil, based on a concept of signal-to-noise (SN) weighting. Section 4 provides 
the analysis results from the DSD along with an ANOVA analysis for correlating strain responses to the pre-def- 
ined damage scenarios, and thereby to quantify the significance of SHM uncertainty parameters. The same sec-
tion follows with results of different weighted and unweighted ANNs, designed to predict damage in the struc-
ture from strain signatures in the presence of manufacturing errors (here in the form of composite ply thickness 
variations). Finally, Section 5 summarizes the main findings of the study and outlines some practical notions re-
garding the implementation of the proposed SN-ANN SHM. 

 

 
Figure 1. Example of a SHM system with different features [2]. 
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2. Case Study Description 
The selected composite NACA-0012 airfoil is a sandwich structure consists of a 3 mm thick PVC foam, rein-
forced with E-glass and carbon woven fabrics (Figure 2). Table 1 lists the stacking sequence of the laminate 
schedule. A prototype structure was manufactured using the hand layup process and elastic material properties 
of the laminate components were estimated based on earlier studies [7]-[9] (Table 2). 
 

 
Figure 2. The NACA0012 composite airfoil lay-up used in the case study. 

 
Table 1. Stacking sequence of the airfoil and nominal ply thicknesses. 

Layer no. (from top) Type Density (gr/m2) ~Thickness (mm) 

1 E-glass (woven) 50 0.06 

2 E-glass (woven) 200 0.22 

3 E-glass (woven) 200 0.22 

4 Carbon (woven) 200 0.22 

5 PVC foam 80 3.0 

6 Carbon (woven) 200 0.22 

7 E-glass (woven) 200 0.22 

8 E-glass (woven) 200 0.22 

9 E-glass (woven) 50 0.06 
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Table 2. The material properties used for modeling the airfoil plies (x-index refers to the fiber direction; woven fabrics in FE 
simulations were modeled as a cross-ply laminate). 

Ply Young’s Modulus (MPa) Poisson’s Ratio Shear Modulus (MPa) 

CFRP 

62000xE =  0.22xyν =  3270xyG =  
4800yE =  0.22xzν =  3270xzG =  
4800zE =  0.30yzν =  1860yzG =  

GFRP 

21000xE =  0.26xyν =  1520xyG =  
7000yE =  0.26xzν =  1520xzG =  
7000zE =  0.30yzν =  2650yzG =  

 
The airfoil profile was initially tested under a pre-defined set of delamination scenarios under static tensile 

loading (Figure 3). Subsequently, a finite element (FE) model of the set-up with the material data in Table 2 
was established in Abaqus/Standard and validated against experimental data. More details of the tensile experi-
ments and the Finite Element verification can be found in [10]. The numerical model was employed as a virtual 
experimental tool to create more damage scenarios with varying ply thicknesses (mimicking a typical type of 
manufacturing error). Overall 166 damage scenarios were developed considering delaminations with different 
lengths, ranging from 1.5 cm to 4.5 cm, and at different locations along the chord line of the airfoil between the 
lower carbon ply and the middle PVC foam of the NACA0012 airfoil, with the internal chord of 31 cm and the 
external chord of 33.5 cm. Figure 4(a), Figure 4(b) illustrate a general scheme of the delaminations of different 
lengths and locations as used in establishing the damage signature database (DSD). It is noted that in each indi-
vidual damaged airfoil scenario in the DSD, one single delamination (i.e., one size, one location) was imple-
mented. It is also noted that 17 positions along the lower surface of the airfoil were considered as sensory points 
to estimate an accurate (semi-continuous) strain distribution in each DSD simulation. 

To account for manufacturing uncertainty, ply thickness variations due to the hand layup production process 
were assumed to change from one sample to another. The thickness variation range was initially estimated based 
on tensile experiments. Namely, Table 3 shows the global displacement variations observed at different loading 
values for the tested airfoils with no delamination. It was assumed that these variations in the structure’s global 
response have been equivalently caused by variations in thickness of different plies (carbon 200 gr/m3 and glass 
200 gr/m3; both below and above the PVC foam). Subsequently, the FE model was used along with an inverse 
method to determine a reasonable thickness variation range for each of the above mentioned plies to cover at 
least 60% of experimental data scatter. The obtained lower and upper thickness limits (Table 4), which were 
also common during the hand laid-up trials, were next employed to generate random values in the subsequent 
stochastic simulations for each ply thicknesses, assuming a uniform probability density function. In summary, 
each damage scenario was simulated with five randomly varying ply thicknesses, in addition to the nominal 
thickness case listed in Table 1. Next, the goal was to employ the simulated DSD and develop a robust SHM to 
predict both damage size and location in the airfoil. 

3. Signal-to-Noise Weighted Artificial Neural Network Development 
The Artificial Neural Networks (ANNs) are known as crude electronic models that have been inspired by neural 
structure of the brain. According to Gurney [11], ANNs “are interconnected assemblies of simple processing 
elements, units or nodes whose functionality is loosely based on the animal neuron. The processing ability of the 
network is stored in the inter-unit connection strengths, or weights, obtained by a process of adaption to, or 
learning from, a set of training patterns”. The classical machine learning theory is classified into three main 
categories: classification, regression, and density estimation [12]. The ANNs under the classification category 
have been widely used in SHM features such as structural load monitoring, usage prediction, and damage diag-
nostics [13]-[19]. Given an SHM application, different ANN architectures can be defined and optimized based 
on feed-forward and recurrent networks. The majority of the published work on the development of ANN SHMs 
has implemented feed-forward networks, and in particular the Multilayer Perceptron (MLP) networks [20]. 
There are limited reports, however, describing the application of recurrent networks, especially for NDT testing, 
SHM and material property characterization in general. 

The input layer of a MLP network can receive, for instance, the strain measurements at different sensory point  
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Figure 3. A composite airfoil sample under tension [10]. 

 

   
Figure 4. Sample delaminations with different lengths plotted adjacent to the PVC foam in the finite 
element model of the airfoil: (a) ~1 cm delamination, (b) ~2 cm delamination. 

 
Table 3. Variation of displacement observed at different load magnitudes for different samples through repeats of the tensile 
tests [10]. 

Load [N] Min. Displacement 
[mm] 

Max. Displacement 
[mm]  Difference % Mean [mm] 

500 0.222 0.349 36.3 0.285 
1000 0.465 0.692 32.8 0.579 
1500 0.757 1.058 28.4 0.907 
2000 1.072 1.479 27.5 1.275 
2500 1.403 1.668 15.9 1.535 

 
Table 4. Half of the calculated thickness ranges (in mm) of different composite layers to cover about 60% of the variation 
observed in the experiments [10]. 

Glass 200 below PVC foam 

Load (N) Minimum thickness 
Displacement at max 

loading (corresponding 
to minimum thickness) 

Maximum thickness 
Displacement at max 

loading (corresponding 
to maximum thickness) 

1500 0.16 1.033 0.39 0.8437 

Carbon 200 below PVC foam 

Load (N) Minimum thickness 
Displacement at max 

loading (corresponding 
to minimum thickness) 

Maximum thickness 
Displacement at max 

loading (corresponding 
to maximum thickness) 

1500 0.18 1.031 0.36 0.8421 

Glass 200 above PVC foam 

Load (N) Minimum thickness 
Displacement at max 

loading (corresponding 
to minimum thickness) 

Maximum thickness 
Displacement at max 

loading (corresponding 
to maximum thickness) 

1500 0.17 1.038 0.28 0.8424 

Carbon 200 above PVC foam 

Load (N) Minimum thickness 
Displacement at max 

loading (corresponding 
to minimum thickness) 

Maximum thickness 
Displacement at max 

loading (corresponding 
to maximum thickness) 

1500 0.15 1.040 0.3 0.8408 



H. Teimouri et al. 
 

 
33 

of the structure, and the output layer would predict the location and extent of the existing damage corresponding 
to the measured input data. As will be shown in Section 4, a conventional MLP ANN can be potentially unable 
to provide accurate results when optimally trained with un-noisy damage scenarios (i.e., here based on nominal 
computer simulations), and asked to predict the damage status in practice in the presence of uncertainties. For 
this reason, in the present work an application of the Signal-to-Noise (SN) ratio coefficients is tested to weigh 
the input layer of the MLP network (Figure 5) and possibly improve the accuracy of damage predictions. 

Signal-to-noise ratio analysis is a means for comparing the level (amplitude) of a desired signal (target value) 
to the corresponding level of background noise (fluctuations/variation) in measurements. This concept has been 
widely used in electrical and electromagnetics engineering where the log function of the ratio of signal to noise 
is defined as the SN factor. In general, there are four types of SN’s [21]: 

 Lower-the-better static SN: 10 10 2
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ijm y

 
−   

 
∑  also called SN-L; 

 Higher-the-better static SN: 2
10 10

110log log ijy
m

 −  
 
∑  also called SN-H; 

 Nominal-the-best static SN: 10

2

10 210 log log i

i

y
s

 
 
 
 

 where 
( )2

2ln ln ln ln
1

ij i
i

y y
s

m

−
=

−
∑

 also called SN-M. 

Here for a given sensor on the structure, ijy  is defined as the sensor reading in the ith damage scenario and 
the jth thickness variation (test repeat). In another type of so-called ‘dynamic’ signal-to-noise ratio analysis, for 
each sensor point all the measured data are plotted in the ordered x-y plane (here damage scenario versus meas-
urements) and the slope of a regression line passing through them is calculated (see [21] for theoretical details). 
If MSE indicates the mean square error of sample measurements, the dynamic SN ratio is then defined as: 

 Zero-proportional Dynamic SN: 
2

10 1010 log log slope
MSE

 also called SN-D. 

For the present study, only the SN-M and SN-D methods are physically meaningful as the sensor values under 
each damage condition are always best if they are nominal (not the lower the better, not the higher the better). It 
is to note that in comparison with the SN-M mode, in the dynamic mode SN-D, the measurement values are not 
averaged (assumed constant) over the entire damage scenarios; instead it is assumed that the nominal value of 
measurements at each sensor point can vary with the damage scenario. As a result, it is expected that the SN-D 
method outperforms the SN-M method in such SHM applications (more on this topic to follow in the next sec-
tion). Table 5 lists these SN ratios for the DSD of the composite airfoil. In fact, the obtained SN coefficients are  

 

 
Figure 5. Schamtic of a multilayer perceptron ANN (adapted from [33]), weighted by the proposed S/N ratios at 
the input layer.  
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Table 5. Summary of obtained signal-to-noise (SN) ratios. 
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−30.4 −32.2 −43.6 −37.1 −34.3 −32.6 −32.5 −31.9 −31.5 −31.1 −31.3 −31.2 −31.2 −31.3 −32.6 −41.3 −30.8 

 
expressing the vulnerability of each individual sensory point under the simultaneous presence of damage and 
thickness variation scenarios. Regardless of the type, a higher SN coefficient indicates a stronger average signal 
compared to the noise level, which implies the robustness of the corresponding sensor in reporting the abnor-
malities caused by the damage status. 

Examples of the application of the concept of signal-to-noise ratio in other engineering and medical applica-
tions include the quantification of noise in MRI (Magnetic Resonance Imaging) systems [22], diffusion weig- 
hted images of spinal cords [23], electrocardiograms [24], ultrasonic non-destructive testing of highly scattering 
materials [25], etc. The idea of weighting the input layer of a neural network to demonstrate the importance of 
individual measurement points has also been the topic of some past studies. Zou et al. [26] used back-propag- 
ation neural networks with a Levenberg-Marquardt learning algorithm to study the protein combinations of both 
amino acid and amino pairs. The overall accuracy of prediction reached 88.4%, which was a notable enhance-
ment compared to the conventional neural network with an accuracy as low as 66.1%. Chen et al. [27] applied 
the weighted input layer (adapted from the information entropy theory) to the Elman NN to predict gas turbines 
performance. The application of the entropy theory to the conventional network resulted in a decreased mean 
square error of the training/prediction process by about 29%, for real-time predictions. 

4. Damage Prediction Results and Discussion 
The developed DSD in Section 2 was used in this section for two complementary analyses. First, an ANOVA 
analysis was established where the statistical significance of the uncertainty factors on the airfoil SHM predic-
tions was proven statistically. Next, a series of Artificial Neural Network (ANN) SHMs were trained and com-
pared for their prediction quality on the damage location and size, under the presence of manufacturing uncer-
tainty factor and using the analytical framework presented in Section 3. 

4.1. ANOVA Analysis 
Table 5 shows the summary of ANOVA analysis of all 17 sensors in Figure 4, after running the FE model for 
the entire (166) scenarios of the damage signature database (DSD). The resulting p-values in Table 6 show that 
no sensor is able to merely focus on predicting the damage status, as all sensor values have been affected by the 
uncertainty factor (noise) with a P-value < 5%. An earlier statistical study [10], which was based on the same 
numerical data but using only 3 instead of 166 damage scenarios, had concluded that among the distributed sen-
sors, four sensor locations showed significantly higher sensitivities (i.e., P-values < 5%) to the damage factor 
than the thickness variation (noise). Hence, one would mistakenly conclude that those few sensor locations may 
be chosen for the subsequent DSD training purposes during robust SHM development. However, as seen in Ta-
ble 6, when a large damage database used (here 166 scenarios), in fact all sensors can be significantly affected 
by the noise against prediction of damage at different locations and with different sizes. Hence, two conclusions 
may be made here when comparing the present ANOVA results and those of [10]: 
  First, it is critical to ensure that a given DSD contains sufficient number of damage scenarios to accurately 

represent the reality.  
  Second, for a sufficiently large damage database, and with uncertainty propagated throughout the structure, 

caution must be taken not to pre-define/prefer limited sensor locations to be used for training proposes. 
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Table 6. ANOVA analyses for 166 damage scenarios under uncertainty factor (note that a P-value of nearly zero indicates a 
very high statistical significance/sensitivity). 

Sensor 1 

Source of variation SS df MS F P-value F crit 

Damage size/position 865078 165 8318 116 0 1.28 

Thickness variation 779133 4 194783 2714 0 2.39 

Sensor 2 

Source of variation SS df MS F P-value F crit 

Damage size/position 4472109 165 43001 1161 0 1.28 

Thickness variation 17496 4 4374 118 0 2.39 

Sensor 3 

Source of variation SS df MS F P-value F crit 

Damage size/position 11370307 165 109330 436 0 1.28 

Thickness variation 7637 4 1909 7.62 6.20508E-06 2.39 

Sensor 4 

Source of variation SS df MS F P-value F crit 

Damage size/position 9377200 165 90165 748 0 1.28 

Thickness variation 10662 4 2665 22.1 0 2.39 

Sensor 5 

Source of variation SS df MS F P-value F crit 

Damage size/position 3250375 165 31254 564 0 1.28 

Thickness variation 9096 4 2274 41.1 0 2.39 

Sensor 6 

Source of variation SS df MS F P-value F crit 

Damage size/position 2196479 165 21120 380 0 1.28 

Thickness variation 11622 4 2906 52.3 0 2.39 

Sensor 7 

Source of variation SS df MS F P-value F crit 
Damage size/position 1372512 165 13197 414 0 1.28 
Thickness variation 8419 4 2105 66.1 0 2.39 

Sensor 8 
Source of variation SS df MS F P-value F crit 

Damage size/position 864235 165 8310 289 0 1.28 
Thickness variation 11254 4 2813 97.7 0 2.39 

Sensor 9 

Source of variation SS df MS F P-value F crit 
Damage size/position 399288 165 3839 431 0 1.28 
Thickness variation 8686 4 2172 244 0 2.39 

Sensor 10 
Source of variation SS df MS F P-value F crit 

Damage size/position 351589 165 3381 417 0 1.28 
Thickness variation 8557 4 2139 264 0 2.39 

Sensor 11 

Source of variation SS df MS F P-value F crit 

Damage size/position 206701 165 1988 425 0 1.28 

Thickness variation 6976 4 1744 373 0 2.39 
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Continue 

Sensor 12 

Source of variation SS df MS F P-value F crit 

Damage size/position 134266 165 1291 502 0 1.28 

Thickness variation 5119 4 1280 498 0 2.39 

Sensor 13 

Source of variation SS df MS F P-value F crit 

Damage size/position 130149 165 1251 842 0 1.28 

Thickness variation 4122 4 1030 694 0 2.39 

Sensor 14 

Source of variation SS df MS F P-value F crit 

Damage size/position 111839 165 1075 544 0 1.28 

Thickness variation 4255 4 1064 538 0 2.39 

Sensor 15 

Source of variation SS df MS F P-value F crit 

Damage size/position 318843 165 3066 1454 0 1.28 

Thickness variation 4725 4 1181 560 0 2.39 

Sensor 16 

Source of variation SS df MS F P-value F crit 

Damage size/position 304479 165 2928 407 0 1.28 

Thickness variation 41060 4 10265 1426 0 2.39 

Sensor 17 

Source of variation SS df MS F P-value F crit 

Damage size/position 1238033 165 11904 2472 0 1.28 

Thickness variation 94708 4 23677 4916 0 2.39 

4.2. Weighted and Unweighted MLP ANN’s 
As addressed in Section 3, MLP Artificial Neural Networks are powerful techniques used for pattern recognition 
purposes in SHM applications [28]-[33]. ANNs are provided with the measured sensory information such as 
displacement, acceleration, stress/strain, damping ratio, and mode shapes, in time or frequency domains, and are 
expected to correlate these data to the state of damage (location and size of defect) in the structure.  

In the current example, the well-known technique of k-fold cross validation [33] was used to arrive at archi-
tecturally optimized ANN architectures. This technique helps the analyst select the number of hidden layers, 
number of neurons in each hidden layer, activation function, learning algorithm and learning rule. This was ini-
tially done for the airfoil’s SHM using the nominal DSD only (i.e., without considering noise). The summary of 
the obtained cross validation results for the nominal damage cases are presented in Table 7. During the cross- 
validation, in each iteration 70% of the dataset was considered to be the training set and the 30% for validation 
and testing; i.e. for instance when the network was optimized on the original 166 dataset, 116 sets were used for 
training and 50 sets for validation and testing. The best trained network for this SHM had 17 neurons in the first 
layer (input layer), 24 neurons in the second layer, 20 neurons in the third layer, 8 neurons in the fourth layer 
and 2 neurons in the last layer (also known as output layer). This network (24-20-8-2 NN in Table 7) was then 
used to predict damage in all simulated airfoils, both with and without uncertainty (i.e., versus the total DSD). In 
addition, for comparison purposes, the same network was trained with both nominal and noisy damage scenarios 
and again used to predict the total DSD. Results of the aforementioned approaches are provided in Table 8.  

Concerning the low prediction% values in Table 8, it is clear that the conventional (unweighted) ANN has 
not been capable of predicting the thickness varying scenarios when it is only trained by the nominal DSD. 
When the same network is trained with the total DSD, however, it has greatly become capable of predicting 
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Table 7. Optimized neural networks for the nominal DSD without thickness variation. 

Architecture Min. damage location prediction error % Min. damage size prediction error % 

2 hidden layers 14.4% (70-2 neurons) 17.1% (70-2 neurons) 

3 hidden layers 1.8% (25-7-2 neurons) 5.2% (46-11-2 neurons) 

4 hidden layers 1.1% (24-20-8-2 neurons) 4.0% (16-18-11-2 neurons) 

 
Table 8. Comparison of the neural networks for nominal and thickness varying damage scenarios. 

NN type Training set Predicting set % Accuracy of size 
prediction 

% Accuracy of location 
prediction 

Conventional NN Original Original + thickness 
varying 35.5% 57.2% 

Conventional NN Original + thickness 
varying 

Original + thickness 
varying 95.8% 97.0% 

SN-M NN 
with original 
architecture 

Original Original + thickness 
varying 79.0% 70.6 

SN-M NN 
with re-optimized 

architecture 
Original Original + thickness 

varying 86.8% 79.0% 

SN-D NN 
with nominal optimal 

architecture 
Original Original + thickness 

varying 87.3% 93.1% 

SN-D NN 
with re-optimized 

architecture 
Original Original + thickness 

varying 92.2% 91.2% 

 
damage location (97.0%) and damage extent (95.8%) under uncertain input data. This shows a desirable gener-
alizability of the ANN for robust SHM applications, but it can also pose an important challenge. Namely, in 
practice the second unweighted but robust ANN will require testing all damage scenarios under several random 
repeats to arrive at a sufficiently large DSD to be included in the training pool. Running such large DSDs with 
several noise scenarios would normally pose high cost and time limitations in industrial settings. 

To address this challenge, we next attempted to use SN ratios to weigh the input layer of the MLP ANN. Ta-
ble 8 illustrates the prediction results where the conventional neural network has been weighted by the SN ratios 
of Table 5 and predicted the noisy (total) DSD. Note that the noisy DSD scenarios have not been directly used 
in the latter training process, but their impacts have been condensed in the SN ratios. Both the SN-M and SN-D 
weighting methods have resulted in an improved performance of SHM when used on the original optimum ANN 
architecture with or without re-optimization. By implementing the “dynamic” signal to noise ratio (SN-D), how- 
ever, the accuracy of damage location prediction was found to be the highest among all tested ANN models (as 
high as ~92%). 

5. Concluding Remarks  
MLP Artificial Neural Networks have proven to be powerful tools for pattern recognition in the structural health 
monitoring applications, yet its efficiency can reduce when dealing with unseen uncertainty in the input layers of 
a system such as ply thickness variation in the composite laminate. Using a case study on a composite airfoil and 
ANOVA analysis over a DSD with 166 damage scenarios along with five random repeats of each due to manu-
facturing error, it was found that all the sensory points exhibited almost the same delamination detection sensi-
tivity as the uncertainty effect itself, hence the clear need for a robust SHM development. Also by comparing the 
above results to the earlier study [10], it was found that the small-size DSDs could be misleading in terms of 
preselecting specific sensory points to be immune against noise, especially when the uncertainty had been prop-
agated throughout the structure. 

One way to deal with uncertainty in the input of SHM data is to include the uncertainty scenarios in the train-
ing set, but this approach would involve developing a vast damage database which often requires considerable 
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time and budget for industries. Another approach discussed here would be weighing the conventional neural 
network by signal-to-noise coefficients. In the performed case study, the noisy DSD was analyzed for each input 
neuron to calculate an appropriate SN ratio. The approach dramatically increased the efficiency of the ANN- 
based SHM, even though it was only trained with the original damage scenarios (nominal DSD) and predicted 
the noisy DSD. Table 8 is a complete summary of all different training and prediction scenarios using the un-
weighted ANN and weighted ANNs. Among different types of SN, the dynamic SN weighted neural network 
showed a superior accuracy above 90% in damage prediction. A practical problem with this approach, however, 
is the reliable estimation of SN weights. This estimation may come from past experience, expert knowledge or 
by developing a sub-set of initial DSD encompassing uncertainty cases.  

This project is a part of a larger research program aiming at identifying practically and economically most vi-
able, yet accurate and robust, algorithms for implementation in real-time SHM systems of composite structures. 
The assessment of other powerful non-parametric methods such as the Gaussian Processes (GPs) is also of high 
interest in developing and comparing future robust SHMs. 
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