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Abstract 
Rutherford classical scattering theory, as its quantum mechanical analogue, is modified for scat-
tering cross-section and the impact parameter by using quantum mechanical momentum, k  (de 
Broglie hypothesis), energy relationship for matter oscillator (Einstein’s oscillator) and quantum 

mechanical wave vectors, =free
2mEk


 and 
( )

=quantum

2m E V
k



−
, respectively. It is observed 

that the quantum mechanical scattering cross-section and the impact parameter depended on in-
verse square law of quantum action (Planck’s constant). Born approximation is revisited for 
quantum mechanical scattering. Using Bessel and Neumann asymptotic functions and response of 
nuclear surface potential barrier, born approximations were modified. The coulombic fields in-
side the nucleus of the atom are studied for reflection and transmission with corresponding wave 
vectors, phase shifts and eigenfunctions Bulk quantum mechanical tunneling and reflection scat-
tering, both for ruptured and unruptured nucleus of the atom, are deciphered with corresponding 
wave vectors, phase shifts and eigenfunction. Similar calculation ware accomplished for quantum 
surface tunneling and reflection scattering with corresponding wave vectors, phase shifts and ei-
genfunctions. Such diverse quantum mechanical scattering cross-section with corresponding wave 
vectors for tunneling and reflection, phase shifts and eigenfunctions will pave a new dimension to 
understanding the behavior of exchange fields in the nucleus of the atom with insides layers both 
ruptured and unruptured. Phase shifts, lδ  for each of the energy profile (partial) will be different 
and indeed their corresponding wave vectors for exchange energy eigenvalues. 
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1. Introduction 
It has not been successful, to our knowledge, to find such reported results anywhere in any literature the world 
over. Theoretical results were developed, the verification of which would, however, be needed with experimen-
tal results on beam physics. Rutherford classical scattering [1] [2] and the fundamental results on quantum me-
chanics [3] [4] were revisited. Quantum mechanical scattering theory [5] and fundamental results with born ap-
proximation functions (energy profile) were reanalyzed by considering the nucleus analogous to onion. The 
phase shifts for each diverse case under consideration for quantum mechanical scattering are different with 
substitution of such phase shifts with appropriate selection of equations (reported in this manuscript). The shape 
of scattering eigenfunctions can be reproduced provided the wave vectors of incident and scattered beams are 
known. The diverse nuclear scattering cross-sections were determined. The modified Rutherford scattering for-
mulas developed in this manuscript are applicable only to Coulombic field in the extra-nuclear region (range of 
scattering, R). 

Quantum action deals with oscillatory behavior of matter waves (transverse waves) which configures a space 
of its own called a wave packet or quanta. scattΘ  in quantum scattering cannot be measured directly but can be 
recorded with detectors and the same is the case with azimuth angle, φ . However, formulas need testing for 
their validity on high energy accelerators. These formulas are good enough for Coulombic field (target material) 
provided the incident particles are also charged particles. For quantum mechanical scattering from the nucleus of 
the atom, highly energetic incident particles (charged or uncharged) are needed. Envisage the nucleus, like an 
onion with each of its layer exceptionally whirling and swirling. The surface of deformed or undeformed nuc-
leus is considered like a quantum potential barrier and the interior of the nucleus like a quantum potential well 
with its brim changing shape continuously with overwhelming whirling and swirling effects. The rotational 
momentum, quadru pole and octo pole moments of the nucleus are assumed to be negligible compared to whirl-
ing and swirling effects. Energy profile (eigenfunctions) is deciphered both even and odd, for reflection and 
quantum mechanical tunneling from nuclear surface barrier, and then the quantum mechanical scattering profiles 
from each inside layer of the nucleus of the atom. 

It is assumed that the parity of scattering remains conserved. The quantum mechanical scattering its self is an 
asymmetrical second order process. Diverse scattering cross sections can be determined for each of the described 
above cases with known phase shifts and the wave vectors for scattered particles. With scattering profiles (scat-
tering eigenfunctions), the shape and size of scattering through modeling and simulation can be reproduced.  

2. Theory and Discussions 
The scattering cross-section and indeed the differential scattering cross-section in Rutherford scattering depend on 
measurable entities like θ  and φ . The differential scattering cross-section is a manifestation of either geometric-
al/structural factor or atomic/ion form factor and used only in classical scattering mechanisms. The geometric-
al/structure factor with X-ray reflections and diffractions from crystal lattices can be determined followed by fold 
and other symmetries. The atomic/ion form factors provide the strength of atoms or ions in the crystal lattices and 
that is accomplished with classical scattering formulas. The impact parameter in Rutherford scattering provides the 
strength of interaction of the incident (usually charged particles) with the Coulombic field (target material), as a 
consequences of which, scattering profiles are studied. We shall not, deliberate on the conditionalities of Ruther-
ford scattering (simultaneous use of laboratory and centre of mass coordinate systems) [1]. 

2.1. Case-I: Quantum Theory of Rutherford Scattering and Born Approximations for  
Coulombic Fields inside the Nucleus 

Using de Broglie hypothesis, hp k
λ

= =  , where 2πk
λ

= , 
2π
h

= , 2πω ν= , c λν= , E hν= , v rω=  
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and 2
qm

mEk =


 for incident and scattering particles, the Rutherford scattering formulas is modified for 

scattering cross-section and the impact parameter. First, writing the original Rutherford scattering formulas [1],  

( )
22

4

1 1,
4 2 sin

2

ZZ e
E

σ θ φ
θ

 ′
= ⋅ 

    
 

                                 (1) 

where Ze is the charge of incident of particles, Z e′  the charge of target material, θ  the scattering angle, φ  
the azimuth angle, E the kinetic energy and σ  the scattering cross-section. The impact parameter, S is  

2

cot .
2 2

ZZ eS
E

θ′
=                                         (2) 

Changing 
2

2
pE
m

=  in Equations (1) and (2) with 
2 2

2qm
kE
µ

=
 , where µ  is reduced mass. We have  

( )
( )22 2 2
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24 sin
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                         (3) 

With rigorous mathematical substitution of basic quantum mechanical entities, as mention in the above para-
graph, a meaningful solution is obtained, i.e.,  

( )
( )
( )

22 22
inc

2 2
4 scatt

inc

1 1,
4 π π sin

2

ZZ e
q m

c h r
λ

σ
θ

′ 
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                         (4) 

where c is the velocity of light, incλ  the wave length of incident beam, ( )2π
inc

r  the order of the incident beam 
and scattθ  the scattering angle of the beam. scattθ  in case of quantum mechanical scattering can not be mea- 
sured but can be recorded with detectors. The quantum mechanical impact parameters becomes  

( ) ( )
2

scatt
2

incident incident

1, 2π cot
2π 2

ZZ eS q m
rh

θλ
ν

′   = ×      
                     (5) 

where ν  is the frequency of incident beam and ( )incident2πr  the circumference of the incident beam. h is 
Planck’s constant in both Equations (4) and (5). 

It is found that our both formulas (4) and (5), i.e., quantum mechanical scattering cross-section and the impact 
parameter follow the inverse square law of quantum action,   (planck’s constant). Quantum impact parameters 
will determine the strength of the scattering process. 

If highly energetic incident particles are considered which could tunnel through the Coulomb’s barrier then 
the incident particles will suffer nuclear surface barrier and the potential well which is envisaged as the interior 
of the nucleus. The incident particles should have sufficient energy to tunnel through the nuclear surface barrier 
to get accommodated in the interior of the nucleus. These incident particles will make the nucleus to undergo 
scattering, of course, by the brim of the potential well and indeed by tunneling the other side of the nuclear sur-
face barrier. For r > R (range of classical scattering) the Coulombic field is encountered. Now using certain con-
ditions of Born approximation [5]. Writing first equation for the nuclear surface barrier and then  

( ) ( ){ }

( )

cos sin ,

2
, 2 1 e

l l l l l l

il l
l

R A j kr kr

E
k A l i δ

δ δ η

µ

= −

= = +


                          (6) 

For < lr R , the incident particles are pulled into the interior of the nucleus and exciting the nucleus to the ex-



S. Iqbal et al. 
 

 
74 

tent that partial waves are emitted, of course, with phase shifts, lδ  thereby providing information about energy 
changes and nuclear potentials. ( )lj kr  and ( )l krη  in Equation (6) are Bessel and Neumann functions, re-
spectively. lR  gives the range in which nuclear scattering occurs. For < lr R , the incident particles have al-
ready tunneled through the Coulombic field and now face nuclear surface barrier. Applying conditions of tunne-
ling, such as for even solution of lR , [5],  

( )2 2 22
, ,i

E VEk k Va ka k k
k E

µµ
δ

−′+ ′= = ⋅ = =
 

                       (7) 

where a is the width of the surface nuclear barrier and V the potential energy. For odd solution of ( )lR r   

0jδ =                                              (8) 

Reflection (scattering) from the nuclear surface barrier as well as transmission (quantum tunneling) of inci-
dent particles are evident. Some of the incident particles are pulled into the nucleus while some of them tunnel 
perfectly through the other side of the nuclear surface barrier. For reflection, <r a− , the incident particles will 
have an eigenfunction (energy profile) with phase shifts lδ , for transmission, >r a , (complete tunneling 
through the nuclear surface barrier) and during transmission a r a− ≤ ≤ , we shall have lδ  s quite different for 

>r a  and for <r a− . During transmission, a r a− ≤ ≤ , some of the particles are pulled in to the nucleus. The 
eigenfunctions for reflection and transmission from a nuclear surface potential barrier are reproduced below.  

( ) ( ) ( ) ( )
( )

( ) ( )

exp exp sin exp ,

reflection

exp cos exp ,

e l l

l l

u r ikr i i ikr r a

i ikr r a

δ δ

δ δ

= − − − < −

= − >

                       (9) 

( )transmission                                                   (10) 

The first term in the first part of Equation (9), i.e., ( )exp ikr  shows the profile of incident beam. iδ  in Eq-
uation (7) will be replaced by lδ  because the phase shift is a manifestation of whirling and swirling effects of 
the nucleus and indeed of deformed nuclear surface potential barrier. The dependence of azimuth quantum 
number l on swirling effects follow the Eulerian angles which are assumed to be very negligible. 

For ( )< lr R r , the incident particles are either pulled in to the nucleus ( )a r a− ≤ ≤  or tunneled through the 
nuclear surface potential barrier after capture, therefore, Equation (6) will take the shape  

( ) ( ) ( ){ }
( )
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2
, 2 1 e

e l l l l l

il l
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−
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                            (11) 

The incident particles having sufficient energy will tunnel through the other side of the nuclear surface poten-
tial barrier [5], >r a .  

2 2 2 2 2
2
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1 1 1 1
1 1 221 2 11l e
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= = = =
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                    (12) 

The incident particles which are captured by the nucleus a r a− ≤ ≤  will have no effect for either  

2mEk =


 or 
( )2m E V

k
−

′ =


 because the incident particles which are captured for a while will be scat-

tered from within different layers inside the nucleus. Rewriting Equation (10)  

( ) ( ) ( ){ }
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cos sin ,

2
, 2 1 e

e l l l l l
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E
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                            (13) 

The wave vector in Equation (12) shows the quantum action of scattered particles either for complete tunne-
ling or tunneling after capturing by the nucleus. The emission of partial waves, in either cases, is a manifestation 
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of asymptotic dependence of Bessel and Neumann functions, respectively. The partial waves from inside (quan-
tum well) of the nucleus differ from partial waves emitted, as a consequence of tunneling, through the nuclear 
surface potential barrier. The asymptotic conditions of Bessel and Neumann functions, respectively are written  

( )

( )

πsin
2 ,

πcos
2 ,

l

l

r l
j r r l

r

r l
r r l

r
η

 − 
 =

 − 
 = −





                               (14) 

The Neumann function ( )l rη  will decide the asymptotic conditions of quantum mechanical scattering from 
the inside of the nucleus and the Bessel function, ( )lj r  for asymptotic conditions of quantum mechanical 
scattering from the surface of the nucleus. The azimuthal quantum number, l in the Neumann functions, ( )l rη  
is dependent on “whirling and swirling”, as a consequence of which, phase shifts for quantum mechanical scat-
tering from inside the nucleus are manifestation of complex behaviour. 

2.2. Case-II: Quantum Mechanical Bulk Tunneling and Scattering with Born  
Approximations Both for Ruptured and Unruptured Nucleus  

With asymptotic conditions for particles which tunneled through the surface potential barrier, captured within 
the nucleus and then scattered with phase shift,  

( )

πsin
20l

r l
j r

r

 − 
 = =  

and then only the Neumann function will work, 

( )

πcos
2

l

r l
r

r
η

 − 
 =  

Equation (12) will take the following shape:  

( ) ( )( )sin .l l l eR r A rδ η′ = −                                (15) 

Using second part of Equation (9), which is for transmission,the eigenfunctions(energy profile) for different 
values of lr  corresponding to inside layers within the nucleus will become  

( ) ( )

( ) ( )
cos

2sin exp cos exp

e l

l l l l l

R r u r

r l
A i ikr

r

ψ

π

δ δ δ

′=

  −    = − − 
 
  

                (16) 

Equation (15) shows that scattered particles from inside various layers of the nucleus. For ( )lr R r′
 , we can 

have  

( ) ( )
0

cosl l
l

R r Pψ θ
∞

=

′= ∑                                (17) 

Equation (16) represents the energy profile for particles which are scattered from the inside of the nucleus for 
any value of azimuthal quantum number. it is assumed that ( )cos 1lP θ =  for any value of l, i.e., 0l =  (un 
deformed), 1, 2,3,l =   (deformed) because the direction cosine is normal to any place on the surface of a 
sphere (spherical harmonics for the nucleus). Thus, Equation (15) can be written as  
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( ) ( ) ( )
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For 0l =  (un deformed nucleus), ( )2 1 1l
lA l i= + =   

( )
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0
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r
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                      (19) 

For 0l ≠ , the nucleus will be deformed and then internal quantum mechanical scattering will occur. In such 
a trivial situation, ( )2 1 πlk r l′ = + , ( )lr R r′

 , the radius lr  inside the nucleus will change  

( ) ( )

1 2 3

0

22 1 π
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3π 5π 7π, , ,...

π
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E Vl
r k

k

r r r
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= = =
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=
′



                             (20) 

For 0l =  (un deformed nucleus), 0
πr
k

=
′

, which implies that it is equivalent to quantum tunneling beha-

viour of the nucleus soon after capturing the incident particles. 

2.3. Case-III: Quantum Mechanical Surface Tunneling and Scattering with Born  
Approximations Both for Ruptured and Unruptured Nucleus 

For ( )lr R r′
  especially the quantum mechanical tunneling and scattering from the surface of the nuclear po-

tential barrier,we shall use part 1 of Equation (9) and make ( ) 0l lη =  in Equation (12), we have  

( ) ( ) 2
cos ,l l l l

E
R r A j r k

µ
δ= =



                              (21) 

the incident particles after tunneling the Coulombic field will encounter the nuclear surface potential barrier, 
where ( )lr R r′

  is applicable. Using second term of first part of Equation (9) for quantum mechanical scat-
tering from the surface of the nucleus whether deformed or undeformed, on Equation (20), we have  
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                              (22) 
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With 0l =  (un deformed nucleus)  
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where 0r  is the radius of un deformed nucleus. For 0l = , 0
00

0

sin
1lim r

r
r→ = . The 00lim r →  exists for unde-

formed nucleus.  
With 0l ≠ , i.e., 1, 2,3,l =    

1 π
1 2 2π, ,
2l l

l
mEkr l K r

k

 +    = + = = 
  

                          (26) 

where rl = radius of the screened nuclear surface. 

2 3 0
3π 5π 7π π, ;
2 2 2 2lr r r r

k k k k
= = = =， ，  

For 0l ≠ , Equation (23) will correspond to scattering from screened nuclear surface Potential barrier. 

2.4. Case-IV: Calculations of Scattering Cross-Sections with Diverse Wave Vectors and  
Phase Shifts Both for Ruptured and Unruptured Nucleus 

The diverse nuclear quantum mechanical scattering cross-sections for each of the described above cases can be 
determined by using a generally accepted universal formula available in reference books [3]-[5] 

( ) 2
nucl.scattering 2

0

4π 2 1 sin .l
l

l
k

σ δ
∞

=

= +∑                              (27) 

3. Conclusion 
We infer the following conclusions from this study: Quantum theory of Rutherford Scattering is established. 
Born approximations for coulombic fields inside the nucleus of the atom are determined for reflection and 
transmission with corresponding wave vectors, phase shifts and eigenfunctions. Bulk Quantum mechanical 
tunneling and scattering with born approximations both for ruptured and unruptured nucleus of the atom are de-
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ciphered with corresponding wave vectors, phase shifts and eigenfunctions. Surface quantum mechanical tunne-
ling and scattering with born approximations for ruptured and unruptured nucleus of the atom are studied with 
corresponding phase shifts and eigenfunctions. Diverse Quantum mechanical scattering cross-sections with cor-
responding phase shifts and eigenfunctions for bulk and surface behavior of layers inside the nucleus of the atom 
will help to resolve and understand the exchange fields inside the nucleus of the atom. 
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