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Abstract

In this paper, we consider a parameterized singularly perturbed second order quasilinear boun-
dary value problem. Asymptotic estimates for the solution and its first and second derivatives
have been established. The theoretical estimates have been justified by concrete example.
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1. Introduction

In this paper, we are going to obtain the asymptotic bounds for the following parameterized singularly perturbed
boundary value problem (BVP):

Lu=eu"-a(t)u’ - f(t,u,4)=0, 0<t<T, (1.1
u(0) = s, u’(O):,ul,u’(T)z% (12)

where 0<e& <1 is the perturbation parameter, g (i =01 2) are given constants and O< o < a(t) <a’ isa
sufficiently smooth function in [0,T]. Further, the function f(t,u,4) is assumed to be sufficiently
continuously differentiable for our purpose function in {0 <t<T,—-o<u, A< oo} and

Ogist, 0<mlsaf <M, <o, (1.3)
ou oA
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By a solution of (1.1), (1.2), we mean pair {u(t),A}eC*[0,T]xR for which problem (1.1), (1.2) is satisfied.

An overview of some existence and uniqueness results and applications of parameterized equations may be
obtained, for example, in [1]-[10]. In [11]-[14] have also been considered some approxi-mating aspects of this
kind of problems. The qualitative analysis of singular perturbation situations has always been far from trivial
because of the boundary layer behavior of the solution. In singular perturbation cases, problems depend on a
small parameter ¢ in such a way that the solution exhibits a multiscale character, i.e., there are thin transition
layers where the solution varies rapidly while away from layers it behaves regularly and varies slowly [15]-[18].
In this note, we establish the boundary layer behaviour for u(t) of the solution of (1.1)-(1.2) and its first and
second derivatives. Example that agrees with the analytical results is given.

2. The Continuous Problem

Lemma 2.1. Let a(t)>a >0,b(t)>0 and ®(t) be the continuous functions on [0,T]. Then, the solution
of the boundary-value problem

Lvi=ev'—a(t)V' —b(t)v=0(t),0<t<T, (2.0)
v(0) =, V'(T) =22, 2.2)
&
satisfies the inequality
|V(t)| < |t + || @ (t) + a7t ,0<t<T, (2.3)

where
—a(T-t) -aT
w(t):al(e ¢ _g¢ j

Proof. Under the above conditions, the operatér Lv admits the folloving maximum principle:
Suppose v(t)eC?*[0,T] be any function satisfiying Lv<0 (0<t<T), v(0)>0 and Vv'(T)>0. Then,

v(t)=0 forall te[0,T].
Now, for the barrier fonction

W = 5v(0)+ 1] # e o (1) o]
taking also into consideration that, «(t) is a solution of the problem
£ — e =0, 0(0) =0, w’(T):%,
it follows that,
LY, =+0(t)- (t)|ﬂ0|+|ﬂ2|(“ a(t))e' (1)
~|ue[b(t)@(t)-a(t)a” [o], ~b(t)a"t|@],
<20(t)-a(t)a” ||<D|| <0,
W £(0) =%ty +[1| 2 0
W +(T) =i%+;|,u2|20

therefore ¥ +(t)>0, which immediayely leads to (2.3).
Remark 1. The inequality (2.3) yields.

O]+ a0 (1) +a T o . @4

Theorem 2.1. For p =1—a'm;*M;M, T and under conditions (1.3), the solution {u(t), 4} of the problem
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(1.1), (1.2), satisfies,

Al<¢ (2.5)
0
luj<c, (2.6)
where
_ 1 |;u1|a* |/42| -1\ 1 T IE
0 e e M el TR |
Co = |tto|+ @ 1|+ @ T |F||, +a"e;M,T, F(t)=f(t,0,0)
and
ot
\u“)(t)\sc(uikee} k=1,2,te[0,T], 2.7)
&

provided aeC'[0,T] and ‘% <C for te[0,T] and |u[<c, ||<c,.

Proof. We rewrite Equation (1.1) in form
eu"—a(t)u’'—b(t)u—Ac(t)-F(t)=0, te[0,T], (2.8)
where, b(t) :%(t,ﬁ,i), c(t) =%(t,a,i), d=yu, 1=74 (0<y<1) intermediate values.

From (2.8) for the first derivate, we have

Ta(t)dt AT Liraa 1T Liraa
w(t)=t2e ——_[b dr—;!c(r)e‘ dr—;!F(r)e‘ dz,  (2.9)

from which, after using the initial condition u’(0) = 4 , it follows that,

JET, Y
&e gjoa()

A= —H

+
1,7 2 (Ta(t)at 1.7
Ej'oc(r)e R P ;joc

1 L Ta(t)at 1 (2.10)
T Ly ;
he@u(r)e R
A T
[T e(r)e " Mar —j L
&
Applying the mean value theorem for integrals, we deduce that,
EIT F(r)e ifga(t)dt ”F”w J-T *%Iga(t)dt
g0 T <m|F| (2.11)
1.7 710 i
NICGLE m[[Te R,
and
L To(eu(r)e o ;e&
8 <MW, (2.12)

[Te —lgat

1ot o el
;IO c(r)e «” ‘dr m,

@
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Also, for first and second terms in right side of (2.10) for £ <1 values, we have

M e% [Tat)et

A 4] L~

1 LiTa()at " 1 - LiTa)at ) aT ot . (213)
S S j aT.
—j;c(r)e Aty —I;c(r)e Aoty ml(a*)l(l—e B J mlt{ef —1}
& &
It then follows from (2.11)-(2.13),
ax . ;
s - (1_|51L*T)+m (L‘g'_l)mllml ul, +m|F, (2.14)
1 1
Further from (2.4) by taking @ (t)=Ac(t)+ F(t)we get
ull, <|uo|+a |+ a T|F|, +a*MT|4]. (2.15)

The inequlities (2.14), (2.15) immediately leads to (2.5), (2.6). After taking into consideration the uniformly
boundneesin & of u(t) and A, it then follows from (2.9) that,

—lTa d T —1’a d T 71% d T —1’a d

|u’(t)|sMe loetxt +£c1M1*J'e e tdr+£coM1J'e e tdr+l||F||mJ'e ey

£ £ t £ " £ 1

which proves (2.7) for k =1. To obtain (2.7) for k =2, first from (1.1) we have

|u”(T)|£ a(T)u'(T)+:(T,u(T),/1)

from which after taking into consideration here u'(T)= #2 and (2.5) we obtain
&

|u"(T)|s:—2. (2.16)
Next, differentiation (1.1) gives
eV —a(t)v'-Q(t)=0, 0<t<T, (2.17)
V(T)=0(e?) (2.18)
with
v(t)=u'(t),
Q(t)= a’(t)v(t)+—f(t,u(t),ﬂ)+%(t,u(t),/I),

Consequently, from (2.17), (2.18) we have

a(T-t) t

’ C 7(7 1 a(T-t) I a(T-t) 1 7a(T—t)
|v(t)|s?e E +;J':|Q(t)|e Co=e +C(l+;)fe B

which proves (2.7) for k=2. O
Example. Consider the following parameterized singular perturbation problem:

eu"—a(t)u’+ A+tanh(1-t+ 1) = f(t), 0<t<l,
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with

and

2
26+2+¢|1+e ¢
2 | e+l+e e _

M=o 2 24 2
gles -1 l-ec«

f (t) selected so that the solution is

2

u(t)=n+r7es + e, 1=05

2+¢

where,

2
e+(l+e)e” l+e+¢

§ :_(2+5)£1—e§] " (2+g)[1—e§].

First and second derivatives have the form

k 2
2 -S(1-t) 1
u(t)=|— es "+ e, k=12
() (sj V2 2+¢

Therefore, we observe here the accordance in our theoretical results described above.
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