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Abstract 
In this paper we present the notion of the space of bounded p(⋅)-variation in the sense of Wien-
er-Korenblum with variable exponent. We prove some properties of this space and we show that 
the composition operator H, associated with h →:  , maps the ( ) [ ]( )W

pBV a b⋅ ,κ  into itself, if and 

only if h is locally Lipschitz. Also, we prove that if the composition operator generated by  
[ ]h a b × →: ,    maps this space into itself and is uniformly bounded, then the regularization of h 

is affine in the second variable, i.e. satisfies the Matkowski’s weak condition. 
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1. Introduction 
A number of generalizations and extensions of variation of a function have been given in many directions since 
Camile Jordan in 1881 gave a first notion of bounded variation in the paper [1] devoted to the convergence of 
Fourier series. Consequently, the study of notions of generalized bounded variation forms an important direction 
in the field of mathematical analysis. Two well-known generalizations are the functions of bounded p-variation 
and the functions of bounded ϕ-variation, due to N. Wiener [2] and L. C. Young [3] respectively. In 1924 N. 
Wiener [2] generalized the Jordan notion and introduced the notion of p-variation (variation in the sense of 
Wiener). Later, in 1937, L. Young [3] introduced the notion of ϕ-variation of a function. The p-variation of a 
function f is the supremum of the sums of the pth powers of absolute increments of f over no overlapping inter-
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vals. Wiener mainly focused on the case 2p = , the 2-variation. For p-variations with 2p ≠ , the first major 
work was done by Young [3], partly with Love [4]. After a long hiatus following Young’s work, pth-variations 
were reconsidered in a probabilistic context by R. Dudley [5] [6], in 1994 and 1997, respectively. Many basic 
properties of the variation in the sense of Wiener and a number of important applications of the concept can be 
found in [7] [8]. Also, the paper by V. V. Chistyakov and O. E. Galkin [9], in 1998, is very important in the 
context of p-variation. They study properties of maps of bounded p-variation ( )1p >  in the sense of Wiener, 
which are defined on a subset of the real line and take values in metric or normed spaces. 

In 1997 while studying Poisson integral representations of certain class of harmonic functions in the unit disc 
of the complex plan B. Korenblum [10] introduced the notion of bounded κ-variation and proved that a function 
f is of bounded κ-variation if ot can be written as the difference of two κ-decreasing functions. This concept dif-
fers from others due to the fact that it introduces a distortion function κ that measures intervals in the domain of 
the function and not in the range. In 1986, S. Ki Kim and J. Kim [11], gave the notion of the space of functions 
of κφ-bounded variation on [ ],a b , which is a combination of the notion of bounded φ-variation in the sense of 
Schramm and bounded κ-variation in the sense of Korenblum, and J. Park et al. [12] [13] proved some proper-
ties in this space. Considering ( ) p

n x xφ =  for 1 p< < ∞  and 1n ≥ , then it follows that this space generalized 
the space of functions of κp-bounded variation in the sense of Wiener-Korenblum. In 1990 S. Ki Kim and J. 
Yoon [14] showed the existence of the Riemann-Stieltjes integral of functions of bounded κ-variation and in 
2011 W. Aziz, J. Guerrero, J. L. Sánchez and M. Sanoja, in [15], showed that the space of bounded κ-variation 
satisfies the Matkowski’s weak condition. Also, in 2012, M. Castillo, M. Sanoja and I. Zea [16] presented the 
space of functions of bounded κ-variation in the sense of Riez-Korenblum, denoted by [ ]( ),pBV a bκ , which is 

a combination of the notions of bounded p-variation in the sense of Riesz ( )1 p< < ∞  and bounded κ-variation 
in the sense of Korenblum.  

Recently, there has been an increasing interest in the study of various mathematical problems with variable 
exponents. With the emergency of nonlinear problems in applied sciences, standard Lebesgue and Sobolev 
spaces demonstrated their limitations in applications. The class of nonlinear problems with exponent growth is a 
new research field and it reflects a new kind of physical phenomena. In 2000 the field began to expand even 
further. Motivated by problems in the study of electrorheological fluids, L. Diening [17] raised the question of 
when the Hardy-Littlewood maximal operator and other classical operators in harmonic analysis are bounded on 
the variable Lebesgue spaces. These and related problems are the subject of active research nowadays. These 
problems are interesting in applications (see [18]-[21]) and give rise to a revival of the interest in Lebesgue and 
Sobolev spaces with variable exponent, the origins of which can be traced back to the work of W. Orlicz in the 
1930’s [22]. In the 1950’s, this study was carried on by H. Nakano [23] [24] who made the first systematic study 
of spaces with variable exponent. Later, Polish and Czechoslovak mathematicians investigated the modular 
function spaces (see for example J. Musielak [25] [26], O. Kovacik and J. Rakosnik [27]). We refer to books [21] 
for the detailed information on the theoretical approach to the Lebesgue and Sobolev spaces with variable expo-
nents. In 2015, R. Castillo, N. Merentes and H. Rafeiro [28] studied a new space of functions of generalized 
bounded variation. There the authors introduced the notion of bounded variation in the Wiener sense with the 
exponent p(⋅)-variable. In the same year, O. Mejia, N. Merentes and J. L. Sánchez in [29], proved some proper-
ties in this space, for the composition operator and showed a structural theorem for mappings of bounded varia-
tion in the sense of Wiener with the exponent p(⋅)-variable. 

The main purpose of this paper is threefold: First, we provide extension of the space of generalized bounded 
variation present in [28] and [29] in the sense Wiener-Korenblum and we give a detailed description of the new 
class formed by the functions of bounded variation in the sense of Wiener-Korenblum with the exponent p(⋅)- 
variable. Second, we prove a necessary and sufficient condition for the acting of composition operator  
(Nemystskij) on the space ( ) [ ],W

pBV a bκ ⋅  and, third we show that any uniformly bounded composition operator 

that maps the space ( ) [ ],W
pBV a bκ ⋅  into itself necessarily satisfies the so called Matkowski’s weak condition. 

2. Preliminaries 
We use throughout this paper the following notation: we will denote by 
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( ) [ ]( ) ( ) ( ) ( )
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, , sup : , , ,
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p x
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f a b t s a b

t tk
b a

κω
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 − = ∈ −    −    

the diameter of the image [ ]( ),f a b  (or the oscillation of f on [ ],a b ) and by tsx  a number between [ ],t s . 
The class of bounded variation functions exhibit many interesting properties that it makes them a suitable 

class of functions in a variety of contexts with wide applications in pure and applied mathematics (see [8] and 
[30]). Since C. Jordan in 1881 (see [1]) gave the complete characterization of functions of bounded variation as 
a difference of two increasing functions, the notion of bounded variation functions has been generalized in dif-
ferent ways. 

Definition 2.1. Let [ ]: ,f a b →   be a function. For each partition 0 1: na t t t bπ = < < < =  of [ ],a b , 
we define  

[ ]( ) ( ) ( )1
1

; , : sup ,
n

i i
i

V f a b f t f t
π

−
=

= −∑                             (1) 

where the supremum is taken over all partitions π  of the interval [ ],a b . If [ ]( ); ,V f a b < ∞ , we say that f has 
bounded variation. The collection of all functions of bounded variation on [ ],a b  is denoted by [ ],BV a b .  

A generalization of this notion was presented by N. Wiener (see [2]) who introduced the notion of p-variation 
as follows. 

Definition 2.2. Given a real number 1p ≥ , a partition 0 1: na t t t bπ = < < < =  of [ ],a b , and a function 
[ ]: ,f a b →  . The nonnegative real number  

( ) [ ]( ) ( ) ( )1
1

; , : sup
n p

W W
p p j j

j
V f V f a b f t f t

π
−

=

 = = − ∑                       (2) 

is called the Wiener variation (or p-variation in Wiener’s sense) of f on [ ],a b  where the supremum is taken 
over all partitions π . 

In case that [ ]( ); ,W
pV f a b < ∞ , we say that f has bounded Wiener variation (or bounded p-variation in Wien-

er’s sense) on [ ],a b . The symbol [ ]( ),pWBV a b  will denote the space of functions of bounded p-variation in  

Wiener’s sense on [ ],a b .  
Other generalized version was given by B. Korenblum in 1975 [10]. He considered a new kind of variation, 

called κ-variation, and introduced a function κ for distorting the expression 1j jt t −−  in the partition if self, 
rather than the expression ( ) ( )1j jf t f t −−  in the range. On advantage of this alternative approach is that a 
function of bounded κ-variation may be decomposed into the difference of two simpler functions called 
κ-decreasing functions. 

Definition 2.3. A function [ ] [ ]: 0,1 0,1κ →  is called a distortion function (κ-function) if κ satisfies the fol-
lowing properties: 

1) κ is continuous with ( )0 0κ =  and ( )1 1κ = ;  
2) κ is concave and increasing;  

3) 
( )

0
lim

y

t
t

κ
+→

= ∞ .  

B. Korenblum (see [10]), introduced the definition of bounded κ-variation as follows. 
Definition 2.4. Let κ be a distortion function, f a real function [ ]: ,f a b →  , and 0 1: na t t t bπ = < < < =  

a partition of the interval [ ],a b . Let one consider 

( )
( ) ( )

( ) [ ]( ) ( )

1
1

1

1

, : ,

; , : sup , ,

n

i i
i

n
i i

i

f t f t
f

t t
b a

V f V f a b f
π

κ π
κ

κ κ κ π

−
=

−

=

−
=

− 
 − 

= =

∑
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where the supremum is taken over all partitions π  of the interval [ ],a b . In the case [ ]( ); ,V f a bκ < ∞  one 
says that f has bounded κ-variation on [ ],a b  and one will denote by [ ],BV a bκ  the space of functions of 
bounded κ-variation on [ ],a b .  

Some properties of κ-function cab be found in [12] [14] [16].  
In 2013 R. Castillo, N. Merentes and H. Rafeiro [28] introduce the notation of bounded variation space in the 

Wiener sense with variable exponent on [ ],a b  and study some of its basic properties. 
Definition 2.5. Given a function [ ] ( ): , 1,p a b → ∞ , a partition 0 1: na t t t bπ = < < < =  of the interval 

[ ],a b , and a function [ ]: ,f a b →  . The nonnegative real number  

( ) ( ) ( ) [ ]( ) ( ) ( ) ( )1

*
1

1
, , : sup

jn p x
W W

j jp p
j

V f V f a b f t f t
π

−

−⋅ ⋅
=

 = = − ∑                     (4) 

is called Wiener variation with variable exponent (or p(⋅)-variation in Wiener’s sense) of f on [ ],a b  where *π  
is a tagged partition of the interval [ ],a b , i.e., a partition of the interval [ ],a b  together with a finite sequence 
of numbers 0 1, , nx x −  subject to the conditions that for each i, 1i i it x t +≤ ≤ . 

In case that ( ) [ ]( ); ,W
pV f a b⋅ < ∞ , we say that f has bounded Wiener variation with variable exponent (or 

bounded p(⋅)-variation in Wiener’s sense) on [ ],a b . The symbol ( ) [ ]( ),pWBV a b⋅  will denote the space of 

functions of bounded p(⋅)-variation in Wiener’s sense with variable exponent on [ ],a b .  
Remark 2.6. Given a function [ ] ( ): , 1,p a b → ∞  
1) If ( ) 1p x =  for all x in [ ],a b , then ( ) [ ]( ) [ ]( ), ,pWBV a b BV a b⋅ = .  

2) If ( )p x p=  for all x in [ ],a b  and 1 p< < ∞ , then ( ) [ ]( ) [ ]( ), ,ppWBV a b WBV a b⋅ = .  

In [29], O. Mejia, N. Merentes and J. L. Sánchez proved some properties in this space, for the composition 
operator and show a structural theorem for mappings of bounded variation in the sense of Wiener with the ex-
ponent p(⋅)-variable. 

Now, we generalized the notion of bounded variation space in the sense of Wiener-Korenblum with variable 
exponent on [ ],a b . For this, we defined bellow the bounded p(⋅)-variation in the sense of Wiener-Korenblum 
with exponent variable. 

Definition 2.7. Given a function [ ] ( ): , 1,p a b → ∞ , a partition 0 1: na t t t bπ = < < < =  of the interval 

[ ],a b , κ  be a distortion function and a function [ ]: ,f a b →  . The nonnegative real number  

( ) ( ) ( ) [ ]( )
( ) ( ) ( )1

*

1
1

1

1

, , : sup .

jn p x

j j
jW W

p p n
j j

j

f t f t
V f V f a b

t t
b a

π
κ κ

κ

−

−
=

⋅ ⋅
−

=

 − 
= =

− 
 − 

∑

∑
                  (5) 

is called Wiener-Korenblum variation with variable exponent (or p(⋅)-variation in the sense of Wiener-Korenblum) 
of f on [ ],a b  where *π  is a tagged partition of the interval [ ],a b , i.e., a partition of the interval [ ],a b  to-
gether with a finite sequence of numbers 0 1, , nx x −  subject to the conditions that for each i, 1i i it x t +≤ ≤ . 

In case that ( ) [ ]( ); ,W
pV f a bκ ⋅ < ∞ , we say that f has bounded Wiener-Korenblum variation with variable ex-

ponent (or bounded p(⋅)-variation in the sense of Wiener-Korenblum) on [ ],a b . The symbol ( ) [ ]( ),W
pBV a bκ ⋅   

will denote the space of functions of bounded p(⋅)-variation in the sense Wiener-Korenblum with variable expo-
nent on [ ],a b .  

Remark 2.8. Given a function [ ] ( ): , 1,p a b → ∞    
1) If ( ) 1p x =  for all x  in [ ],a b , then ( ) [ ]( ) [ ]( ), ,W

pBV a b BV a bκ κ⋅ = .  

2) If ( )p x p=  for all x  in [ ],a b  and 1 p< < ∞ , then ( ) [ ]( ) [ ]( ), ,W
ppBV a b BV a bκ κ⋅ = .  

Example 2.9. Let [ ]: 0,1u →   be a function such that [ ]( )1 0,1u C∈  and ( )u x L′ <  for [ ]0,1x∈ . 
Then, from mean value theorem, we have  
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Therefore, ( ) [ ]( )0,1W
pu BVκ ⋅∈ .  

3. Properties of the Space 

Theorem 3.1. Let [ ] ( ): , 1,p a b → ∞  and κ  be a distortion function then ( ) [ ]( ) ( ) [ ]( ), ,W
p pWBV a b BV a bκ⋅ ⋅⊂ .  

Proof. Let [ ] ( ): , 1,p a b → ∞ , ( ) [ ]( ),pf WBV a b⋅∈  and *
0 1: na t t t bπ = < < < =  be a partition of the in-

terval [ ],a b . Then, by the κ  subadditivity, we have:  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1 1 1

1
1 1 1

.j
n n np x j j j jW W W

j j p p p
j i i

t t t t
f t f t V f V f V f

b a b a
κ κ− − −

− ⋅ ⋅ ⋅
= = =

− −   
− ≤ = ≤   − −   

∑ ∑ ∑  

Thus, 

( ) ( ) ( )

( ) ( )

1

1
1

1

1

.

j
n p x

j j
j W

pn
j j

j

f t f t
V f

t t
b a

κ

−

−
=

⋅
−

=

−
≤

− 
 − 

∑

∑
                            (6) 

Then considering the supremum of the left side we get 

( ) ( ) ( ) ( ) ,W W
p pV f V fκ ⋅ ⋅≤                                   (7) 

therefore, ( ) [ ]( ),pf WBV a b⋅∈  and ( ) [ ]( ) ( ) [ ]( ), ,W
p pWBV a b BV a bκ⋅ ⋅⊂ .                                

Remark 3.2. From this result we deduce that every function of bounded p(⋅)-variation in of Wiener’s sense 
with variable exponent on the interval [ ],a b  is a bounded p(⋅)-variation in the Wiener-Korenblum sense on the 
interval [ ],a b .  

Now we will see that the class of function of bounded p(⋅)-variation in the sense of Wiener-Korenblum has a 
structure of vector space. 

Theorem 3.3. Let [ ] ( ): , 1,p a b → ∞ , then the set ( )
W
pBVκ ⋅  is a vector space.  

Proof. Let ( ) [ ]( ), ,W
pf g BV a bκ ⋅∈ , then for each partition 0 1: na t t t bπ = < < < =  of [ ],a b , and *π  is a 

tagged partition of the interval [ ],a b , we obtain: 

( )( ) ( )( ) ( )
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1 1
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1 11
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j j j j
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 − 
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− 
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    − + −    ≤  − 
  −   
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Now adding from 1j =  to j n=  we get 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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Since p(⋅) is bounded, then there is a 0M >  such that ( )1 12 jp x M− −
≤  for all jt , and we obtain 

( ) ( ) ( ) ( ) ( )
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In other word, if ( ), W
pf g BVκ ⋅∈ , then the function f g+  is of bounded p(⋅)-variation in the sense of Wien-

er-Korenblum with variable exponent on [ ],a b  and 

( ) [ ]( ) ( ) [ ]( ) ( ) [ ]( )( ), , , , , , .W W W
p p pV f g a b M V f a b V g a bκ κ κ⋅ ⋅ ⋅+ ≤ +

 
On the other hand, since p(⋅) is bounded, there exists 0L >  such that 
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∑

 

therefore, ( ) [ ]( ),W
pf BV a bα κ ⋅∈ . So, ( ) [ ]( ),W

pBV a bκ ⋅  is a vector space.                               

Proposition 3.4. Given a function [ ] ( ): , 1,p a b → ∞ , the variation ( ) [ ]( ); ,W
pV f a bκ ⋅  is convex.  

Proof. Let ( ) [ ]( ), ,W
pf g BV a bκ ⋅∈  and α ∈ . By Theorem 3.3 ( ) [ ]( ),W

pf kBV a bα ⋅∈ . Since for 1s >  the 

function 0, st t t≥ →  is convex, then we get  
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Then,  
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W W
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Definition 3.5. (Norm in ( ) [ ]( ),W

pBV a bκ ⋅ ) 

Let [ ]: ,f a b →   be a function that belongs to ( ) [ ]( ),W
pBV a bκ ⋅ . Then  

( ) ( ) ( ) ( ) ( ) [ ]( ): , , ,W W
p ppf f a f f BV a bκ

κ
µ κ⋅ ⋅⋅

= + ∈                        (8) 

where ( ) ( ) ( )0: inf 0 : 1W
p p

ff Vκ
λµ λ κ

λ>⋅ ⋅

  = > ≤  
  

.  

Theorem 3.6. ( ) [ ]( ) ( )( ), , WW
p pBV a b

κ
κ ⋅ ⋅

⋅  is a normed space.  

Proof. Let ( ) [ ]( ), ,W
pf g BV a bκ ⋅∈ , α ∈ . Then, we have that: 

a) ( ) 0W
pκ ⋅

⋅ ≥  since ( ) 0f a ≥  and ( ) ( ) 0p fµ ⋅ ≥ .  
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0

0

0

inf 0 : 1

inf 0 : 1

inf 0 : 1

.

W W
pp

W
p

W
p

W
p p

f
f f a V

ff a V

ff a V

f a f f

κ λ

λ

µ

κ

α
α α λ κ

λ

λα α κ
λα
α

α α µ κ
µ

α µ α

⋅⋅ >

⋅>

⋅>

⋅ ⋅

   = + > ≤  
   

  
    = + > ≤       
  

= + > ≤  
  

 = + = 

 

Therefore, ( ) ( )
W W

p pf f
κ κ

α α
⋅ ⋅
= .  
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c) Fix 
( )

W
f pf

κ
λ

⋅
>  and 

( )
W

g pg
κ

λ
⋅

> ; then ( ) 1W
p

f

fVκ
λ⋅

 
≤  

 
 and ( ) 1W

p
g

gVκ
λ⋅

 
≤  

 
. Now let f gλ λ λ= + . 

Then by convexity of ( ) [ ]( ); ,W
pV f a bκ ⋅   

( ) [ ] ( ) [ ]

( ) [ ] ( ) [ ]

; , ; ,

; , ; , 1.

f gW W
p p

f g

f gW W
p p

f g

f g f gV a b V a b

f gV a b V a b

λ λ
κ κ

λ λ λ λ λ

λ λ
κ κ

λ λ λ λ

⋅ ⋅

⋅ ⋅

 +  = +       
   

≤ + ≤      
   

 

Hence  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) .

W
pp

p p

W W
p p

f g f g a f g

f a g a f g

f g

κ

κ κ

µ

µ µ

⋅⋅

⋅ ⋅

⋅ ⋅

+ = + + +

≤ + + +

≤ +
 

Thus, 
( ) ( ) ( ) .

W W W
p p pf g f g

κ κ κ⋅ ⋅ ⋅
+ ≤ +   

d) Let us now prove that 
( ) 0W

pf
κ ⋅

=  if and only if 0f = . If 0f ≡ , then ( ) 0 1W
p

fVκ
λ⋅

  = ≤ 
 

 for all 0λ > , 

and so 
( ) 0W

pf
κ ⋅

= . Conversely, suppose that 
( ) 0W

pf
κ ⋅

= , i.e.,  

( ) ( ) ( ) 0pf a fµ ⋅+ =  

then ( ) 0f a =  and ( ) ( ) ( )0inf 0 : 1 0W
p p

ff Vλµ λ κ
λ>⋅ ⋅

  = > ≤ =  
  

, we get  

( ) 0,W
p

fVκ
λ⋅

  = 
 

 

i.e.,  

( ) ( ) ( )1

1

1

1

1

0,

jp x
n j j

j

n
j j

j

f t f t

t t
b a

λ

κ

−

−

=

−

=

 −
 
   =

− 
 − 

∑

∑
 

without loss of generality, considering the partition 1 2 3: a t t x t bπ = < = < =  we get  

( ) ( ) ( ) ( ) ( ) ( )

0,

p x p b
f x f a f b f x

x a b x
b a b a

λ λ

κ κ

   − −
      
   + =

− −   
   − −     

then 

( ) ( ) ( ) ( ) ( ) ( )

0 and 0,

p x p b
f x f a f b f x

x a b x
b a b a

λ λ

κ κ

   − −
      
   = =

− −   
   − −     

we get  
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( ) ( ) ( ) ( ) ( ) ( )
0 and 0.

p x p b
f x f a f b f x   − = − =     

Hence, ( ) ( ) ( )f x f a f b= =  for all [ ],x a b∈  and ( ) 0f a = , therefore 0f = .                     
In the following, we show that ( ) [ ]( ),W

pBV a bκ ⋅  endowed with the norm 
( )

W
pκ ⋅

⋅  is a Banach space. 

Theorem 3.7. Let [ ] ( ): , 1,p a b → ∞  be a function, then ( ) [ ]( ) ( )( ), , WW
p pBV a b

κ
κ ⋅ ⋅

⋅  is a Banach space.  

Proof. Let { }n n
f

∈
 be a Cauchy sequence in ( ) [ ]( ) ( )( ), , WW

p pBV a b
κ

κ ⋅ ⋅
⋅ , then given 0ε > , there is 0N >  

such that for ,n m N≥  we have  

( ) , , ,W
n m pf f n m N

κ
ε

⋅
− < ≥  

i.e.  

( ) ( ) ( ) ( ) , , .n m n mpf a f a f f n m Nµ ε⋅− + − < ≥
 

Then  

( ) ( ) ( ) ( )and , , .n m n mpf a f a f f n m Nε µ ε⋅− < − < ≥
 

Thus, for all [ ], ,t s a b∈  and 0ε > , we have that  

( ) [ ]; , 1W n m
p

f fV a bκ
ε⋅

−  ≤ 
   

then  

( ) ( ) ( ) ( ) ( )

( ) [ ]; , 1,

tsp x

n m n m

W n m
p

f f t f f s

f fV a b
t s
b a

ε
κ

εκ
⋅

 − − −
   −   ≤ ≤ −   

 −   
therefore  

( ) ( ) ( ) ( ) ( ) ( ) ,ts ts
p x p x

n m n m
t sf f t f f s
b a

ε κ −  − − − ≤    −   
by properties of function ( )log t , we get 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( )

log

log log

log log

log log

log

ts n m n m

ts

ts ts

ts

ts

p x f f t f f s

t sp x
b a

t sp x p x
b a

t sp x
b a

t sp x
b a

ε κ

ε κ

ε κ

εκ

 − − − 
 −  ≤ +   −  

 −  ≤ +   −  
  −  ≤ +   −   

 −  =   −    
then  

( )( ) ( )( )log log ,n m n m
t sf f t f f s
b a

εκ −   − − − ≤     −  
 

hence  
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( )( ) ( )( ) .n m n m
t sf f t f f s
b a

εκ − − − − ≤  − 
 

In consequence, the sequence { } 1n n
f

≥
, is a uniformly sequence of Cauchy, on the interval [ ],a b . Since   

is complete, there exists a function f defined on [ ],a b  such that  

( ) ( ) [ ]lim , , .nn
f t f t t a b

→∞
= ∈  

We will show that nf  converge on the norm 
( )

W
pκ ⋅

⋅ . 

Since the { } 1n n
f

≥
 is a Cauchy sequence there is a 0N >  such that  

( ) , , .W
n m pf f n m N

κ
ε

⋅
− < ≥

 

From the fact that { } 1n n
f

≥
 converge uniformly to the function f on the interval [ ],a b , we get  

( ) ( )

( )

lim

lim , .

WW
n n mp m p

W
n m pm

f f f f

f f n N

κ κ

κ
ε

⋅ →∞ ⋅

⋅→∞

− = −

= − < ≥
 

Therefore, the sequence { } 1n n
f

≥
 converge to the function f on the norm 

( )
W

pκ ⋅
⋅ . 

Thus ( ) [ ]( ) ( )( ), , WW
p pBV a b

κ
κ ⋅ ⋅

⋅  is a Banach space.                                               

The following properties of elements of ( ) [ ],W
pBV a bκ ⋅  allow us to get characterizations of them. 

Lemma 3.8. (General properties of the p(⋅)-variation) Let [ ]: ,f a b →   be a arbitrary map and κ  be a 
distortion function. We have   

(P1) Minimality: if [ ], ,t s a b∈ , then 

( ) ( ) ( )
( ) [ ]( )
( ) [ ]( )

, ,

, , .

ts

ts

p x
p x

p

f t f s f a b

V f a b

κω

κ ⋅

− ≤

≤
 

(P2) Change of variable: if [ ],c d ⊂   and [ ] [ ]: , ,c d a bϕ →  is a (not necessarily strictly) monotone func-

tion, then ( ) [ ]( ) ( ) [ ]( ), , , , .W W
p pV f c b V f c dκ ϕ κ ϕ⋅ ⋅=   

(P3) Regularity: ( ) [ ]( ) ( ) [ ]( ) [ ]{ }, , sup , , ; , , , .W W
p pV f a b V f s t s t a b a bκ κ⋅ ⋅= ∈ ≤   

Proof. (P1) Let [ ], , , ,a t s b a b∈ , a t s b≤ ≤ ≤ .  

( ) ( ) ( ) ( ) ( ) ( )

[ ] ( ) [ ]( )

( ) ( ) ( )

( ) [ ]( )

*

1

*

1
1

1

1

sup : , , , , ,

sup , , .

ts
ts

ts

j

p x
p x

p x

n p x

j j
j W

pn
j j

j

f t f s
f t f s t s a b a b f a b

t s
b a

f t f t
V f a b

t t
b a

π

π

κω
κ

κ
κ

−

−
=

⋅
−

=

 
 − − ≤ ∈ ≤ = −    −  

 − 
≤ =

− 
 − 

∑

∑
 

(P2) Let [ ],c d ⊂  , [ ] [ ]: , ,c d a bϕ →  a (not necessary strictly) monotone function, 0π  a tagged partition 

of the interval [ ],c d , { } 00

m
l j j

T τ π
=

= ∈  and { } 0

m
j j

T t
=

=  with ( )j jt ϕ τ= , then 
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( ) ( )
( )( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) [ ]( )( )

1 1

1 1
1 1

1 1

1 1

, sup sup

, , , .

j j

l

m mp x p x

j j j j
j jW

lp m mT Tj j j j

j j

W W
p p

f f f t f t
V f g T

t t t t
b a b a

V f T V f c d

ϕ τ ϕ τ
κ

κ κ

κ κ ϕ

− −

− −
= =

⋅
− −

= =

⋅ ⋅

   
− −   

   = =   − −            − −      

= ≤

∑ ∑

∑ ∑


 
On the other hand, if a partition { } 0

m
j j

T t
=

=  of [ ]( ),c bϕ  is such that 1j jt t− <  for 1, ,j m=  , then there 

exist [ ],j c dτ ∈  such that ( )j jt ϕ τ=  and again by the monotonicity of ϕ : 

( ) ( ) ( ) ( ) ( ) [ ]( ), , , , .W W W
lp p pV f T V f T V f c dκ κ ϕ κ ϕ⋅ ⋅ ⋅= ≤ 

 

(P3) By monotonocity of ( )
W
pVκ ⋅  we get 

( ) [ ]( ) ( ) [ ]( ) [ ]{ }, , sup , , : , , , .W
p pV f c b V f s t s t a b a bκ κ⋅ ⋅≥ ∈ ≤

 

On the other hand, for any number ( ) [ ]( ), ,W
pV f a bα κ ⋅<  there is a partition { } *

0

m
j j

T t π
=

= ∈ , 1j jt t +<  with 

( ) ( ),W
pV f Tκ α⋅ ≥ . We define π̂  a partition of the interval [ ]0 , mt t , then ˆT π∈  and  

( ) [ ]( ) ( ) [ ]( ) [ ]{ }, , sup , , , , , ,W W
p pV f a b V f s t s t a b a bκ κ⋅ ⋅≥ ∈ ≤ .                                           

In the next section we will be dealing with the composition operator (Nemitskij). 

4. Composition Operator between the Space ( ) [ ]( )W
pBV a bκ ⋅ ,  

In any field of nonlinear analysis composition operators (Nemytskij), the superposition operators generated by 
appropriate functions, play a crucial role in the theory of differential, integral and functional equations. Their 
analytic properties depend on the postulated properties of the defining function and on the function space in 
which they are considered. A rich source of related questions is the monograph by J. Appell and P. P. Zabrejko 
[31] and J. Appell, J. Banas, N. Merentes [8]. 

The composition operator problem refers to determining the conditions on a function :h →  , such that 
the composition operator, associated with the function h, maps a space   of functions [ ]: ,u a b →   into it-
self [32] [33]. There are several spaces where the composition operator problem has been resolved. In 1961, A. 
A. Babaev [34] showed that the composition H, associated with the function :h →  , maps the space 

[ ],Lip a b  of the Lipschitz functions into itself if and only if h is locally Lipschitz; in 1967, K. S. Mukhtarov [35] 
obtained the same result for the space [ ],Lip a b  of the Hölder functions of order α  ( )0 1α< < . 

The first work on the composition operator problem in the space of functions of bounded variation [ ],BV a b  

was made by M. Josephy in 1981, [36]. Other work of this type have been preformed over [ ],WBV a bϕ ,  

[ ],HBV a b , [ ],AC a b , [ ],RV a bϕ , [ ],pRV a b , [ ],BV a bφ , [ ],BV a bϕΛ , [ ],BV a bκ  and [ ],BV a bφκ  (see 
[8]). 

Now, we define the composition operator. Given a function :h →  , the composition operator H, asso-
ciated to a function f (autonomous case) maps each function [ ]: ,f a b →   into the composition function 

[ ]: ,Hf a b →  , given by  

( ) ( )( ) [ ]( ): , , .Hf t h f t t a b= ∈                               (9) 

More generally, given [ ]: ,f a b × →  , we consider the operator H, defined by  

( ) ( )( ) [ ]( ): , , , .Hf t h t f t t a b= ∈                             (10) 

This operator is also called superposition operator or susbtitution operator or Nemytskij operator. In what 
follows, will refer (9) as the autonomus case and to (10) as the non-autonomus case. 
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In order to obtain the main result of this section, we will use a function of the zig-zag type such as the em-
ployed by J. Appell et al. [8] [37] that the locally Lipschitz condition of the function h is a necessary and suffi- 
cient condition such that [ ]( ) ( ) [ ], ,W

pH Lip a b BV a bκ ⋅⊂  and that in this situation H is bounded. 

One of our main goals is to prove a result in the case when h is locally Lipschitz if and only if the composition 
operator maps the space of functions of bounded p(⋅)-variation into itself. 

The following lemma, established in [38], will be useful in the proof of our main Theorem (Theorem 4.2). 
Lemma 4.1. Let [ ]: ,u a b →  , a s t bη≤ < < ≤ , then  

( ) ( ) ( ) ( ) ( ) ( )
.

u t u s u u s u t u
t s s t

η η
η η

− − −
≤ +

− − −  
Theorem 4.2. Let H be a composition operator associated to :h →  . H maps the space ( ) ( )W

pBV fκ ⋅  
into itself if and only if h is locally Lipschitz.  

Proof. We may suppose without loss generality that [ ] [ ], 0,1a b = . First, let :u →   be locally Lipschitz 

on  , and let ( ) [ ]( )0,1W
pu BVκ ⋅∈ . Then ( ) [ ]( ); 0,1W

pV uκ λ⋅ < ∞  for some 0λ > . Considering the local Lipschitz 

condition  

( ) ( ) ( ) ( ), , ,h u h v k r u v u v u v− ≤ − ∈ ≤                        (11) 

for :r f
∞

= , for any partition 0 1: 0 1nt t tπ = < < < =  we obtain the estimate 

( ) ( )( ) ( )( )
( )

( )

( ) ( ) ( ) ( )
( )

( )

( ) ( ) ( )

( )
( ) [ ]( )

1

1

1

1
1

1
1

1
1

1
1

1
1

1
1

, 0,1 .

j

j

j

p t
n

j j
j

n

j j
j

p t
n

j j
j

n

j j
j

n p t

j j
j W

pn

j j
j

h u t h u t
k f

t t

k f u t u t
k f

t t

u t u t
V u

t t

λ

κ

λ

κ

λ
κ λ

κ

−

−

−

−
= ∞

−
=

−∞
= ∞

−
=

−
=

⋅

−
=

 
 −
  

−

 
 −
  ≤

−

 − 
= ≤ < ∞

−

∑

∑

∑

∑

∑

∑

 

This shows that for 
( )

:
k f

λµ
∞

= , ( ) [ ]( ), 0,1W
pV Huκ µ⋅ < ∞ , and hence ( ) [ ]( )0,1W

pHu BVκ ⋅∈  as claimed. 

The proof of the only if direction will be by contradiction, that is we assume [ ]( ) ( ) [ ]( )0,1 0,1W
pH Lip BVκ ⋅⊂  

and h is not locally Lipschitz. Since the identity function [ ] [ ]: 0,1 0,1dI →  belong to [ ]0,1Lip , then 

[ ]0,1dh I BVφκ∈  and therefore h is bounded in the interval [ ]0,1 . Without loss of generality we may assume 
that  

[ ]0,1
1| .
4

h
∞
≤                                     (12) 

Since h is not locally Lipschitz in   there is a closed interval I such that h does not satisfy any Lipschitz 
condition. In order to simplify the proof we can assume that [ ]0,1 .I =  In this way for any increasing sequence 

of positive real numbers { } 1n n
k

≥
 that converge to infinite, that we will define later, we can choose sequences 
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{ } 1n n
a

≥
, { } 1n n

b
≥

, such that 

( ) ( ) ( ), .n n n n nh b h a k b a n− > − ∈                           (13) 

In addition choose ,n na b  such that 

( ), .n na b n< ∈  

Considering subsequence if it necessary, we can assume without loss of generality that the sequence { } 1n n
a

≥
 

is monotone increasing. 
Since [ ]0,1  is compact, from inequality (13) we have that exist subsequences of { } 1n n

a
≥

 and { } 1n n
b

≥
 that 

we will denote in the same way, and that converge to [ ]0,1a∞ ∈ . 
Since the sequence { } 1n n

a
≥

 is a Cauchy sequence we can assume (taking subsequence if it is necessary) that  

( )1 , .m n
n

a a m n
k

− < >                                 (14) 

Again considering subsequences if needed and using the properties of the function κ  we can assume that  

( ) ( ){ } ( )1max , , , .n n m n
n

b a a a n m n
k

κ κ− − < ∈ ≥                     (15) 

Consider the new sequence { } 1n n
m

≥
 defined by  

( ) ( )1: , .n
n n n

m n
k b a

= ∈
−

  

From of inequalities (12) and (13) it follows that 2nm > , therefore  

[ ] ( ), .
2

n
n n

m
m m n< ≤ ∈  

Consider the sequence defined recursively { } 1n n
t

≥
 by  

[ ]( ) ( )1 1 1: 0, : 2 , .n n n n n n nt t t a a m b a n+ += = + − + − ∈  
This sequence is strictly increasing and from the relations (14) and (15), we get 

( ) ( ) [ ]( )1 1
1 1 1

1: 2 3 .n n n n n n n n
n n n n

t t t t a a m b a
k

∞ ∞ ∞

∞ + +
= = =

→ = − = − + − ≤∑ ∑ ∑ ∑
 

Then to ensure that [ ]0,1t∞ ∈ , is sufficient to suppose that 
1

1 1
3n nk

∞

=

≤∑ . 

We define the continuous zig-zag function [ ]: 0,1u →  , as shown below 

( )

( ) [ ]
( ) ( ) [ ]

, 2 , 0, , ,

, 2 1 , 0, , 1,
:

, 1
affine, othercase.

n n n n n

n n n n n

a t t i b a i m

b t t i b a i mu t
a t t∞ ∞

 = + − =


= + + − = −= 
≤ ≤








 
Put 

( ) [ ], : , , 0, , 2 .n i n n n nt t i b a n i m= + − ∈ =   
We can write each interval [ ]1, ,n n nI t t n+= ∈ , as the union of the family of non-overlapping intervals 

[ ], . , 1 1,2 ,2: , , 0, , 1, : , .n i n i n i n nn m n mn n
I t t i m I t t+ +      

  = = − =    


 
And function u is defined on [ ], , 0, , 2 ,n i nI i m=   as follows 
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( ) ( )( ) ( ),22 , ,n n n n n iu t t t i b a a t I= − + − + ∈                         (16) 

( ) ( )( ) ( ),2 12 1 , ,n n n n n iu t t t i b a b t I += − + + − + ∈                        (17) 

and  

( ) [ ]( )1 ,2, .n n n mu t t t a t I+= − + ∈                               (18) 

In all these situations the slopes of these segments of lines is 1. 
Hence, we have for n∈ , the absolute value of the slope of the line segments in these ranges are bounded 

by 1, as shown below 

( )
( )12 2 1,n nn n

n n n
n n

b a
k b a

b aκ
− −

−

−
≤ − ≤

−
 

( )1 1

1

2 1.n n n

n n n

a a
t a a

− + +

+

−
≤

+ −
 

We will show that [ ]0,1]u Lip∈ . 
Let 0 1s t≤ < ≤ , then there are the following possibilities for the location of s and t on [ ]0,1 . 
Case 1: If ( ), ,ns t I n∈ ∈  are in the same interval [ ], , 0, , 2 .n i nI i m=   

From relations (16), (17) and (18) follows 
( ) ( )

1
u t u s

t s
−

=
−

. 

Case 2: If ( ), ,ns t I n∈ ∈  are in two different intervals [ ], , 0, , 2 .n i nI i m=   
There are several possibilities:   
a) .n is I∈ , , ,n jt I∈  [ ]2 ni j m< < .   

1a ) 1j i= + . By Lemma 4.1 and relations (16) and (17) we have  

( ) ( ) ( ) ( ) ( ) ( ), 1 , 1

, 1 , 1

2.n i n i

n i n i

u t u s u t u tu t u s
t s t s t t

+ +

+ +

− −−
≤ + ≤

− − −  
2a ) 1j i> + . Then 

( ) ( )
, 2 ,, 1

1.n n

n i n i

u t u s b a
t s t t+ +

− −
≤ =

− −  
b) [ ]. ,, , 2n i n j ns I t I i j m∈ ∈ < = . 
If 1j i= +  proceed as 1a ). 
If 1j i> + , again using the Lemma 4.1 and relations (16), (17) and (18) we obtain 

( ) ( ) [ ]( ) ( )

[ ]

( ) [ ]( )
[ ] [ ] [ ]

,2 ,2

,2 ,2 ,2 ,2 1

1 2.n n

n n n n

n m n m n n

n m n m n m n m

u t u s u t u tu t u s b a
t s t s t t t t −

− −− −
≤ + ≤ + ≤

− − − −
 

Case 3: If , , , ,n ms I t I n m n m∈ ∈ ∈ < . 
From Lemma 4.1 and the second case, we conclude 

( ) ( ) ( ) ( ) ( ) ( )1

1

4.n m

n m

u t u s u t u tu t u s
t s t s t t

+

+

− −−
≤ + ≤

− − −  
Case 4: If , ,ns I n t t∞∈ ∈ = . 
Then from Lemma 4.1 

( ) ( ) ( ) ( ) ( ), 1 , 1

, 1

1 2.n i n i n

n i n n n n

u t u s a u tu t u s a a
t s t s b a b a

+ ∞ +∞ ∞

∞ +

− −− −
≤ + ≤ + ≤

− − − −
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Case 5: If 1s t t∞< < ≤ . 
From Lemma 4.1 and Case 4 

( ) ( ) ( ) ( )
2.

u t u s u t u s
t s t s

∞

∞

− −
≤ ≤

− −  
Case 6: If 1.t s t∞ ≤ < ≤  
In this circumstance ( ) ( )u s u t a∞= =  and the situation is trivial. Therefore we have that  

( ) ( ) [ ]( ), , 0,1 .u t u s t s s t− ≤ − ∈  

So u is Lipschitz in [ ]0,1 . Moreover, for each partition of interval [ ]0,1  of the form 

( ) [ ]( )
( ) [ ]( )

1 1 1 1 1 1 1 2 2

2 2 2

: 0 2

2 1,k k k k k

t t b a t m b a t

t b a t t m b a

π = < + − < < + − <

< + − < < < < + − <



 

 

and 0c > , using the inequality (13), convexity of the function , 1n nϕ ≥  and definition of ,nm n∈ , we have   

[ ]( )
( ) ( ) ( )

( ) ( )( )

[ ] ( ) ( ) ( )

[ ] ( ) ( )

[ ] ( )
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1 1
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1
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1 1
1 1
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1
1 1

1

2
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φκ
κ κ κ

κ κ

− −

−

−

−
= =

− +
= =
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+
= =

=

 − − 
= ≥

 − − + − 

 −
  −  − ≥ ≥

 − + − 
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∑ ∑

∑ ∑
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∑ ∑

∑

 



[ ] ( )
( ) ( )

1

1

1
1 .

j

j

p x
k p xn

nn

m
m

−

−

=

 
≥  

 
∑

 

As the serie ( ) ( )1

1
1 jp x

n

−
∞

=
∑  diverge, ( ) [ ]0,1W

ph u BVκ ⋅∉ , which is a contradiction.                      

5. Uniformly Continuous Composition Operator 
In a seminal article of 1982, J. Matkowski [39] showed that if the composition operator H, associated with the 
function [ ]: ,h a b × →  , maps the space [ ],Lip a b  of the Lipschitzian functions into itself and is a globally 
Lipschitzian map, then the function h has the form 

( ) ( ) ( ) [ ], , , , ,h t x t x t t a b xα β= ∈ ∈                           (19) 

for some [ ], ,Lip a bα β ∈ . 
There are a variety of spaces besides [ ],Lip a b  that verify this result [37]. The spaces of Banach ( ), ⋅  

that fulfill this property are said to satisfy the Matkowski property [32]. 
In 1984, J. Matkowski and J. Miś [40] considered the same hypotheses on the operator H for the space 
[ ],BV a b  of the function of bounded variation and concluded that (19) is true for the regularization h−  of the 

function h with respect of the first variable; that is, 
( ) ( ) ( ) [ ], , , , ,h t x t x t t a b xα β− = + ∈ ∈  

where [ ], ,BV a bα β −∈ . The spaces that satisfy this condition are said to verify weak Matkowski property, [32]. 
In this section, we give the other main result of this paper, namely, we show that any uniformly bounded 

composition operator that maps the space ( ) [ ],W
pBV a bκ ⋅  into itself necessarily satisfies the so called Matkows-

ki’s weak condition. 
First of all we will give the definition of left regularization of a function. 
Definition 5.1. Let ( ) [ ]( ),pf WBV a b⋅∈ , its left regularization ( ]: ,f a b− →   of mapping f is the function 

given as  
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( )
( ) ( ]

( )

lim , ;
:

.
s t

f s t a b
f t

f a t a
−− →

 ∈= 
=

 

We will denote by ( ) [ ]( ) [ ]( ), ,pWBV a b a b−
⋅  the subset in ( ) [ ]( ),pWBV a b⋅  which consists of those functions 

that are left continuous on ( ],a b . 

Lemma 5.2. If ( ) [ ]( ),pf WBV a b⋅∈ , then ( ) [ ]( ),pf WBV a b−
⋅∈ .  

Thus, if a function ( ) [ ]( ),pf WBV a b⋅∈ , then its left regularization is a left continuous function, i.e., 

( )1jp x
f WBV

−

− −∈ . 

Also, we will denote by ( ) [ ]( ),W
pBV a bκ −
⋅  the subset in ( ) [ ]( ),W

pBV a bκ ⋅  which consists of those functions 

that are left continuous on ( ],a b . 

Lemma 5.3. If ( ) [ ]( ),pf WBV a b⋅∈ , then ( ) [ ]( ),W
pf BV a bκ−
⋅∈ .  

Proof. By Lemma 5.2, we have ( ) [ ]( ),pf WBV a b−
⋅∈ . Then, by Theorem 3.1, ( ) [ ]( ),W

pf BV a bκ−
⋅∈ .  

Thus, if a function ( ) [ ]( ),pf WBV a b⋅∈ , then its left regularization is a left continuous function, i.e., 

( ) [ ]( ),pf WBV a b− −
⋅∈ . In consequence, ( ) [ ]( ),W

pf BV a bκ− −
⋅∈ . 

Another lemma useful for the follow theorem is developed below: 
Lemma 5.4. Let [ ] [ ]: 0,1 0,1κ → , be a distortion function, ( ) [ ]( ),W

pu BV a bκ ⋅∈  and 0λ > . Then 

( ) ( )p uκµ λ⋅ <  if and only if ( ) 1W
p

uVκ
λ⋅

  ≤ 
 

.  

Proof. Let ( ) [ ]( ),W
pu BV a bκ ⋅∈ . Suppose that ( )p

κµ λ⋅ < ; then by definition of ( ) ( )p uκµ ⋅  there exists κ  such 

that ( ) ( )p uκλ κ µ ⋅> >  and ( ) 1W
p

uVκ
λ⋅

  ≤ 
 

. Since, for 1s >  the function 0, st t t≥ →  is convex, we have: 

( ) ( ) ( ) 1.W W W
p p p

u u k k u kV V V
k k

κ κ κ
λ λ λ λ⋅ ⋅ ⋅

     = = ≤ ≤     
       

Conversely, assume ( ) 1W
p

uVκ
λ⋅

  < 
 

, then ( )0 : 1W
p

uVλ λ κ
λ⋅

  ∈ > ≤  
  

; hence ( ) ( )p uκµ λ⋅ < . 

Theorem 5.5. Suppose that the composition operator H generated by [ ]: ,h a b × →   maps  

( ) [ ]( ),W
pBV a bκ ⋅  into itself and satisfies the following inequality  

( ) ( ) ( ) [ ]( )( )1 2 1 2 1 2, ,W W W
pp pHf Hf f f f f BV a b

κ κ
γ κ ⋅⋅ ⋅
 − ≤ − ∈ 

                  (20) 

for some function [ ) [ ): 0, 0,γ ∞ → ∞ . Then, there exist functions ( ) [ ]( ), ,W
pBV a bα β κ ⋅∈  such that  

( ) ( ) ( ) [ ], , , ,h t x t x t t a b xα β− = + ∈ ∈                          (21) 

where ( ) ( ], : ,h x a b− ⋅ →   is the left regularization of ( ),h x⋅  for all x∈ .  
Proof. By hypothesis, for x∈  fixed, the constant function ( ) [ ], ,f t x t a b= ∈  belongs to ( ) [ ]( ),W

pBV a bκ ⋅ . 

Since H maps ( ) [ ]( ),W
pBV a bκ ⋅  into itself, we have ( )( ) ( )( ) ( ) [ ]( ), ,W

pHf t h t f t BV a bκ ⋅= ∈ . By Lemma 5.2 the 

left regularization ( ) ( ) [ ]( ), ,W
ph x BV a bκ− −
⋅⋅ ∈  for every x∈ . 

From the inequality (20) and definition of the norm ( )
W

pκ ⋅
⋅  we obtain for ( ) [ ]( )1 2, ,W

pf f BV a bκ ⋅∈ ,  
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( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 .
W W

p pp
H f H f H f H f f f

κκ
µ γ⋅ ⋅⋅

 − ≤ − ≤ − 
                (22) 

From the inequality (22) and Lemma 5.2, if ( )1 2 0W
pf f

κ
γ

⋅
 − > 

 then  

( )
( ) ( )

( )

1 2

1 2

1.W
p W

p

H f H f
V

f f
κ

κ
γ

⋅

⋅

 
−  ≤  −   

                              (23) 

Let a s t b≤ < ≤ , and let { }0 1 2: , , ,m mt t tπ π= ∈  be the equidistant partition defined by  

( )0 1, 1, 2, , 2 .
2j j
t st s t t j m

m−
−

= − = = 
 

Given ,u v∈  with u v≠ , define [ ]1 2, : ,f f a b →   by 

( )1

, if for some even ,

: , if for some odd ,
2

linear, otherwise

j

j

v x t j
u vf x x t j

=
 += =



                        (24) 

and  

( )2

, if for some even ,
2

: , if for some odd ,
linear, otherwise.

j

j

u v x t j

f x u x t j

+ =


= =




                        (25) 

Then the difference 1 2f f−  satisfies  

( ) ( ) ( )1 2 .
2

u v
f x f x a x b

−
− ≡ ≤ ≤  

Consequently, by the inequality (20)  

( ) ( )1 2 1 2 .
2

W W
p p

u v
Hf Hf f f

κ κ
γ γ

⋅ ⋅

 −  − ≤ − ≤     
 

From the inequality (23) and the definition of p(⋅)-variation in the sense of Wiener-Korenblum we have 

( )( ) ( )( ) ( )( ) ( )( )
( )

( )1

1 2 2 2 1 2 1 2 2 1

1
1

2 2 1

1

2
1.

jp x
m j j j j

j

m
j j

n

h f t h f t h f t h f t

u v

t t
b a

γ

κ

−− − − −
− −

−
=

−

=

 − − +
 
 −
  ≤

− 
 − 

∑

∑

   

 

However, by definition of the functions 1f  and 2f , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1 2 2 2 1 2 1 2 2 1

2 2

2 .
2

j j j jh f t h f t h f t h f t

u v u vh v h h h u

u vh v h h u

− − − −
− −

− − − −

− − −

− − +

+ +   = − − +   
   

+ = − + 
 

   

 
Then  
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( ) ( )

( )

( )1

1
1

2 2 1

1

2
2

2

1.

jp x

m

j

m
j j

n

u vh v h h u

u v

t t
b a

γ

κ

−
− − −

−
=

−

=

 + − +  
  

 −
 
  ≤

− 
 − 

∑

∑
                        (26) 

Since ( )11 jp x −≤ < ∞  for all 1, 2, , 2j m=  , 2 2 1
1 1m j j

n

t t
b a

κ −
=

− 
> − 

∑ , and passing to the limit as m →∞ , 

then 

( ) ( )

( )

( )1

1

2
2 0,

2

jp x
u vh v h h u

u vγ

−

− − −

−

 + − +  
   =

 −
 
   

hence,  

( ) ( )2 0.
2

u vh v h h u− − −+ − + = 
   

So, we conclude that ( ),h s− ⋅  satisfies the Jensen equation in   (see [41], page 315). The continuity of 
h−  with respect of the second variable implies that for every [ ],t a b∈  there exist [ ], : ,a bα β →   such that  

( ) ( ) ( ) [ ], , , , .h t x t x t t a b xα β− = + ∈ ∈  

Because ( ) ( ) [ ],0 , ,t h t t a bβ −= ∈ , ( ) ( ) ( ),1t h t tα β−= −  and ( ) ( ) [ ]( ), ,W
ph x BV a bκ−
⋅⋅ ∈ , for each x∈ , 

we obtain that ( ) [ ]( ), ,W
pBV a bα β κ ⋅∈ .                                                          

J. Matkowski [42] introduced the notion of a uniformly bounded operator and proved that any uniformly 
bounded composition operator acting between general Lipschitz function normed spaces must be of the form 
(21). 

Definition 5.6. ([42], Def. 1) Let   and   be two metric (or normed) spaces. We say that a mapping 
:H →   is uniformly bounded if, for any 0t >  there exists a nonnegative real number ( )tγ  such that for 

any nonempty set B ⊂   we have  

( ) ( ).diamB t diamH B tγ≤ ⇒ ≤  

Remark 5.7. Every uniformly continuous operator or Lipschitzian operator is uniformly bounded.  
Theorem 5.8. Let [ ]: ,h a b × →   and H be the composition operator associated with h. Suppose that H 

maps ( ) [ ]( ),W
pBV a bκ ⋅  into itself and is uniformly continuous, then, there exist functions ( ) [ ]( ), ,W

pBV a bα β κ ⋅∈  
such that  

( ) ( ) ( ) [ ], , , , .h t x t x t t a b xα β− = + ∈ ∈  

where ( ) ( ], : ,h x a b− ⋅ →   is the left regularization of ( ),h x⋅  for all x∈ .  
Proof. Take any 0t ≥  and ( ) [ ]( ), ,W

pf g BV a bκ ⋅∈  such that  

( ) { }( ),W
pf g diamH f g

κ ⋅
− ≤  

Since { },diam f g t≤  by the uniform boundedness of H, we have  

{ }( ) ( ), ,diamH f g tγ≤  

that is,  



O. Mejía et al. 
 

 
39 

( ) ( ) ( ) { }( ) ( )( ), ,
W W

pp
H f H g diamH f g f g

κκ
γ

⋅⋅
− = ≤ −  

and therefore, by the Theorem 5.5 we get  

( ) ( ) ( ) [ ], , , , .h t x t x t t a b xα β− = + ∈ ∈  
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