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Abstract 
The original modified method of the direct delayed reaction has been used for the evaluation of 
food-obtaining strategy across spatial learning tasks in T-maze alternation. The optimal behavior-
al algorithms for each experimental day have been identified so that the animals obtain maximum 
possible food amount with minimal number of mistakes. Markov chain method has been used for 
the prognosis of rat’s behavioral strategy during the spatial learning task. The learning and deci-
sion-making represent the probabilistic transition process where the animal choice at each step 
(state) depends on the learning experience from previous step (state). 
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1. Introduction 
Both humans and animals live in a rich world of constantly changing external signals, thus the detection of 
changes and adequate reaction to environmental variation is crucial for the survival and successful adaptation. 
The learning and decision-making abilities are essential for adaptive behavioral strategy.  

With no doubt, the behavioral studies remain the most prominent tool for exploring neural mechanisms of 
learning, memory and decision-making, though the past year experiments in behavioral and cognitive neuros-
cience [1] [2] have shaped innovate interdisciplinary approaches integrating the findings from different fields of 
science. Among them are widely-used mathematical-statistical methods [3]-[9]. At the same time, as a result of 
cross-disciplinary studies, various equations expressing biological relations gain a prominent position within 
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mathematics [10]. Mathematical approach is believed to explain all phenomena where at least one variable va-
ries towards other variables or affects them [11] [12].  

The probabilistic and stochastic processes in cognitive neuroscience are considered as constitute foundations 
of learning and decision-making [9] [10] [13]-[16]. Application of algebraic expressions has been proposed for 
description of learning processes [17]-[19]. More explicit mathematical methods are suggested for assessment of 
cognitive mechanisms involved in the adaptive learning, repeated decision tasks, reinforcement, and strategic 
changes [20]. The learning ability is studied in a binary choice task, where subjects have to choose from two 
possibilities (correct vs. incorrect) and the authors assume that the answers follow Bernoulli distribution that 
depends on a hidden state, reflecting the subject’s performance [21]. The probability that animals perform better 
than by chance is quantified and trial by trial performance is estimated. To develop a dynamic approach for 
analyzing learning experiments with binary response (correct, incorrect), state-space model of learning is intro-
duced. 

The question arises of how we go about understanding the probabilistic and stochastic processes that 
groundwork learning and memory. Due to a large number of possible parameters involved in learning, memory, 
and formation of adequate behavioral strategy, sometimes it seems difficult to generalize the results of beha-
vioral studies. From this point, mathematical approach to the problem in general, and quantification of the 
measured parameters in particular, should be considered as the most reasonable means to identify the behavioral 
features and to interpret numeric data. Nowadays, such attitude is rather common to behavioral studies. Beside the 
wide range of traditional statistical methods used for analysis of behavioral parameters, different mathematical 
approaches and models are proposed for the data analysis in ethology, psychology, neuroscience, etc. [21]-[26].  

Markov chains are one of the basic tools in modern statistical computing, providing the basis for numerical 
simulations conducted in a wide range of disciplines. This mathematical technique undergoes transitions from 
one state to another through a set of values which process can take. Every state depends only on the current state 
and not on the sequence of events that precede it. Markov chains have many applications in biological modeling 
[2] [13] [14] [18] [21] [23] [27] [28]. They are widely applied in neuroscience research, including behavioral 
studies, neuron assemblies, ion channels and others [7] [14] [22] [29], are the output of the Markov chains which 
can be different variables, for instance, the decision, or animal’s motor output and neural activity [13] [17] [24] 
[30] [31]. Markov chains are also used in simulations of brain function, such as the activity of mammalian neo-
cortex [30].  

There are several ways we may go while studying cognitive abilities. We can simply observe, record and 
analyze neurobiological, behavioral conformities, or/and make an attempt to construct quantitative models in 
order to understand the computations that underpin cognitive abilities. What different cognitive studies share is 
the attempt to identify the involvement of various brain states in the behavioral processes. Sometimes the seg-
menting of observed and measured behavioral processes into consequence elements is needed to explore and 
quantify transitions between them. Thorough inquiry of animal behavioral conformities across learning process 
gave huge body of information on behavioral consequences which can be tested with Markov chains analysis. 
Markov chains have shown to provide better estimation of learning conformities in comparison with other me-
thods used to infer from behavior data treatment. Such modern approaches contribute in studying the cognitive 
abilities and their behavioral correlates.  

From neurobiological point of view, it is interesting to perform extrapolation on the basis of experimental data 
in order to establish quantitatively the degree of learning and the dynamics of the memory. The results of beha-
vioral experiments can be predicted by means of the mathematical model using one of the main objects of prob-
abilistic-statistical investigation-Markov chains [11]. In this paper the mathematical apparatus describing the di-
rect delayed reactions using the discrete-time Markov chains is considered. 

The experiments with using a modified method of direct delayed reactions made it possible to observe the 
learning process of the animals along with establishing the maximal delay and identifying an optimal algorithm 
of minimum errors and maximal reward. Here we will discuss the development of optimal algorithms and the 
dynamics of variability at delays of different duration. 

2. Methods 
2.1. Subjects 
31 albino rats of both sexes (with an average weight of 150 g) have been examined. The animals were indivi-
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dually housed in stainless steel cages in conditions of natural light-dark cycle and temperature of 20˚C ± 1˚C. 
The rats had free access to food and water throughout the whole experiment.  

2.2. Apparatus 
The rats were tested in a 25 cm-walled wooden T-maze (64 cm in length). The start compartment arm (47 cm in 
length) joined the two goal arms, each of which was 17 cm in width. Wooden feeders were situated at the far 
end of each goal arm. The floor under the feeders was electrified. The light and audio signal sources were at-
tached to the top of starting compartment to study rat spatial learning through the different behavioral tasks us-
ing different experimental schemes (Figure 1). 

2.3. Procedure 
The experiments were conducted on white rats using a modified method of direct delayed reactions [16]. Rats 
were trained in a T-maze-based spatial learning task that required animals to make trial-by-trial choices contin-
gent upon their previous experience. The aim of the experiment was to fixate the complex perception of food in 
conditions of two feeders. Ten trials were conducted daily with a strictly defined time-spatial program, with 
strictly defined sequence of signaling feeders, the time interval between trials and the duration of delay. Before 
the delay, the animal was allowed to move in the experimental cabin without the intervention of the experimen-
ter and obtain food in any feeder defined by the program. The rat could first run up to the feeder with food, and 
then to an empty one, or vice versa, and if it did not return to the starting compartment, the experimenter re-
turned it with force. The animal was allowed to return from the feeder with food without correction to the start 
compartment so that it did not run to the empty feeder. After the delay the door of start compartment was opened 
and the animal had the possibility of free behavior. Both direct and indirect reactions were registered. During 
direct reaction the animal got food, while in case of indirect reaction did not. In the protocol the right move per-
formed by the rat was marked by “1”, and incorrect-by “0”. The distribution of zeroes and ones was recorded in 
the protocol (Table 1). 

Proposed approach gave us the possibility to characterize animal behavior and describe a learning algorithm 
[16]. For example, the sequence “11001110” means that in pre-delayed behavior (first 5 digits), the animal 
leaves the starting compartment without the interference of the experimenter (1), performs a proper move and 
runs to the feeder, where it has got food in the previous trial (1). This time it had not received food, since it was 
not provided by the program (0). So it was necessary to make the correction of the movement to the opposite 
feeder, as the food was placed there. The animal corrects its movement after the interference of the experimenter 
(0) and returns to the starting compartment (1). The last three digits of the given algorithm describe delayed 
reactions. The animal itself leaves the starting compartment (1), performs a right move and runs towards the  
 

 
Figure 1. T-maze experimental cabin.                    
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Table 1. The experimental protocol.                                                                           
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 

11 - 00 

0 1 2 5 - 0 - 1 1 0 1 1 0 

1 1 3 5 c 0 1 1 1 0 1 0 0 

2 2 2 5 a 1 0 1 1 0 0 1 0 

3 1 5 5 a 1 0 1 1 0 1 0 1 

4 2 3 5 a 1 0 1 0 1 0 1 0 

5 2 4 5 c 1 1 1 0 1 0 1 0 

6 1 4 5 a 1 1 0 0 1 1 1 0 

7 1 2 5 c 1 1 1 0 1 1 1 1 

8 1 5 5 c 1 1 1 1 0 1 0 1 

9 2 3 5 a 1 1 0 1 1 1 1 1 

12 - 24 10 2 2 5 c 1 0 0 1 0 1 1 1 

 
feeder, where before delay it has got reinforcement (1). After this the experimenter returns the animal to the 
starting compartment (0). Table 2 demonstrates the dynamics of delayed reactions’ algorithms for pre-delayed 
behavior and describes the process of optimal behavioral strategy formation. The obtained algorithms are ap-
plied for further mathematical analysis. 

The schematic diagram of behavioral strategies based on obtained algorithms for one of the experimental days 
is presented on Figure 2. The diagram shows different behavioral strategies identified as bed (1,2,3), medium 
(4,5,6), good (7,8,9) and the best (10,11,12) learning algorithms. 

2.4. Mathematical Description of Behavioral Algorithm 
Description of Markov chain is as follows: we have a set of experimental trials (states) { }1 2, , , ,i jn n n n n=  . 
The process starts in one of these states and moves successively from one state to another. Each move is called a 
step. If the chain is currently in state ni then it moves to state ni at the next step with a probability denoted by Pij, 
and it does not depend upon which states the chain was at before the current state. In Markov chain the probabil-
ities Pij are called transition probabilities. The process can remain in particular state, which occurs with proba-
bility Pij. An initial probability distribution, defined on n, specifies the starting state. Usually this is done by spe-
cifying a particular state as the starting state of behavioral experiment. We present a behavioral method for es-
timating these functions. 

3. Results and Discussion 
The initial state of a system or a phenomenon and a transition from one state to another appear to be principal in 
the explanation of Markov chain. In our experiments the initial state is 0 or 1; while the transition may occur 
from 0 to 1, or vice versa from 0 to 0, or from 1 to 1. 

For studying Markov chains it is necessary to describe the probabilistic character of transitions. It is possible  
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Figure 2. The schematic description of behavioral algorithms. 
FD1-Feeder 1; FD2-Feeder 2; SC-Start Chamber.                    

 
Table 2. The dynamics of delayed reactions’ behavioral algorithms.                                                    

Trial # 
Days 

1 2 3 4 5 6 7 8 9 10 

1 00000 11000 11000 11000 11001 11000 11111 11100 11110 11001 

2 01000 10100 11000 10100 11000 11001 11001 11101 11001 10101 

3 10010 11110 10100 11111 11001 11101 11001 10101 10111 10101 

4 10010 11000 10100 11001 11001 11000 11000 11000 11001 10101 

5 11000 11000 11001 10101 11001 11000 11000 11001 11001 11101 

6 10100 11110 11110 11001 11001 11000 11000 11001 11111 11101 

7 10100 10110 11000 11000 11001 10100 10100 10101 11001 10101 

8 11000 11000 11100 11101 11001 10101 10101 11001 11001 10101 

9 11000 11000 10100 11001 10101 11001 11001 11001 10101 11001 

10 11000 11100 11101 11000 11001 11000 10100 11000 10101 11001 

 
that the time intervals between transitions be permanent. 

All states n (in our case 10n = ) are numbered. If the system is described by Markov chain, then the probabil-
ity that the system will moves from state i to ( )1, ,  1,j i n j n= =  during the next time interval depends only on 
the variables i and j and not on the behavior of the system before the transition to state i. In other words, the Pij 
probability that the system will transit from state i to j does not depend on the type of behavior before state i. 
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Proceeding from the explanation and features of the probability it is easy to assume that 

1
1;  0 1.

n

ij ij
j

P P
=

= ≤ ≤∑  

For the modeling the above described experiment, it is convenient to define Markov chain as follows: let’s 
say n  number of trials is conducted; if across consecutive trials the conditional probability that any event oc-
curred in trial 1n +  (we consider the results of previous trials as known) depends only on the result of the last 
nth

 trial and does not depend on previous trials, one can say that Markov condition holds. The observed process 
is called “Markov chain”—random process with discrete (finite) state-space. 

Let us assume that the observed behavioral process appears to be random chain with Markov properties, the 
possible values of which are 0 and 1, and the transition probabilities are determined (estimated) using obtained 
empirical frequencies. As the initial state is 0 or 1, the transition may occur from 0 to 1, from 0 to 0, or from 1 to 
1. We consider the question of determining the probability that, given the chain is in state i, it will be in state j 
across behavioral treatment. Simply, if we will know the probability that the result of the first trial is 0, then we 
can define the probability that during the trial nth

 result will also be 0 
Let the conditional probability for transition from initial state 0 for trial n to state 1 in trial 1n +  be written 

as: 

{ }11 0 ;  analogously,n na P +=  

{ }1 11 1 .n nb P + +=  

It should be noted that the events { }ththe result of trial  is 0nA n=  and { }ththe result of trial  is 1nA n=
create a complete system of events (i.e. a system of such events, one of which necessarily occurs in any trial and 
any two different events cannot occur simultaneously). Therefore, the event  

( ){ }1 1 ,  the result of the trial is 0nA n+ = +  can be denoted as follows: 

1 1 1n n n n nA A A A A+ + += ⋅ + ⋅ . 

It is easy to determine the probability ( )1nP A +  of the event 1nA +  using total probability formula: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1n n n n n n n n n n n n n n nP A P A A A A P A A P A A P A P A A P A P A A+ + + + + + += ⋅ + ⋅ = ⋅ + ⋅ = + , 

where ( )1n nP A A+  and ( )1n nP A A+  are conditional probabilities, i.e. the transition probabilities of Markov 
chain. 

Now we need to recall formulas: 

( ) ( ) ( ) ( )1 1, , ,  . .  1n n n n n n n na P A A b P A A P A P i e P A P+ += = = = − , 

which give recurrence equation for the reliable probability: 

( )1 1 .n n nP aP b P+ = + −                                    (1) 

In the general case 1a b− < . Therefore 0na b− →  when n →∞ . As ( ) 1n nP A P +=  when n →∞ , 
from the equation (1) we gain formula: 

n n nP aP b bP= + − . 

In the case n →∞ , we obtain: 

1
1 .

1n nP P
a b+= =

− +
 

Analogously, when n →∞  ( ) 1nP A p q→ − = . The probabilities p and q are called “final” probabilities. 
They depend on transition probabilities only and do not depend on the initial state. For a big n we can assume 
that the process is “balanced”—it’s probabilities (independently from n) approximately equal to p or q. This 
feature of Markov process (chain) is very important in applied science and bears the name of ergodic.  
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In the general case finding solutions to Equation (1) are very difficult, but in case when Pn does not depend on 
n, i.e. nP P= , stationary equation can be written: 

( )1 .P aP b P= + −                                    (2) 

The solution of stationary Equation (2) is simple: 

1 .
1

P
a b

=
− +

                                      (3) 

As solution of stationary Equation (2) is known, we can get the general solution. We only have to suppose 
that 

*.n nP P P= +                                       (4) 

If we substitute (4) into the Equation (1) for Pn, we get: 

( )* * *
1 1n n nP P aP aP b P bP++ = + + − − . 

From the stationary Equation (2) the following recurrence equation is correct 
( )* *

1n nP a b P+ = − , from which  

( )* *
1 1 .n

nP a b P+ = −  

According to assumption (4) we get *
n nP P P= −  which gives possibility to move from *

nP  to Pn. 
( ) ( ) ( )( )1 1 1 1,  orn n

n nP P a b P P P P P P P a b+ +− = − − − + = + − − , and 

( )1 .
1 1

n
n

b bP P a b
a b a b+

 = + − − − + − − + + 
                        (5) 

The Equation (5) can be used to predict the experimental results: if we know values for probabilities a, b and 
P1 for the first n number of trials, we can calculate the probability 1nP +  of getting 0 the result of trail 1n +  
will be.  

The probabilities a, b and P1 can be estimated by corresponding empirical frequencies.  
To illustrate this, let’s discuss in detail an algorithm of calculation of the probability (prognosis) 1nP +  using 

the Equation (5) on the basis of the data of 7th column ( 10n = ) of Table 1. 
1) 10.1;  0.9;  0.1;a b P= = =  

( )107
11

0.9 0.90.1 0.1 0.9 .
1 0.1 0.9 1 0.1 0.9

P  = − × − − + − + 
 

7
11 0.456.P =  

Analogically, the following results are obtained for 8th - 14th columns of Table 1: 
2) 10.1;  0.6;  0.4;a b P= = =  

8
11 0.400.P =  

3) 10.1;  0.6;  0.3;a b P= = =  
9

11 0.400.P =  
4) 10.1;  0.6;  0.4;a b P= = =  

10
11 0.400.P =  

5) 10.2;  0.3;  0.5;a b P= = =  
11

11 0.300.P =  
6) 10.2;  0.4;  0.3;a b P= = =  

10
11 0.300.P =  

7) 10.3;  0.4;  0.3;a b P= = =  
13

11 0.370.P =  
8) 10.3;  0.1;  0.6;a b P= = =  

14
11 0.130.P =  
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4. Conclusion 
In this paper, the original modified method of the direct delayed reaction on the basis of results of the Markov 
chains theory is developed. The proposed mathematical apparatus allow to calculate the probability (prognosis) 

1nP +  that the results of the following trail 1n +  will be 0 if the estimates of the probabilities a, b and P1 for the 
first n number of trials are known. It should be noted that the probabilities of possible events of the theoretically 
calculated reactions coincide with the experimental data. It gives us an opportunity to use widely the above de-
scribed method in neurophysiological investigations. In addition, it is possible to use them also for delayed reac-
tions carried out by indirect and alternate methods. If we imagine everyday experimental results as one trial, it 
will be possible to make a long-term prognosis of the animals’ behavior. 
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