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Abstract 
In this paper, we consider scheduling problems with general truncated job-dependent learning 
effect on unrelated parallel-machine. The objective functions are to minimize total machine load, 
total completion (waiting) time, total absolute differences in completion (waiting) times respec-
tively. If the number of machines is fixed, these problems can be solved in mO n 2( )+  time respec-
tively, where m is the number of machines and n is the number of jobs. 
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1. Introduction 
In modern planning and scheduling problems, there are many real situations where the processing time of jobs 
may be subject to change due to learning effect. An extensive survey of different scheduling models and prob-
lems with learning effects could be found in Biskup [1]. More recently, Janiak et al. [2] studied a single proces-
sor problem with a S-shaped learning model. They proved that the makespan minimization problem is strongly 
NP-hard. Lee [3] considered scheduling jobs with general position-based learning curves. For some single ma-
chine and a two-machine flowshop scheduling problems, they presented the optimal solution respectively. Lee 
[4] considered single-machine scheduling jobs with general learning effect and past-sequence-dependent setup 
time. For some single machine scheduling problems, they presented the optimal solution respectively. Lee and 
Wu [5], and Wu and Lee [6] considered scheduling jobs with learning effects. They proved that some single 
machine and flowshop scheduling problems can be solved in polynomial time respectively. Lee et al. [7] consi-
dered a single-machine scheduling problem with release times and learning effect. Lee et al. [8] considered a 
makespan minimization uniform parallel-machine scheduling problem with position-based learning curves. Lee 
and Chung [9], Sun et al. [10] [11], and Wang et al. [12] considered flow shop scheduling with learning effects. 
Wu et al. [13], Wu et al. [14], Wu et al. [15] and Wang et al. [16] considered scheduling problems with the 
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truncated learning effect. 
Recently, Wang et al. [17] considered several scheduling problems on a single machine with truncated 

job-dependent learning effect, i.e., the actual processing time of job jJ  is max{ , }jaA
jr jp p r b=  if it is sche- 

duled in the rth position of a sequence, where 0ja ≤  is the job-dependent learning index of job jJ , and b is a 
truncation parameter with 0 1b< < . In this paper, we study scheduling problems with general truncated job- 
dependent learning effect on unrelated parallel-machine. The objective is to minimize total machine load, total 
completion (waiting) time, total absolute differences in completion (waiting) times respectively. 

2. Problems Description 
There are n independent jobs 1 2{ , , }nN J J J=   to be processed on m unrelated paralle-machine  

1 2{ , , }mM M M M=  . Let 1 2( , , )mn n n  denote a job-allocation vector, where in  denotes the number of jobs 

assigned to machine iM , and 1
m

ii n n
=

=∑ . In this paper, we assume that the actual processing time of job jJ  
scheduled on machine iM  is 

max{ ( ), }A
ijr ij ijp p f r b= , 1, 2,..., ;  , 1, 2,..., ,i m r j n= =                         (1) 

where 0ijp ≥  denotes the normal (basic) processing time of job jJ ( )1,2,...,j n=  on machine iM , r  is the 
position of a sequence, b  is a truncation parameter with 0 1b< < , ( )ijf r  is the general case of positional 
learning for job jJ  on machine iM , special ( ) ija

ijf r r=  is the polynomial learning index for job jJ  on 
machine iM ( )0ija < , 1( ) r

ij ijf r b −=  is the exponential learning index for job jJ  on machine iM ( )0 1ijb< < . 
Let ijC  and ij ij ijW C p= −  be the completion and waiting time for job jJ  on machine iM  respectively. 

The goal is to determine the jobs assigned to corresponding each machine and the corresponding optimal sche- 
dule so that the following objective functions is to be minimized: the total machine load max1

m i
i C
=∑ , the total 

completion (waiting) times ( )1 1 1 1
i im n m n

ij iji j i jC W
= = = =∑ ∑ ∑ ∑ , the total absolute differences in completion (waiting) 

times ( )1 1 1 1
i i i im n n m n n

ik ij ik iji k j k i k j kC C W W
= = = = = =

− −∑ ∑ ∑ ∑ ∑ ∑ ，where max
iC  denotes the makespan of machine iM . 

Using the three-field notation [18] the problems can be denoted as Rm Y Z , where Y  denote the model (1), 

{ }max1 1 1 1 1 1 1 1 1, , , ,i i i i i im m n m n m n n m n ni
ij ij ik ij ik iji i j i j i k j k i k j kZ C C W C C W W

= = = = = = = = = = =
∈ − −∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ . 

3. Main Results 
Let ijp  denote the actual processing time of a job when it is scheduled in position j  on machine iM , then 

[ ] ( )i jf j , [ ]i jJ , [ ]i jC , [ ]i jW  are defined similarly. 

Lemma 1. For a given permutation [ ] [ ] [ ]( )1 2, ,...,
ii i i i nJ J Jπ =  on machine iM , 

[ ] [ ]{ }max1 1 1 max ( ),im m ni
i j i ji i jC p f j b

= = =
=∑ ∑ ∑  

( ) [ ] [ ]{ }1 1 1 1 1 max ( ),i im n m n
ij i i j i ji j i jC n j p f j b

= = = =
= − +∑ ∑ ∑ ∑  

( ) [ ] [ ]{ }1 1 1 1 max ( ),i im n m n
ij i i j i ji j i jW n j p f j b

= = = =
= −∑ ∑ ∑ ∑  

( )( ) [ ] [ ]{ }1 1 1 1 1 1 max ( ),i i im n n m n
ik ij i i j i ji k j k i jC C j n j p f j b

= = = = =
− = − − +∑ ∑ ∑ ∑ ∑  (Kanet [19]) 

( ) [ ] [ ]{ }1 1 1 1 max ( ),i i im n n m n
ik ij i i j i ji k j k i jW W j n j p f j b

= = = = =
− = −∑ ∑ ∑ ∑ ∑  (Bagchi [20]). 

If the vector ( )1 2, ,..., mn n n  is given, let jirX  be a 0 /1  variable such that 1jirX =  if job ( )1,2,....,jJ j n=  

is assigned at position ( )1,2,...., ir r n=  on machine ( )1,2,....,iM i m= , and 0jirX = , otherwise. Then, the 

problem Rm Y Z  (where }1 1 1 1,i i i im n n m n n
ik ij ik iji k j k i k j kC C W W

= = = = = =
− −∑ ∑ ∑ ∑ ∑ ∑ ) can be solved by the following 
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assignment problem: 

{ }1 1 1min max ( ),im n n
ir ij ij jiri r jZ p f r b Xλ

= = =
  = ∑ ∑ ∑                           (2) 

. .s t  

1 1 1,  1, 2,..., ,im n
jiri r X j n

= =
= =∑ ∑                                  (3) 

1 1,  1, 2,..., ,  1, 2,..., ,n
jir ij X i m r n

=
= = =∑                              (4) 

0jirX =  or 1, 1, 2,..., ,  1, 2,..., ,  1, 2,..., ,ij n i m r n= = =                          (5) 

where 1irλ =  for max1
m i
i C
=∑ , ( )1ir in rλ = − +  for 1 1

im n
iki k C

= =∑ ∑ , ( )ir in rλ = −  for 1 1
im n

iki k W
= =∑ ∑ ,  

( )( )1 1ir ir n rλ = − − +  for 1 1
i im n n

ik iji k j k C C
= = =

−∑ ∑ ∑ , ( )ir ir n rλ = −  for 1 1
i im n n

ik iji k j k W W
= = =

−∑ ∑ ∑ . 

Now, the question is how many vectors ( )1 2, ,..., mn n n  exist. Obviously in  may be 0, 1, 2,  , n 

( )1,2,...,i m= . So if the numbers of jobs assigned to the first 1m −  machines is given, the number of jobs as-

signed to the last machine is then determined uniquely ( 1
m

ii n n
=

=∑ ). Therefore, the upper bound of 

( )1 2, ,..., mn n n  is ( ) 11 mn −+ . Based on the above analysis, we have the following result. 
Theorem 1. For a given constant m , Rm Y Z  can be solved in ( )2mO n +  time, where 

{ }max1 1 1 1 1 1 1 1 1, , , ,i i i i i im m n m n m n n m n ni
ij ij ik ij ik iji i j i j i k j k i k j kZ C C W C C W W

= = = = = = = = = = =
∈ − −∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ . 

Proof. As discussed above, to solve the problem Rm Y Z , polynomial number (i.e., ( ) 11 mn −+ ) of assign-

ment problems need to be solved. Each assignment problem is solved in ( )3O n  time (by using the Hungarian 

method). Hence, the time complexity of the problem Rm Y Z  can be solved in ( )2mO n +  time, where 

{ }max1 1 1 1 1 1 1 1 1, , , ,i i i i i im m n m n m n n m n ni
ij ij ik ij ik iji i j i j i k j k i k j kZ C C W C C W W

= = = = = = = = = = =
∈ − −∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ . 

Note that if the number of machines m  is fixed, then the problem Rm Y Z  can be solved in polynomial 
time. Based on the above analysis, we can determine the optimal solution for the problem Rm Y Z  via the 
following algorithm: 

Algorithm 1 
Step 1. For each possible vector ( )1 2, ,..., mn n n , solve the assignment problem (2)-(5). Then, obtain the op-

timal schedule and the corresponding objective function Z . 
Step 2. The optimal solution for the problem is the one with the minimum value of the objective function Z , 

where { }max1 1 1 1 1 1 1 1 1, , , ,i i i i i im m n m n m n n m n ni
ij ij ik ij ik iji i j i j i k j k i k j kZ C C W C C W W

= = = = = = = = = = =
∈ − −∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ .  

The following example illustrates the working of Algorithm 1 to find the optimal solution for the problem 

1 1
im n

iji jRm Y C
= =∑ ∑ . 

Example 1. There are 5n =  jobs and ( ) ija
ijf r r= , The number of machines is 2m =  and 11 15p = , 

12 11p = , 13 14p = , 14 3p = , 15 9p = , 21 12p = , 22 10p = , 23 9p = , 24 16p = , 25 8p = , 11 0.23a = − , 
12 0.32a = − , 13 0.25a = − , 14 0.35a = − , 15 0.26a = − , 21 0.32a = − , 22 0.21a = − , 23 0.31a = − , 24 0.24a = − , 
25 0.29a = − , 0.7b =  are given. 
Solution. When 1 20,  5n n= = , the positional weights on machine 2M  are 21 5θ = , 22 4θ = , 23 3θ = , 

24 2θ = , 25 1θ = . Then values { }max ,ija
ir ijp r bθ  are given in Table 1 (the bold value is the optimal solution of 

the assignment problem (2)-(5)).We solve the assignment problem (2)-(5) to 1 1 339.65119.im n
iji j C

= =
=∑ ∑  

When 1 21,  4n n= = , the positional weights on machine 1M  and 2M  are 11 1θ = , 21 4θ = , 22 3θ = , 

23 2θ = , 24 1θ = . Then values { }max ,ija
ir ijp r bθ  are given in Table 2. We solve the assignment problem 
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Table 1. The { }max ,ija
ir ijp r bθ  values of Example 1. for 1 20, 5n n= = . 

\ij ir  21θ  22θ  23θ  24θ  25θ  

21J  60 38.45135 25.32933 16.80000 8.40000 

22J  50 34.58149 23.81912 14.94849 7.13208 

23J  45 29.03910 19.20685 12.60000 6.30000 

24J  90 54.19170 36.87501 22.94328 11.20000 

25J  40 27.09585 18.43750 11.20000 5.60000 

 
Table 2. The { }max ,ija

ir ijp r bθ  values of Example 1 for 1 21, 4n n= = . 

\ij ir  11θ  21θ  22θ  23θ  24θ  

1iJ  15 48 28.83852 16.88622 8.40000 

2iJ  11 40 25.93612 15.87942 7.13208 

3iJ  14 36 21.77933 12.80457 6.30000 

4iJ  3 64 40.64377 24.58334 11.20000 

5iJ  9 32 19.62965 11.63469 5.60000 

 
(2)-(5) to obtain that the optimal schedule on machine 1M  is [ ]4J , and on machine 2M  is [ ]5 3 2 1, , ,J J J J . 

The objective function is 1 1 81.05875.im n
iji j C

= =
=∑ ∑  

When 1 22,  3n n= = , the positional weights on machine 1M  and 2M  are 11 2θ = , 12 1θ = , 21 3θ = , 

22 2θ = , 23 1θ = . Then values { }max ,ija
ir ijp r bθ are given in Table 3. We solve the assignment problem (2)-(5) 

to obtain that the optimal schedule on machine 1M  is [ ]4 2,J J , and on machine 2M  is [ ]5 3 1, ,J J J . The ob-

jective function is 1 1 61.77443.im n
iji j C

= =
=∑ ∑  

When 1 23,  2n n= = , the positional weights on machine 1M  and 2M  are 11 3θ = , 12 2θ = , 13 1θ = , 

21 2θ = , 22 1θ = . Then values { }max ,ija
ir ijp r bθ  are given in Table 4. We solve the assignment problem (2)-(5) 

to obtain that the optimal schedule on machine 1M  is [ ]4 5 2, ,J J J , and on machine 2M  is [ ]3 1,J J . The ob-

jective function is 1 1 59.38394.im n
iji j C

= =
=∑ ∑  

When 1 24,  1n n= = , the positional weights on machine 1M  and 2M  are 11 4θ = , 12 3θ = , 13 2θ = , 

14 1θ = , 21 1θ = . Then values { }max ,ija
ir ijp r bθ  are given in Table 5. We solve the assignment problem (2)-(5) 

to obtain that the optimal schedule on machine 1M  is [ ]4 5 2 1, , ,J J J J , and on machine 2M  is [ ]3J . The ob-

jective function is 1 1 69.93119.im n
iji j C

= =
=∑ ∑  

When 1 25,  0n n= = , the positional weights on machine 1M  and are 11 5θ = , 12 4θ = , 13 3θ = , 14 2θ = , 

15 1θ = . Then values { }max ,ija
ir ijp r bθ  are given in Table 6. We solve the assignment problem (2)-(5) to ob-

tain that the optimal schedule on machine 1M  is [ ]4 5 2 3 1, , , ,J J J J J . The objective function is  

1 1 98.58071.im n
iji j C

= =
=∑ ∑  
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Table 3. The { }max ,ija
ir ijp r bθ  values of Example 1 for 1 22, 3n n= = . 

\ij ir  11θ  21θ  22θ  23θ  24θ  

1iJ  30 12.78952 36 19.22568 8.44311 

2iJ  22 8.81177 30 17.29074 7.93971 

3iJ  28 11.77255 27 14.51955 6.40228 

4iJ  6 2.35375 48 27.09585 12.29167 

5iJ  18 7.51579 24 13.08643 5.81735 

 
Table 4. The { }max ,ija

ir ijp r bθ  values of Example 1 for 1 23, 2n n= = . 

\ij ir  11θ  21θ  22θ  23θ  24θ  

1iJ  45 25.57905 11.65074 24 9.61284 

2iJ  33 17.62354 7.739517 20 8.64537 

3iJ  42 23.54510 10.63770 18 7.25978 

4iJ  9 4.70751 2.10000 32 13.54792 

5iJ  27 15.03158 6.76380 16 6.54322 

 
Table 5. The { }max ,ija

ir ijp r bθ  values of Example 1 for 1 24, 1n n= = . 

\ij ir  11θ  21θ  22θ  23θ  24θ  

1iJ  60 38.36857 23.30147 10.90479 12 

2iJ  44 26.43531 15.47903 7.70000 10 

3iJ  56 35.31765 21.2754 9.89950 9 

4iJ  12 7.06126 4.20000 2.10000 16 

5iJ  36 22.54737 13.52761 6.30000 8 

 
Table 6. The { }max ,ija

ir ijp r bθ  values of Example 1 for 1 25, 0n n= = . 

\ij ir  21θ  22θ  23θ  24θ  25θ  

11J  75 51.15809 34.95221 21.80959 10.50000 

12J  55 35.24707 23.21855 15.40000 7.70000 

13J  70 47.09020 31.91310 19.79899 9.80000 

14J  15 9.41501 6.30000 4.20000 2.10000 

15J  45 30.06317 20.29141 12.60000 6.30000 



J. B. Wang, C.-J. Hsu 
 

 
26 

Hence, the optimal schedule on machine 1M  is [ ]4 5 2, ,J J J , and on machine 2M  is [ ]3 1,J J . The optimal 

objective function is 1 1 59.38394.im n
iji j C

= =
=∑ ∑  
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