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Abstract 
 
Making use of a linear operator , which is defined here by means of the Hadamard product (or 

convolution), we introduce some new subclasses of multivalent functions and investigate various inclusion 
properties of these subclasses. Some radius problems are also discussed. 

 ,p a c 
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1. Introduction and Definitions 
 
Let  denote the class of functions  p  f z  of the 
form  
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= ( : {1, 2,3, })p p k
p k

k

f z z a z p



     ,   (1) 

which are analytic in the open unit disk 

 = :  a  < 1z z nd z  . 

We define the Hadamard product (or convolution) of 
two analytic functions  
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= and =k k
k k

k k
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as 
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    .  

For , a 0c    ( ) H. Saitoh 
[13] introduced a linear operator  

0 : , 2, 1,      0

    , :p a c p p    

defined by  
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where  
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and  k
  is the Pochhammer symbol defined, in terms 

of the Gamma function, by  
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        .
 

The operator  ,p a c  is an extension of the Carlson- 
Shaffer operator (see [2]). In [3], Cho et al. introduced 
the following family of linear operators 

     , :p a c p p     analogous to  ,p a c  (see 

also [14]):  
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where  † , ;p a c z  is the function defined in terms of the 
Hadamard product (or convolution) by the following 
condition  
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1

p

p p p

z
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,        (5) 

where p  is given by (3). If  f z  is given by (1), 
then from (3), (4) and (5), we deduce that  
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It is easily seen from (6) that  

     1 1,1 =p p f z f z  and      1 ,1 =p

zf z
p f z
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Clearly, from (7) and (8), we have  

    
   

   
   

1,
Re > 0

1,

,
Re > ( )

1,

p

p

p

p

z a c f z

a c f z

a c f z a p
a p

aa c f z









  
  
 

  
    









    (9) 

and  
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When  and   0= :a n p n     0 = = 1c  , 

the linear operator  1
1,1 =p n pn p   



, was introduced 

and studied by Liu and Noor [5] (see also [9] and [10]). 
Moreover, when ,  was first 
introduced and studied by Noor [8] which is known as 
Noor Integral operator. 

= 1p  1
1 1,1 = nn 

Let  k   be the class of functions  analytic 

in the unit disk  satisfying the properties 

 h z

  0 = 1h  

and  
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0

Re
d

1

h z
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where = iz re  ,  and 2k  0 < 1 . For = 0 , the 
class k  was introduced in [11]. For  0 =k  = 0 , 

, we have the well known class  of functions 
with  and the class  gives us the 
class 

= 2k 
= 2 Re h z

 
> 0 k

  of functions with  zRe h >  . Also we 
can write, for   kh z    as  
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where  is a function with bounded variation on 
 such that  
 t

[0,2 ]

   2 2

0 0
d = 2 and dt t





 

From (11) and (12) it can be seen that ( )kh   if 
and only if there exist 1 2, (h h )  such that  

     1 2

1 1
=

4 2 4 2

k k
h z h z h z

        
   

.   (14) 

It is known [7] that the class  k   is a convex set. 
We also note that   kh z    if and only if there 
exists kq  such that  

     = 1h z q z  


.       (15) 

By using the linear operator , we now define 
some subclasses of 

 ,p a c
 p

a p
 as follows: 

Definition 1: Let , 0c   , > p  , > 0 , 
0  ,  and 2k  0 < 1 . A function    f z p

 , , ,
 

is said to be in the class , , ,p k a c      if and 
only if it satisfies  
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where    g z  p  satisfies the condition  
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We note that g is starlike univalent in  when 
= = = = 1a c p   in (16). 
Definition 2: Let 0,a c   , 0  , > 0 , 0  , 

 and 2k  0 < 1 . A function    f z p  is said 
to be in the class  , ,, , , ,k a cp

      if and only if it 
satisfies  
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where    g z  p  satisfies the condition  
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,
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k .      (13) 

In this manuscript, we investigate several inclusion 
and other properties of functions in the classes 

 , , , , , ,p k a c      and  , , , , , ,p k a c      which 
are introduced above. Furthermore, some radius pro- 
blems are also considered. 
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2. Main Results 
 
In order to establish our results, we require the following 
lemmas. 

Lemma 1: [6] Let 1 2=u u iu  and 1 2=v v iv  and 
let  be a complex-valued function satisfying the 
conditions: 

( , )u v

1)  is continuous in a domain  ( , )u v
 1,0 

2 , 
2)  and .  1,0 > 0

03)  whenever 2 1)vRe ( ,iu  2 1,iu v   and 

 2
1 21 2v u   . 

If  is analytic in , with , such that  p z

  , zp
  0 = 1p

  p z z  and      > 0p zRe  for ,p z z z,  

then .  Re > 0p z

Lemma 2: [12] If  is analytic in  with 
, and if 

 h z 
 0 = 1p   is a complex number satisfying 

Re 0 ( 0)   , then 

    Re > (0 < 1)h z zh z     implies  

    1Re > 1 2 1h z     ,      (20) 

where 1  is given by  

1

1 R0

d
=

1 e

t

t 
  

which is an increasing function of Re  and 

11 2 < 1 . The estimate (20) cannot be improved in 
general. 

Lemma 3: [4] Let  be analytic in  with 
 and  . Then, for 

 q z
R > 0


 0 = 1q  e q z (z)
= <z r 1,  

   1 1
Re

1 1

r r
q z q z

r

 
  

 r
 

and  

   2 Re

1 z

q z
q z

r
 


. 

We begin by proving the following. 
Theorem 1: Let 0 
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and  g p  satisfies the condition (16) and  
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Proof. Let  , , , , , ,pf k a c      and set  

   
   

   
1,

= 1
1,

p

p

a c f z
h z

a c g z



  
 

   




 ,       (23) 

where  h z  is analytic in  with   0 = 1h  and we 
write  
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A simple computation using (23) and (24) gives  
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Now we form the functional  by choosing  ,u v 
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The conditions 1) and 2) of Lemma 1 are clearly 
satisfied. Therefore, we show that the condition 3) of 
Lemma 1 is satisfied. 

By virtue of (25), we have  
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where   is given by (22). Thus, for  2
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  = 2 1A a       , 

 = 1 and =B C a   



. 

Since ,  and  by (21), we get 
. Hence, by applying Lemma 1, it 

follows that  which implies that 
. The proof of Theorem 1 is thus completed. 

0B 
 2 1,v

i

> 0C


= 1h i

0A 

z
Re 0iu

h
 , 2;

k

Remark: If we put  and =a n p = = 1c   in 
Theorem 1, we have the result due to Noor and Arif [9, 
Theorem 3.1]. 

Theorem 2: Let 0  . If  , , , , , ,pf k a c     , 
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Proof. Let  , , , , , ,pf k a c      and set  
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where  is analytic in  with . Then, by 
using same techniques as in the proof of Theorem 1, we 
obtain the desired result. 

 h z   0 = 1h

We note that =   when = 0  in Theorem 1. 
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Since  k   is a convex set (see [7]), by using 
Theorem 1 and Definition 1, we observe that 

 k1 2,P P   and  
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which completes the proof of Corollary 1. 
Making use of Theorem 2 and Definition 2, we can 

prove the following result. 
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Next, by using Lemma 2, we prove the following. 
Theorem 3: Let   be a complex number satisfying 

R > 0e  and let , > 0a 0c   , 0   and > 0 . 
If  f p  satisfies the condition  
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The value of   is best possible and cannot be 
improved. 

Proof. If we set  
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then  and  is analytic in . By applying 
(7), we have  
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Therefore, by virtue of Lemma 2, we see that 
, where   ( = 1, 2)ih i   is given by (26). Hence 

we conclude that  kh  , which evidently proves 
Theorem 3. 

By using (8) instead of (7) in Theorem 3, we have the 
following. 

Theorem 4: Let   be a complex number satisfying 
Re > 0  and let 0,a c   , 0   and > 0 . If 
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Theorem 5. Let 20 < 1 
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Since  k   is convex set (see [7]), it follows that 
the right hand side of (2.8) belongs to  k  , which 
proves Theorem 5. 

Next, we consider the generalized Bernardi-Libera- 
Livingston integral operator  defined by 
(cf. [1,8], and [15])  
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Theorem 6: Let   be a complex number satisfying 

R > 0e  and let    f z  p  and  f  be given 
by  (2.9). If  
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Proof. From (28), we obtain  
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Let 
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Hence, by using Lemma 2, we obtain the desired 
result. 

Finally, we consider the converse case of Theorem 1 
as follows. 
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By applying Lemma 3, for  and ( = 0,1, 2)ih i
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Hence, the hand right side of (31) is positive for 
= <z r R , where  is given by (30). This completes 

the proof of Theorem 7. 
R
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and since  , , , ,0, ,0pf k a c   , it follows that 
 kH   and  0H  . Then, by using same 

methods as in the proof of Theorem 7, we obtain the 
required result. 
 
3.Acknowledgements  
 
This work was supported by Daegu National University 
of Education Research Grant in 2010. 
 
4. References 
 
[1] S. D. Bernardi, “Convex and Starlike Univalent Func-

tions,” Transactions of the American Mathematical Soci-
ety, Vol. 135, 1969, pp. 429-446. 
doi:10.1090/S0002-9947-1969-0232920-2 

Copyright © 2011 SciRes.                                                                                 APM 



J. H. CHOI 
 

Copyright © 2011 SciRes.                                                                                 APM 

234 

[2] B. C. Carlson and D. B. Shaffer, “Starlike and Prestarlike 
Hypergeometric Functions,” SIAM Journal on Mathe-
matical Analysis, Vol. 15, No. 4, 1984, pp. 737-745.  
doi:10.1137/0515057 

[3] N. K. Cho, O. S. Kwon and H. M. Srivastava, “Inclusion 
Relationships and Argument Properties for Certain Sub-
classes of Multivalent Functions Associated with a Fam-
ily of Linear Operator,” Journal of Mathematical Analy-
sis and Applications, Vol. 292, No. 2, 2004, pp. 470-483.  
doi:10.1016/j.jmaa.2003.12.026 

[4] A. W. Goodman, “Univalent Functions, Vol. I, II,” Po-
lygonal Publishing House, Washington, 1983.  

[5] J.-L. Liu and K. I. Noor, “Some Properties of Noor Inte-
gral Operator,” Journal of Natural Geometry, Vol. 21, 
2002, pp. 81-90.  

[6] S. S. Miller, “Differential Inequalities and Caratheodory 
Functions,” Bulletin of the American Mathematical Soci-
ety, Vol. 81, 1975, pp. 78-81.  
doi:10.1090/S0002-9904-1975-13643-3 

[7] K. I. Noor, “On Subclasses of Close-to-Convex Functions 
of Higher Order,” International Journal of Mathematics 
and Mathematical Sciences, Vol. 15, No. 2, 1992, pp. 
279-289. doi:10.1155/S016117129200036X 

[8] K. I. Noor, “On New Classes of Integral Operators,” 
Journal of Natural Geometry, Vol. 16, 1999, pp. 71-80.  

[9] K. I. Noor and M. Arif, “Generalized Integral Operators 
Related with p-Valent Analytic Functions,” Mathematical 
Inequalities Applications, Vol. 12, No. 1, 2009, pp. 
91-98.  

[10] J. Patal and N. E. Cho, “Some Classes of Analytic Func-
tions Involving Noor Integral Operator,” Journal of 
Mathematical Analysis and Applications, Vol. 312, No. 2, 
2005, pp. 564-575. doi:10.1016/j.jmaa.2005.03.047 

[11] B. Pinchuk, “Functions with Bounded Boundary Rota-
tion,” Israel Journal of Mathematics, Vol. 10, No. 1, 
1971, pp. 7-16. doi:10.1007/BF02771515 

[12] S. Ponnusamy, “Differential Subordination and Bazilevic 
Functions,” Proceedings Mathematical Sciences, Vol. 
105, No. 2, 1995, pp. 169-186. doi:10.1007/BF02880363 

[13] H. Saitoh, “A Linear Operator and Its Applications of 
First Order Differential Subordinations,” Mathematica 
Japonica, Vol. 44, 1996, pp. 31-38.  

[14] J. Sokół and L. Trojnar-Spelina, “Convolution Properties 
for Certain Classes of Multivalent Functions,” Journal of 
Mathematical Analysis and Applications, Vol. 337, No. 2, 
2008, pp. 1190-1197. doi:10.1016/j.jmaa.2007.04.055  

[15] H. M. Srivastava and S. Owa (Eds.), “Current Topics in 
analytic Function Theory,” World Scientific, Singapore, 
1992. 

 
 
 
 
 
 
 
 
 
 
 
 
 


