

Axes of Möbius Transformations in H_3^*

Chang-Jun Li, Li-Jie Sun, Na Li

School of Mathematical Sciences, Ocean University of China, Qingdao, China E-mail: changjunli7921@hotmail.com Received March 11, 2011; revised March 28, 2011; accepted April 10, 2011

Abstract

This paper gives the relationship between the positions of axes of the two nonparabolic elements that generate a discrete group and the nature including the translation lengths along the axes and the rotation angles. We mainly research the intersecting position and the coplanar (but disjoint) position.

Keywords: Geodesic, Discrete, Axis

1. Introduction

Hyperbolic 3-space is the set

$$H^{3} = \{(x_{1}, x_{2}, x_{3}) \in R^{3} : x_{3} > 0\}$$

endowed with the complete Riemannian metric

 $ds = |dx|/x_3$ of constant curvature equal to -1. A *Kleinian group* G is a discrete nonelementary subgroup of $Isom^+(H^3)$, where $Isom^+(H^3)$ is the group of orientation preserving isometries.

Each Möbius transformation of $\overline{C} = \partial H^3$ extends uniquely via the *Poincare*' extension [1] to an orientation-preserving isometry of hyperbolic 3-space H^3 . In this way we identify Kleinian groups with discrete Möbius groups.

Let *M* denote the group of all Möbius transformations of the extended complex plane $\overline{C} = C \cup \{\infty\}$. We associate with each Möbius transformation

$$f = \frac{az+b}{cz+d} \in M, ad-bc = 1$$

the matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, C)$$

And set tr(f) = tr(A), where tr(A) = a + d denotes the trace of the matrix A. Next, for each f and g in M we let [f,g] denote the multiplicative commutator $fgf^{-1}g^{-1}$. We call the three complex numbers

$$\gamma(f,g) = tr(fgf^{-1}g^{-1}) - 2$$

Copyright © 2011 SciRes.

$$\beta(f) = tr^2(f) - 4, \beta(g) = tr^2(g) - 4$$

the parameters of $\langle f,g \rangle$. These parameters are independent of the choice of matrix representations for f and g in SL(2,C), and they determine $\langle f,g \rangle$ uniquely up to conjugacy whenever $\gamma(f,g) \neq 0$.

The elements of f of M, other than the identity, fall into three types.

1) Elliptic: $\beta(f) \in [-4,0)$ and f is conjugate to $z \mapsto \mu z$ where $|\mu| = 1$.

2) Loxodromic: $\beta(f) \notin [-4,0]$ and f is conjugate to $z \mapsto \mu z$ where $|\mu| = 1$; f is hyperbolic if, in addition, $\mu > 0$.

3) Parabolic: $\beta(f) = 0$ and f is conjugate to $z \mapsto \mu z$.

If $f \in M$ is nonparabolic, then f fixes two points of \overline{C} and the closed hyperbolic line joining these two fixed points is called the axis of f, denoted by ax(f). In this case, f translates along ax(f) by an amount $\tau(f) \ge 0$, the translation length of f, f rotates about ax(f) by an angle $\theta(f) \in (-\pi, \pi]$, and

$$\beta(f) = 4\sin^2\left(\frac{\tau(f) + i\theta(f)}{2}\right)$$

In [4], F.W.Gehring and G. J. Martin have shown :

Theorem 1.1: [4] If $\langle f, g \rangle$ is discrete, if f and g are loxodromics with $\beta(f) = \beta(g)$, and if ax(f) and ax(g) intersect at an angle φ where $0 < \varphi < \pi$, then

$$\sinh(\tau(f))\sin(\varphi) \ge \lambda$$

where $0.122 \le \lambda \le 0.435$. In particular,

 $^{^{*}\}mbox{The Project-sponsored by SRF}$ for ROCS, SEM and NSFC (No.1077 1200).

 $\tau(f) \ge \mu$

where $0.122 \le \mu \le 0.492$. The exponent of $\sin(\varphi)$ cannot be replaced by a constant greater than 1.

In this paper, we will discuss the situation when ax(f) and ax(g) coplanar but disjoint. In [4], F. W. Gehring and G. J. Martin have analyzed the situation when f is loxodromic and g is loxodromic or elliptic. In the following, we will consider the condition when the two generators are elliptics.

2. Preliminary Results

Lemma 2.1: [1] Let f and g be Möbius transformations, neither the identity. Then f and g are conjugate if and only if $tr^2(f) = tr^2(g)$. **Lemma 2.2:** [4] If $\langle f, g \rangle$ is a *Kleinian group*, if f

Lemma 2.2: [4] If $\langle f, g \rangle$ is a *Kleinian group*, if f is elliptic of order $n \ge 3$, and if g is not of order 2, then

$$\left|\gamma(f,g)\right| \ge a(n)$$

where

$$a(n) = \begin{cases} 2\cos(2\pi/7) - 1 & \text{if } n = 3\\ 2\cos(2\pi/5) & \text{if } n = 4,5\\ 2\cos(2\pi/6) & \text{if } n = 6\\ 2\cos(2\pi/n) - 1 & \text{if } n \ge 7 \end{cases}$$

Lemma 2.3: [3] Suppose that f and g in M have disjoint pairs of fixed points in \overline{C} and α is the hyperbolic line in H^3 which is orthogonal to the axes of f and g. Then

$$\frac{4\gamma(f,g)}{\beta(f)\beta(g)} = \sinh^2\left(\delta \pm i\varphi\right)$$

where $\delta = \delta(f,g) = \rho(axis(f), axis(g))$ and φ is the angle between the sphere or hyperplanes which contain $ax(f) \cup \alpha$ and $ax(g) \cup \alpha$ respectively.

Lemma 2.4: [4] For each loxodromic Möbius transformation f there exists an integer $m \ge 1$ such that

$$\left|\beta\left(f^{m}\right)\right| \leq \frac{4\pi}{\sqrt{3}}\sinh\left(\tau\left(f\right)\right)$$

The coefficient of $\sinh(\tau(f))$ cannot be replaced by smaller constant.

3. Main Results

Theorem 3.1: If $\langle f, g \rangle$ is discrete, if f and g are elliptics with orders m, n respectively where $m, n \ge 3$,

then

1) If ax(f) and ax(g) intersect at an angle φ where $0 < \varphi < \pi$, then

$$\sin(\pi/n)\sin(\pi/m)\sin(\varphi) \ge \frac{\sqrt{a(3)}}{2}$$

2) If ax(f) and ax(g) are coplanar but disjoint, then

$$\sin(\pi/n)\sin(\pi/m)\sin(\delta) \ge \frac{\sqrt{a(3)}}{2}$$

and the inequality is sharp.

Proof. Let δ denote the hyperbolic distance between ax(f) and ax(g). Let φ denote the the angle between the sphere or hyperplanes which contain $ax(f) \cup \alpha$ and $ax(g) \cup \alpha$ respectively. If α is the hyperbolic line in H^3 that is orthogonal to ax(f) and ax(g), then

$$\frac{4\gamma(f,g)}{\beta(f)\beta(g)} = \sinh^2(\delta \pm i\varphi)$$

by Lemma 2.3. If ax(f) and ax(g) intersect at an angle φ , then

$$\frac{4\gamma(f,g)}{\beta(f)\beta(g)} = -\sin^2(\varphi)$$

We may assume without loss of generality that f, g are primitive elliptics. From Lemma 2.2 we can obtain $|\gamma(f,g)| \ge a(3)$, so

$$16\sin^{2}(\pi/m)\sin^{2}(\pi/n)\sin^{2}(\varphi)$$
$$=\beta(f)\beta(g)\sin^{2}(\varphi) = |4\gamma(f,g)|$$
$$\geq 4a(3)$$

that is

$$\sin(\pi/n)\sin(\pi/m)\sin(\varphi) \ge \frac{\sqrt{a(3)}}{2}$$

In the same way, if ax(f) and ax(g) are coplanar but disjoint, then

$$16\sin^{2}(\pi/m)\sin^{2}(\pi/n)\sin^{2}(\delta)$$

= $\beta(f)\beta(g)\sinh^{2}(\delta) = |4\gamma(f,g)|$
 $\geq 4a(3)$

by $\frac{4\gamma(f,g)}{\beta(f)\beta(g)} = \sinh^2(\delta)$ To show that the inequa-

lity is sharp, we let $\langle f, g \rangle$ denote the (2,3,7) triangle group where f and g are primitive with

$$f^{3} = g^{7} = (fg)^{2} = I \text{ . Then}$$

$$\gamma(f,g) = tr([f,g]) - 2 = tr^{2}f + tr^{2}g - 4$$

$$= \beta(f) + \beta(g) + 4 = 2\cos\left(\frac{2\pi}{7}\right) + 2\cos\left(\frac{2\pi}{3}\right)$$

$$= tr^{2}f + tr^{2}g - 4 = a(3)$$

Remark: In [4], according to Lemma 2.3, F. W. Gehring and G. J. Martin considered the situation when $\delta = 0$. They discuss the relationship between the angle φ , translation length of *f* and *g* or rotation angle when *f* is loxodromic and *g* is loxodromic or elliptic. Theorem 3.1 show the condition when *f* and *g* are elliptics.

Corollary 3.1: If $\langle f,g \rangle$ is discrete, if f and g are elliptics with $\beta(f) = \beta(g)$, $\gamma(f,g) \neq 0$ and if ax(f) and ax(g) intersect at an angle φ , where $0 < \varphi \le \frac{\pi}{2}$. If the order of f is k with $k \ge 3$, then

$$\sin^2\left(\frac{\pi}{k}\right)\sin\left(\varphi\right) \ge \frac{\sqrt{a(3)}}{2}$$

In particular, if ax(f) and ax(g) meet at right angles and the order of f is k, then

$$3 \le k \le 6$$

Proof. $\sin^2\left(\frac{\pi}{k}\right)\sin(\varphi) \ge \frac{\sqrt{a(3)}}{2}$ can easily seen from

the former theorem. If ax(f) and ax(g) meet at right angles, then

$$\sin^2\left(\frac{\pi}{k}\right) \ge \frac{\sqrt{a(3)}}{2} = 0.248\cdots$$

As k is an integer, so

In the following, we will consider the thing when $\varphi = 0$.

 $3 \le k \le 6$

Theorem 3.2: If $\langle f,g \rangle$ is discrete, if f and g are loxodromics with $\beta(f) = \beta(g) ax(f)$ and if ax(f) and ax(g) coplanar but disjoint, let $\tau(f)$ be the translation length of f, δ be the distance between the ax(f) and ax(g), then

$$\sinh(\tau(f))\sinh(\delta) \ge \frac{\sqrt{3d}}{2\pi}$$

where $d = 2\left(1 - \cos\left(\frac{\pi}{7}\right)\right)$.

Proof. By Lemma 2.4, we can choose an integer number $m \ge 1$ such that

$$\left|\beta\left(f^{m}\right)\right| \leq \frac{4\pi}{\sqrt{3}}\sinh\left(\tau\left(f\right)\right)$$

Then $\langle f^m, g^m \rangle$ is a discrete nonelementary group with $\beta(f^m) = \beta(g^m)$.

By Lemma 2.2 and Lemma 2.3, we can obtain

$$\frac{4\pi}{\sqrt{3}}\sinh(\tau(f))\sinh(\delta)$$

$$\geq \sqrt{\left|\beta(f^{m})\beta(g^{m})\right|\sinh^{2}(\delta)}$$

$$= \sqrt{4\left|\gamma(f^{m},g^{m})\right|}$$

$$\geq 2\sqrt{d}$$

then

$$\sinh(\tau(f))\sinh(\delta) \ge \frac{\sqrt{3d}}{2\pi}$$

As for Theorem 3.5 and Theorem 3.15 in [4], we can obtain related results in similar way when ax(f) and ax(g) coplanar but disjoint.

4. Acknowledgements

The authors want to express theirs thanks to the anonymous referee for his valuable suggestions and professor Qi-Zhi Fang for her support.

5. References

- A. F. Beardon, "The Geometry of Discrete Groups," Spring-Verlag, New York, 1983, p. 66.
- [2] C. Cao, "Some Trace Inequalities for Discrete Groups of Möbius Transformations," *Proceedings of the American Mathematical Society*, Vol. 123, No. 12, 1995, pp. 3807-3815. doi:10.2307/2161910
- [3] F. W. Gehring and G. J. Martin, "Commutators, Collars and the Geometry of Möbius Groups," *Journal d'Analyse Mathématique*, Vol. 63, No. 1, 1994, pp. 175-219. doi:10.1007/BF03008423
- [4] F. W. Gehring and G. J. Martin, "Geodesics in Hyperbolic 3-Folds," *Michigan Mathematical Journal*, Vol. 44, No. 2, 1997, pp. 331-343. doi:10.1307/mmj/1029005708
- [5] F. W. Gehring and G. J. Martin, "Inequalities for Möbius Transformations and Discrete Groups," *Journal für die Reine und Angewandte Mathematik*, No. 418, 1991, pp. 31-76. doi:10.1515/crll.1991.418.31