Axes of Möbius Transformations in $\boldsymbol{H}_{3}{ }^{\boldsymbol{*}}$

Chang-Jun Li, Li-Jie Sun, $\mathbf{N a} \mathbf{L i}$
School of Mathematical Sciences, Ocean University of China, Qingdao, China
E-mail: changjunli7921@hotmail.com
Received March 11, 2011; revised March 28, 2011; accepted April 10, 2011

Abstract

This paper gives the relationship between the positions of axes of the two nonparabolic elements that generate a discrete group and the nature including the translation lengths along the axes and the rotation angles. We mainly research the intersecting position and the coplanar (but disjoint) position.

Keywords: Geodesic, Discrete, Axis

1. Introduction

Hyperbolic 3-space is the set

$$
H^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in R^{3}: x_{3}>0\right\}
$$

endowed with the complete Riemannian metric $\mathrm{d} s=|\mathrm{d} x| / x_{3}$ of constant curvature equal to -1 . A Kleinian group G is a discrete nonelementary subgroup of $\operatorname{Isom}^{+}\left(H^{3}\right)$, where $\operatorname{Isom}^{+}\left(H^{3}\right)$ is the group of orientation preserving isometries.
Each Möbius transformation of $\bar{C}=\partial H^{3}$ extends uniquely via the Poincare' extension [1] to an orien-tation-preserving isometry of hyperbolic 3 -space H^{3}. In this way we identify Kleinian groups with discrete Möbius groups.
Let M denote the group of all Möbius transformations of the extended complex plane $\bar{C}=C \cup\{\infty\}$. We associate with each Möbius transformation

$$
f=\frac{a z+b}{c z+d} \in M, a d-b c=1
$$

the matrix

$$
\boldsymbol{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, C)
$$

And set $\operatorname{tr}(f)=\operatorname{tr}(\boldsymbol{A})$, where $\operatorname{tr}(\boldsymbol{A})=a+d$ denotes the trace of the matrix \boldsymbol{A}. Next, for each f and g in M we let $[f, g]$ denote the multiplicative commutator $f g f^{-1} g^{-1}$. We call the three complex numbers

$$
\gamma(f, g)=\operatorname{tr}\left(f g f^{-1} g^{-1}\right)-2
$$

[^0]$$
\beta(f)=\operatorname{tr}^{2}(f)-4, \beta(g)=\operatorname{tr}^{2}(g)-4
$$
the parameters of $\langle f, g\rangle$. These parameters are independent of the choice of matrix representations for f and g in $S L(2, C)$, and they determine $\langle f, g\rangle$ uniquely up to conjugacy whenever $\gamma(f, g) \neq 0$.

The elements of f of M, other than the identity, fall into three types.

1) Elliptic: $\beta(f) \in[-4,0)$ and f is conjugate to $z \mapsto \mu z$ where $|\mu|=1$.
2) Loxodromic: $\beta(f) \notin[-4,0]$ and f is conjugate to $z \mapsto \mu z$ where $|\mu|=1 ; f$ is hyperbolic if, in addition, $\mu>0$.
3) Parabolic: $\beta(f)=0$ and f is conjugate to $z \mapsto \mu z$.
If $f \in M$ is nonparabolic, then f fixes two points of \bar{C} and the closed hyperbolic line joining these two fixed points is called the axis of f, denoted by $a x(f)$. In this case, f translates along $a x(f)$ by an amount $\tau(f) \geq 0$, the translation length of f, f rotates about $a x(f)$ by an angle $\theta(f) \in(-\pi, \pi]$, and

$$
\beta(f)=4 \sin ^{2}\left(\frac{\tau(f)+i \theta(f)}{2}\right)
$$

In [4], F.W.Gehring and G. J. Martin have shown :
Theorem 1.1: [4] If $\langle f, g\rangle$ is discrete, if f and g are loxodromics with $\beta(f)=\beta(g)$, and if $a x(f)$ and $a x(g)$ intersect at an angle φ where $0<\varphi<\pi$, then

$$
\sinh (\tau(f)) \sin (\varphi) \geq \lambda
$$

where $0.122 \leq \lambda \leq 0.435$. In particular,

$$
\tau(f) \geq \mu
$$

where $0.122 \leq \mu \leq 0.492$. The exponent of $\sin (\varphi)$ cannot be replaced by a constant greater than 1 .

In this paper, we will discuss the situation when $a x(f)$ and $a x(g)$ coplanar but disjoint. In [4], F. W. Gehring and G. J. Martin have analyzed the situation when f is loxodromic and g is loxodromic or elliptic. In the following, we will consider the condition when the two generators are elliptics.

2. Preliminary Results

Lemma 2.1: [1] Let f and g be Möbius transformations, neither the identity. Then f and g are conjugate if and only if $t r^{2}(f)=t r^{2}(g)$.

Lemma 2.2: [4] If $\langle f, g\rangle$ is a Kleinian group, if f is elliptic of order $n \geq 3$, and if g is not of order 2, then

$$
|\gamma(f, g)| \geq a(n)
$$

where

$$
a(n)= \begin{cases}2 \cos (2 \pi / 7)-1 & \text { if } n=3 \\ 2 \cos (2 \pi / 5) & \text { if } n=4,5 \\ 2 \cos (2 \pi / 6) & \text { if } n=6 \\ 2 \cos (2 \pi / n)-1 & \text { if } n \geq 7\end{cases}
$$

Lemma 2.3: [3] Suppose that f and g in M have disjoint pairs of fixed points in \bar{C} and α is the hyperbolic line in H^{3} which is orthogonal to the axes of f and g. Then

$$
\frac{4 \gamma(f, g)}{\beta(f) \beta(g)}=\sinh ^{2}(\delta \pm i \varphi)
$$

where $\delta=\delta(f, g)=\rho(\operatorname{axis}(f), \operatorname{axis}(g))$ and φ is the angle between the sphere or hyperplanes which contain $a x(f) \cup \alpha$ and $a x(g) \cup \alpha$ respectively.

Lemma 2.4: [4] For each loxodromic Möbius transformation f there exists an integer $m \geq 1$ such that

$$
\left|\beta\left(f^{m}\right)\right| \leq \frac{4 \pi}{\sqrt{3}} \sinh (\tau(f))
$$

The coefficient of $\sinh (\tau(f))$ cannot be replaced by smaller constant.

3. Main Results

Theorem 3.1: If $\langle f, g\rangle$ is discrete, if f and g are elliptics with orders m, n respectively where $m, n \geq 3$,
then

1) If $a x(f)$ and $a x(g)$ intersect at an angle φ where $0<\varphi<\pi$, then

$$
\sin (\pi / n) \sin (\pi / m) \sin (\varphi) \geq \frac{\sqrt{a(3)}}{2}
$$

2) If $a x(f)$ and $a x(g)$ are coplanar but disjoint, then

$$
\sin (\pi / n) \sin (\pi / m) \sin (\delta) \geq \frac{\sqrt{a(3)}}{2}
$$

and the inequality is sharp.
Proof. Let δ denote the hyperbolic distance between $a x(f)$ and $a x(g)$. Let φ denote the the angle between the sphere or hyperplanes which contain $a x(f) \cup \alpha$ and $a x(g) \cup \alpha$ respectively. If α is the hyperbolic line in H^{3} that is orthogonal to $a x(f)$ and $a x(g)$, then

$$
\frac{4 \gamma(f, g)}{\beta(f) \beta(g)}=\sinh ^{2}(\delta \pm i \varphi)
$$

by Lemma 2.3. If $a x(f)$ and $a x(g)$ intersect at an angle φ, then

$$
\frac{4 \gamma(f, g)}{\beta(f) \beta(g)}=-\sin ^{2}(\varphi)
$$

We may assume without loss of generality that f, g are primitive elliptics. From Lemma 2.2 we can obtain $|\gamma(f, g)| \geq a(3)$, so

$$
\begin{aligned}
& 16 \sin ^{2}(\pi / m) \sin ^{2}(\pi / n) \sin ^{2}(\varphi) \\
& =\beta(f) \beta(g) \sin ^{2}(\varphi)=|4 \gamma(f, g)| \\
& \geq 4 a(3)
\end{aligned}
$$

that is

$$
\sin (\pi / n) \sin (\pi / m) \sin (\varphi) \geq \frac{\sqrt{a(3)}}{2}
$$

In the same way, if $a x(f)$ and $a x(g)$ are coplanar but disjoint, then

$$
\begin{aligned}
& 16 \sin ^{2}(\pi / m) \sin ^{2}(\pi / n) \sin ^{2}(\delta) \\
& =\beta(f) \beta(g) \sinh ^{2}(\delta)=|4 \gamma(f, g)| \\
& \geq 4 a(3)
\end{aligned}
$$

by $\frac{4 \gamma(f, g)}{\beta(f) \beta(g)}=\sinh ^{2}(\delta)$ To show that the inequality is sharp, we let $\langle f, g\rangle$ denote the $(2,3,7)$ triangle group where f and g are primitive with

$$
\begin{aligned}
f^{3}=g^{7}= & (f g)^{2}=I \text {. Then } \\
& \gamma(f, g)=\operatorname{tr}([f, g])-2=t r^{2} f+t r^{2} g-4 \\
= & \beta(f)+\beta(g)+4=2 \cos \left(\frac{2 \pi}{7}\right)+2 \cos \left(\frac{2 \pi}{3}\right) \\
= & t r^{2} f+t r^{2} g-4=a(3)
\end{aligned}
$$

Remark: In [4], according to Lemma 2.3, F. W. Gehring and G. J. Martin considered the situation when $\delta=0$. They discuss the relationship between the angle φ, translation length of f and g or rotation angle when f is loxodromic and g is loxodromic or elliptic. Theorem3.1 show the condition when f and g are elliptics.

Corollary 3.1: If $\langle f, g\rangle$ is discrete, if f and g are elliptics with $\beta(f)=\beta(g), \gamma(f, g) \neq 0$ and if $a x(f)$ and $a x(g)$ intersect at an angle φ, where $0<\varphi \leq \frac{\pi}{2}$. If the order of f is k with $k \geq 3$, then

$$
\sin ^{2}\left(\frac{\pi}{k}\right) \sin (\varphi) \geq \frac{\sqrt{a(3)}}{2}
$$

In particular, if $a x(f)$ and $a x(g)$ meet at right angles and the order of f is k, then

$$
3 \leq k \leq 6
$$

Proof. $\sin ^{2}\left(\frac{\pi}{k}\right) \sin (\varphi) \geq \frac{\sqrt{a(3)}}{2}$ can easily seen from the former theorem. If $a x(f)$ and $a x(g)$ meet at right angles, then

$$
\sin ^{2}\left(\frac{\pi}{k}\right) \geq \frac{\sqrt{a(3)}}{2}=0.248 \cdots
$$

As k is an integer, so

$$
3 \leq k \leq 6
$$

In the following, we will consider the thing when $\varphi=0$.
Theorem 3.2: If $\langle f, g\rangle$ is discrete, if f and g are loxodromics with $\beta(f)=\beta(g) a x(f)$ and if $a x(f)$ and $a x(g)$ coplanar but disjoint, let $\tau(f)$ be the translation length of f, δ be the distance between the $a x(f)$ and $a x(g)$, then

$$
\sinh (\tau(f)) \sinh (\delta) \geq \frac{\sqrt{3 d}}{2 \pi}
$$

where $d=2\left(1-\cos \left(\frac{\pi}{7}\right)\right)$.

Proof. By Lemma 2.4, we can choose an integer number $m \geq 1$ such that

$$
\left|\beta\left(f^{m}\right)\right| \leq \frac{4 \pi}{\sqrt{3}} \sinh (\tau(f))
$$

Then $\left\langle f^{m}, g^{m}\right\rangle$ is a discrete nonelementary group with $\beta\left(f^{m}\right)=\beta\left(g^{m}\right)$.

By Lemma 2.2 and Lemma 2.3, we can obtain

$$
\begin{aligned}
& \frac{4 \pi}{\sqrt{3}} \sinh (\tau(f)) \sinh (\delta) \\
& \geq \sqrt{\left|\beta\left(f^{m}\right) \beta\left(g^{m}\right)\right| \sinh ^{2}(\delta)} \\
& =\sqrt{4\left|\gamma\left(f^{m}, g^{m}\right)\right|} \\
& \geq 2 \sqrt{d}
\end{aligned}
$$

then

$$
\sinh (\tau(f)) \sinh (\delta) \geq \frac{\sqrt{3 d}}{2 \pi}
$$

As for Theorem 3.5 and Theorem 3.15 in [4], we can obtain related results in similar way when $a x(f)$ and $a x(g)$ coplanar but disjoint.

4. Acknowledgements

The authors want to express theirs thanks to the anonymous referee for his valuable suggestions and professor Qi-Zhi Fang for her support.

5. References

[1] A. F. Beardon, "The Geometry of Discrete Groups," Spring-Verlag, New York, 1983, p. 66.
[2] C. Cao, "Some Trace Inequalities for Discrete Groups of Möbius Transformations," Proceedings of the American Mathematical Society, Vol. 123, No. 12, 1995, pp. 3807-3815. doi:10.2307/2161910
[3] F. W. Gehring and G. J. Martin, "Commutators, Collars and the Geometry of Möbius Groups," Journal d'Analyse Mathématique, Vol. 63, No. 1, 1994, pp. 175-219. doi:10.1007/BF03008423
[4] F. W. Gehring and G. J. Martin, "Geodesics in Hyperbolic 3-Folds," Michigan Mathematical Journal, Vol. 44, No. 2, 1997, pp. 331-343. doi: $10.1307 / \mathrm{mmj} / 1029005708$
[5] F. W. Gehring and G. J. Martin, "Inequalities for Möbius Transformations and Discrete Groups," Journal für die Reine und Angewandte Mathematik, No. 418, 1991, pp. 31-76. doi:10.1515/crll.1991.418.31

[^0]: *The Project-sponsored by SRF for ROCS, SEM and NSFC (No. 1077 1200).

