Advances in Pure Mathematics, 2011, 1, 118-127

d0i:10.4236/ apm.2011.14024 Published Online July 2011 (http://www.SciRP.org/journal/apm)

o5 Scientific
(> )
+* Research

Discrete Pseudo Almost Periodic Solutions for Some
Difference Equations

Elhadi Ait Dads’, Khalil Ezzinbi, Lahcen Lhachimi
University Cadi Ayyad, Faculty of Sciences Semlalia, Department of Mathematics, Marrakesh, Morocco
E-mail: " eaitdads@gmail.com, ezzinbi@ucam.ac.ma, lllahcen@gmail.com
Received February 23, 2011; revised April 26, 2011; accepted May 10, 2011

Abstract

In this work, we study the existence and uniqueness of pseudo almost periodic solutions for some difference
equations. Firstly, we investigate the spectrum of the shift operator on the space of pseudo almost periodic
sequences to show the main results of this work. For the illustration, some applications are provided for a
second order differential equation with piecewise constant arguments.
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1. Introduction

Difference equations have many applications in popula-
tions dynamics, they are used to describe the evolution of
many phenomena over the course of time. For example,
if a certain population has discrete generations, the size
of the (n+1) th generation x(n+1) is a function of the
nth generation x(n). This relation expresses itself in
the following difference equation

x(n+1)=f(x(n)),neZ. Q)

The discrete processes occur in the investigation of

many phenomena, mainly in the case of use of computers.

One of the most widely adopted definition of a discrete
process can be formulated as follows: a discrete process
is a map from the additive group of the integers Z, into
a complete metric space (X,d), such as R™ or C”
with the distance function induced by the vector norm.
We use two different notations to designate a discrete
process, namely, if f:7Z — X is adiscrete process, we

shall write instead {f(n)}  or {,}

usually the subscript “n e Z ”, since no confusion can
occur (indeed, we are not going to consider in this work
discrete processes defined on a group, other than 7).

Of course, one of the most common sources for the
discrete processes is the theory of difference equations,
such as

dropping

i)
nel

X, =Ax,+b,neZ, (2)

where x, stands for the unknown process, with values
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in R™ or C" A isasquare matrix of order m with
real or complex entries and b, stands for a given
discrete process, with values in the same space as (x,,) .
In practice, we deal with solutions of (2) which are only
defined on subsets of Z, and therefore, they might be
regarded as restrictions of a “complete” process to a
subset of its domain of definition.

Difference equations and discrete dynamic systems
represent two sides of the same coin. For instance, when
mathematicians talk about difference equations, they
usually refer to the analytic theory of the subject, and
when they talk about discrete dynamic systems, they
generally refer to its geometrical and topological aspects.

More sophisticated equations (or systems) than (2) are
those described by the following discrete equation

" =f(n,xn),neZ ?3)

where f:ZxR"—>R™ (or C™) is a given map, in
general nonlinear in both arguments.

Another example, let y(n) be the size of a
population at time ». If g is the rate of growth of the
population from one generation to another, then we may
consider a mathematical model in the form

y(n+1)= py(n),u>0. 4)

If the initial population is given by y(0)=y,, then
the solutions are given by y(n)= u"y,. If x>1, then
y(n) increases infinitely, and lim y(n)=co. If x=1,

X

then y(n)=y, for all n>0, which means that the
size of the population is constant for the indefinite future.
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However, for 4 <1, we have limy(n)=0, and the

n—o

population eventually becomes extinct.

Since our main objective is to provide a criteria to get
the existence of a pseudo almost periodic solution for
equations of the form (2) or (3), we shall first review the
basic properties of pseudo almost periodic discrete
processes.

This work is motivated by the results obtained in [1,2],
and the main results would be some extension for some
well-established results in the literature, more details can
be found in [3].

This work is organized as follows. In Section 2, we
consider geometrical properties of the shift operator in
general case and, we deal with the properties of shift
operator the spaces of almost periodic and on ergodic
sequences. In Section 3, we a consider the existence and
uniqueness solutions of some difference equations using
polynomial functions. In the last section, we deal with
the application of the previous results to some second
order differential equation with a piecewise constant
argument.

2. Shift Operator Acting on the Space of
Pseudo Almost Periodic Sequences

In this section, we give some properties on pseudo
almost periodic sequences that will be used in this work.
For more details in this connexion, the reader will see
[4-12].

Definition 2.1: 4 sequence (x, ), _, with values in C"

is called almost periodic if for all &>0, the set
T(x,g) = {r €Z: forallne Z,”x

e X, || < 5} is rela-
tively dense.

The space of almost periodic sequences is denoted by
AP(Z,C™) . If m=1, we use the notation AP(Z).Let
(B,|{,) denote the space of bounded complex sequen-
ces provide with the supremum norm. PAFR,(Z) denote
the space of bounded complex sequences (x,)
satisfying the ergodicity condition

N
Iimiz

N—+0 2 N NN

x|[=0.

n

l N
Remark 2.2: lim — >’

N+ 2 N NN

x,| =0, doesn’t imply that

(x, )’EZ is bounded. In fact, let us consider the sequence
defined by

_|pifn=p°
" 10 otherwise.

Let peN besuchthat p® <N <(p+1)’. Then
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N
R NIRRT lac )

n=-N Nz 2p3 po®
For afunction f:R—C", wedefine 7(f,¢) by
T(f,g):{reR:forallteR,|f(t+r)—f(t)|<g}.

Definition 2.3: A bounded continuous function x is
said to be almost periodic if the set T(f,&) is rela-
tively dense for all €>0.

For the next AP(R,C™) denotes the space of all
almost periodic functions from R to C".

Proposition 2.4: Let meN" and x=(x,) , bea

sequence with values in C" . Let define the function X :
R —>C" by

)?(n) =x, forallneZ,

and X is affine in [n,n+1]. Then the following re-
sults are true.

1) sup|x(¢)|=sup|x,|. T(¥.6)NZT(x,) and
teR nez
X € AP(R,C™) ifand onlyif xe AP(Z,C"),
2) xe€ PAR(Z,C") ifandonlyif x € PAP(R,C").
Proof. 1) is a consequence of results taken from [1].
For the proof of 2), by taking the components, real
part and imaginary part, we can consider the case where
x € PAF(Z,R) . Then, one has
For te[n,n+1] one has
X(6)=(xp—x,)(t—n)+x, =x,,,(t—n)+x,(n+1-1)

Two cases to be considered:
alf xx,,>0

J~n+l
n

<0

)_C(t)|dt: |xn+l |2+|xn | .

b) If x x

n+l

|'xn+1|+|xn|<

2 S 2% [+, )

2 2
X, + X4 - Jn+1

x (o) e
| 'xn+1 | +3 | 'xn |

<|xn+l_xn|+|xn |S
2 2

The result is a consequence of the fact that x e

PAP,(R,R) if and only if ( j””|7c(t)|dz) e PAP(R,Z).
n 7/

ne

Definition 2.5: We define the space of pseudo almost
periodic sequences by

PAP(Z) = AP(Z) ® PAP,(Z) .

Proposition 2.6: [2] Let x e PAP(Z) be such that

APM



120 E. A.DADS ET AL.

X=y+z, for some ye AP(Z) and z € PAF(Z) Then

vl <[, -

Difference calculus is the discrete analogue of the
familiar differential and integral calculus. In this section,
we introduce some basic properties of two the following
operators that are essential in difference equations

Ax(n)=x(n+1)-x(n)
and the shift operator
Ex(n)=x(n+1).
Then
E*x(n)=x(n+k).

Let 7 be the identity operator. Then A= FE—17 and
E = A+1. The following formula are true

We should point out here that the operator A is the
counterpart of the derivative operator D in calculus.
Both operators £ and A share one of the helpful fea-
tures of the derivative operator D , namely, the property
of linearity. Another interesting difference, parallel to
differential calculus, is the discrete analogue of the
fundamental theorem of calculus.

Remark 2.7: Exponential expat in differential equa-
tions corresponds to the exponential a" and the

integral jé expa (t - s) g (S) ds corresponds to the sum-

n-1
mation: Z a" g (k)
k=0
Let us consider the linear map defined by

T:C* »C”
(xn )neZ - (xn +1)neZ'

Let F be a subspace of Bthat is invariant by T,
for example F could be one of the following spaces
AP(Z,C), PAF/(Z,C), PAP(Z,C). Let T. be the
linear map induced by 7 on F and take yeF and
PeC[X], where C[X] is the space of polynomial
functions over C. Next, we study the existence of
solutions in F for a given yeF for the following
algebraic equation
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P(TF)ny.

This equation has solutions if y e ImP(7,), but we
have to compute ImP(TF). The uniqueness problem is
equivalent to determine ker P(7,.). The following re-
sult is well-established.

Lemma2.8: Let PeC[X] be non constant. Then

ker P(T) = {(g/@"g (”))

where the A's are non zero roots of P with res-
pective multiplicities m;.
Remark 2.9: If' 0 is the unique root of P, then

ker P(T) ={0}.
Lemma 2.10: Let T, =T,
B). Then

kerP( )—vect{( ) |/1|—ll r}.

withdeg(Q,) < ml}

nez

(the restriction of T to

Proof. Let A be a complex number such that |2|=
Then

ker(T, —AI)= { 0/1" }
Let yeker(Tl—/l]) and x= ( AI)(y). Then
x+1_lxn:0andyn+1_ Yu =X

which implies that y,,, -4y, = 1"x,, and

Since Vn

is also bounded, because |4|=1, then
X, =0 and y,, =4y, also
ker(7; —/11)2 =ker(7, - A1).

By simple recurrence on m, we deduce that
forall m>1,

ker (7, ~ A1)" = ker(T, = 1) ={(c2") _:ceC].
Consequently:
ker P(T;) = 5 ker (7 - AI)"

:vect{(/li" ), iA=Lz, ’

Lemma 2.11: Let x, yeC”. Consider x*y the

sequence defined by
Z X Vn-1-k if n>0
0<k<n-1
(x*y)n = 0 if n=0
- Z X Voak if n<0.

n<k<-1
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Then (x,y)— x*y is bilinear and symmetric. More-
over, if we denoteby A, =T7-A41, then

A, (x*y):xoyﬂ-(Alx)*y

Remark 2.12: If xeC%, then x can be extended
to a function X which is of stepping type on R in the
following manner: )?:(t):x(E(t)) where E(t) de-
notes the greatest integer function of t, then one has
for x,ye CZ,

(x*y)(n) = J.Onf(t)j/(n—t)dt .

Proof. Using the above remark, one can see that the
following map (x*y)—> x*y is bilinear and symme-
tric. On the other hand, one has

Al(x*y)(n)zj.on () (n+1-t)de—A[ '%(¢) 5(n—1t)t
_j F(n+1-r)de
j F(n+1-0)de—A[ ) %(¢) §(n—r1)dt
=X, J (u+1)y(n—u)du
—Af (1) F(n—rt)dt
—xoyn+J ¥(t+1) = A%(t)) F(n—t)t
=xo3, +((A,x)*y)(n) O
In the sequel, we denote by
F = {(bn +/1”Q(n))nez, such that
(b,),, €F anddeg O < p}.
We define the following polynomials
¢ =tand cp = XX DX opl)ye e

p!

Lemma 2.13: Let yeC”and A be a complex
number such that |/1|:l, Then for peN |, the
following are true

1) (4, )p+l (CM *y) =y where c,,
2) Im(T, —A1)""

=(cramr) .
nez
={yeF: such that
C,1*Y GFM} .
Proof. 1) For p >0, we claim that
A (cwl *y) =
From lemma (2.11) one has :
A/l (Cp,/l *y) = (CM )o y+ A/l (CM )*y
= Al (

Cpan *Y

Cp,/:)*y =Chaa Y
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It follows that
forall p>0
ATl (Cp,,i *y) =A; (Co,z *J’)
= (Co,/l) y+(AACo,/1)*y =y

2) One has yelm(7T, /1)p+l if and only if there
exists xe F such that(7, /1)‘”( )= y. From lemma

(2.8)and 1) one has: x, = 2"Q(n)+(c, , *y) isin F
ifandonlyif ¢, ,*y isin F,,. o

Proposition 2.14: Let yeC”, A be a complex
number such that |/1| =1, and Q be a polynomial of
degree p. Then the following are true

Im(7;. - A1)

={yeF, such that (Q(n)/l) *yGFM}-

nez
In particular

Im(7;. —/1[)‘”1 :{yeF, such that (n"/i") *J’EFp,/:}-

nez
and
ImP (T, ) ={y e F :such that for all i e[1, ],
(78 ) 2 & P
Proof. Let ye Im(TF —/1])1”1. Then for all ¢ < p,
yelm(T, —A1)"", by lemma (2.13) we have
Forall g<p, (C/A""),,*y isin F, ,,
which is equivalent to
Forall ¢<p,(CYA"),,*y isin F,
andas (C%)s,<, isabasisof C,[X], then

(Q(n)/i" )neZ *y isin F,,.

Conversely, assume that (Q(n) A" )KZ xy isin F,,.
One has from lemma (2.11)
x*yand yarein F, , which implies that
(A, x)*yisinF, .
But

A, (0(m)2") , =((AQ)(m)2") .

nez

then
((AlQ)(n)/l" )%Z *yisinF, .,
by iteration, we see that

forall g [O,p],((AfQ)(n)ﬂ”) _*yising,
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andsince (A{Q)  (X) isabasisof C,[X], then

0<g<p
for all ReC,[X],(R(n)2") *yisinF,,,

In particular

(cramr )HEZ xyisinF, ,,

and consequently y e Im (T} —/11)‘”1. The end of the
proof results from the fact that

ImP(T, )= n Im(T, - A1)" .

1<i<r

Let = be the linear map induced by Ton AP(Z,C)

It is clear that if |4|=1, then (z—AI) is invertible.
On the other hand if the roots of P are of modulus
different from 1, then P(r) is invertible, in this case
ker P(r)={0} and we have the uniqueness of the
solutions. Let (4,).. be the roots of P with
modulus 1. Then

P(x)=[1(x-4)" 0(X)

I<i<r

where Q is a polynomial whose roots are of modulus
different from 1.
Proposition 2.15:

kerP(r) = vect{(ﬂi" )nez :|ﬂ,l.| =1,i= 1,'”,}"}.
Proof. From lemma (2.10), one has
kerP(r) = AP(Z,C)ﬂvect{(/ii" )nez ,|/1i| =1,i= 1,...,r}

= vect {(/1,.”) )

7|
ne

/Il.|:1,fori:1,...,r},

(since (4") is periodic).

It is well known that if Q,,0, € C[X] and
0, A0, =1, then
Im(0,0,)(r)=1ImQ, (r)NImQ, (7),
and
ImP(r):lm Im(z—21)".

3. Existence of Pseudo Almost Periodic
Sequences

It is known that if 4eM,(C), beAP(Z,C") and
x is a bounded solution of

X, 4 =Ax,+b,,neZ

n?

then x isalmost periodic.
If yeA4P(Z,C) and PeC[X], by transforming
the scalar equation
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PP(r)x =y,

to a system, we deduce the following lemma.

Lemma 3.1: For yeAP(Z,C) and PeC[X],
every bounded solution of P(T)(x) =y is almost
periodic.

Consequently from lemma (3.1) and the proposition
(2.14), we get the following result.

Proposition 3.2: Let A be a complex number such
that A #0, peN and Q be a polynomial with degree
p. Then
p+l

Im(z—A1)

:{yeAP(Z,C), such that (Q(n)/l”) *yeBM}.

ne’

In particular
p+l

Im(z—AI)
= {y € AP(Z,C), such that (n”/l”) L *VE Bm} '

n

and

ImP(r):{y € AP(Z,C), such that for all i e[1,7],
()

In the next, we are concerned with the solutions in
AP(Z,C) of the following equation

* y € Bm-fl,ﬂ.- }

nez

(T—I)’Hl (x)=yforpeN. (6)
Proposition 3.3: Let y € C*. Then we have
1) (T—I)"Hl(y*cp):y, (where ¢, =(C!),.,),
2) ye Im(r—])”+1 if and only if there exists be B
suchthat y*c, =b+Q with QeC [X]
3) the solutions of (‘[—I)p+l(x):y in AP(Z,C)
are x, =b,+c where ¢ isa constantand

b=y*c, - Z e,
0<k<p
o = tim *a))
4 n—>+oo n
Q= lim (y*cl)(n)_(ahch +---+0!pc,f)—").
n—+owo ,

Proof. Since (Cy) is a basis of C,[X], then

0<k<p
there exit scalars (o), ~such that 0= > ¢
. . 0<k<p
in this case, one has
y*c, =b+ Z ., . @)
0<k<p
APM
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Then, by applying (T —I)”’l to the equation (7), we
obtain
yEeg = (T—I)IF1 (b)+ap_l +a,c,
then
o = i 26)0) o
n—>+00 n

Suppose that «,,a, ,, -+ a,., are known and let us
compute «,,: by applying (T—I)k to the equation
(7), one has

y*e, , = (T—])k (b)+a, + o e+ a0+ +a,c,

SO

o, = lim (J’*cp—k)(")—(ak+2Cj +"'+apc,f7_k) |

n—+o0 n

©)

We conclude that for all y € AP(Z,C), the equation
(z-1)""(x)=y admits the solutions in 4P(Z,C) if
and only if, the limits given by equations (8) and (9)

exist and the sequence y*c,— > a,c, isbounded, in
0<k<p

this case the solutions are given by

x:y*c[)_ Z G Cye s
0<k<p

with «, isany constant and the (;),.,., aregiven by
(8)and (9). o

Remark 3.4: By a change of variables, the equation
(r—l[)ml (x) =y when |/1| =1 becomes in the pre-
vious form (6).

Indeed, let us consider the following operator

M, :AP(Z,C)— AP(Z,C)
x> (/”L"xn )nEZ .
Since tM, =AMz, then
(=AM, =AM, =AM, = AM (7 -1).
So
T—Al =AM, (r-1)M}*,
and
(=AD" =27 M, (- 1) M.
Then equation
(z'—/il)“l (x)= ¥V, (10)

becomes

differently
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p+l _ 1
(e=0)" M, (x) = My
. 1
then by putting X=M_ (x) and Y:FMfly’

and we are coming down to the following equation
(z-1)"(x)=7.

Theorem 3.5 For the general equation P(r)x =y,
the solution is of the form: x=x,+Xx,, such that

X = in , (with 1 is the number of different roots with
i=1
modulus equal to 1, x, is the solution of the equation
(r _/11_1)1%*1 (x,)=»)and x, anelementof kerP(r).
Proof. We write P under the form

P= ﬁ(X—ﬁi )lﬂ)i 0

i=1

with A's are the roots of P which are of modulus
equalto 1 and p, eN, Even if it means to replace y
by Q(T)_ly, we may come downto Q =1. Indeed let

us putting P= J] (X-4)"" , then using the
k=1,k=i
Bezout identity, we get that there exist polynomials U,
such that > AU, =1. Then y=> A4(r)y, with
i=1 i=1

¥, =U,(r)y and equation

P(7)(x)=y (11)

becomes

P(r)(x) =24, (7), (12)

then to built a solution of Equation (12), it suffices to
determine a solution x, of the following equation

(T—/iil)p[+l(xi) =y,
the solution is easily determined and after we take

x = x;. Toobtain all solutions, we add elements of
i=1

kerP(‘[):vect{</1,.") Z,lSiSr}. o

ne

Example 3.6: For all polynomial Q with all roots

are of modulus different from 1, in C[X] one has the
ro M a. .
L

——  where
=1 j=1 (X -4 )j

1
following decomposition — =

the /L.'s are two by two distinct and of modulus
different from 1, then we have
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Q(T)_1 = izi:aw. (r—/‘til)fj so we are coming down

i=1 j=1
to the case Q = (X—/l)m
First case: |/1| >1:

(A1) = (1) [ ; _%)m =" St (_Tfjk

k=0

with meN" and |/1|¢1.

sofor xe AP(Z,C) one has

( —/11)_'" x=y where y = i ct, (_ﬂ)_k_m X

pr n+k *
Second case: [4]<1
(c=a1) " = e (1-2%) " = 320, () o,
k=0
hence for x e AP(Z,C) one has

-m n—-m—k*

(r=AI)" x=ywith y, = fc" (—/‘L)kx
=0

Let (h,)  bebounded. Then we look for a bounded

solution for the following difference equation :

2x,,, —13x,,, +30x, , —28x

n+l

+8x,=4h,.

n+3

0 =2x* ~13x" +30x* —28x +8 = (2x—1)(x—2)°

1,11 2 1 41 8 1
0’ 3(x_2)3 9(x_2)2 27 x—2 272x-1
=& t8&
where
-8 1
gl-_Em

and

R S SR
%732 9(x-2f 21x-2

For %<|x|< 2, we have

=a 8 1

= 2. a =———

gl ;xn n 27 2,,
“ 11, 171 371
=Npath = e L SO
&2 Z‘)x " T ag ' T 1aa 2" 216 2

the solution x, is given by:

00
xk = Zanhk—n + anhk+n

n=1 n=0

Copyright © 2011 SciRes.
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X, = —iihk_n
n=1 27 2”

(T
o\ 482" 144 2" 216 2"

Let yePAR(Z,C) and PeC[X]. We study the
existence and uniqueness of solutions in  PAF, (Z,C) of
the following equation

P(ry)x=y,

where 7, is the linear map induced by T on
PAPR,(Z,C). Let xe PAR,(Z,C) be such that
P(7,)x = 0.From lemma (2.10), we have

kerP(z'O) = vect({(,lj” )neZ Q= 1,~-,r})mPAPO (z,C)
< AP(Z,C)n PAFR,(Z,C) = {0}.

Then we have the uniqueness of the solution.

Remark 3.7: Unlike to the almost periodic case, x
bounded and P(ro)x:y is not enough to get that
x € PAR, (Z,(C) In fact, we have the following counter
example:

X, —X, = 27‘"‘,neZ,

n+l

the solutions are given by

n-1
x0+22’k, if n>0
_xn = k_=10 ,XO S (C .
X - 2M ifn<o
k=n
Then all solutions are bounded, on the other part one
has: lim x, =x,+2 and lim x, =x,-1. If xe PAFR,

we will have x,+2=x,-1=0 which is absurd, con-
sequently, the solution is not in  PAR,.

As a consequence of proposition (2.14), we get the
following result.

Proposition 3.8: Let A be a complex number such
that A #0, peN, and QO a polynomial with degree
p. Then

p+l

Im(z,—A1)"" = {y € PAR,(Z,C) ,such that

(Q(n)2") _*ye(PaR, )}

In particular

Im(z, - A1)"" = {y € PAR,(Z,C) , such that

(n2"), +ye(Pan), .
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ImP(z,) = { € PR, (2,C), such that

T

Viell (" A, y € (PAR), }

Remark 3.9: In ergodic case, for the calculation of
the solutions, the method is similar to the one given in
the almost periodic case, firstly we begin with solution of
the following equation

(2'0 —I)p+1(x) =y, x=y*c,— Z a,c,
0<k<p
with ()., are determined by equations (8) and (9)
but this time the «, is not arbitrarily, but ¢, is the
mean value of y*c,— > ., then the existence of

1<k<p
solutions needs more y*c,— > ac, tohave a mean
1<k<p
value a, then yxc,— > a,c, €PAR.
0<k<p

Example 3.10: Let Zak be an absolutely convergent
k=0

series, PeC[X], (2,)s0 a family of complex numbers

with modulus equal 1, such that i}{rlE|P(zk)|>0 and

v, = z a,z;. Then the following equation

k=0
P(r)x=y,

has almost periodic solutions. In fact, if we put

+00

_ a,
x —_
=450z

i a .
fOI’ a“ j > 0, ! = i = k n+i
l (T (x))n X ];)—P(Zk)zk

z;,one has x, iswell defined and

it results that

+00 a +00
P(r)x) => —*—P(z)z/ =D a.z =
( ())n ;P(Zk) (k)k ];)kk Yn
the equation admits solutions in 4P(Z,C) The hypo-
thesis ik'l‘;|P(Zk)|>0 is necessary, as we remark it
through the following counter example :
&1 in
‘xn+l _xn = ];)k_zexp(F\J .

If the solution exists, then

(oo )2

and
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k—>+o0

1

which contradicts the Parsevall’s identity, we deduce that
the equation does not have a solution.

4. Application

More details and the motivation on this applications can
be found in [4,14-20] and the references cited therein.

To apply the previous results, we consider the
following system

(p _1) Xop T (1_ p)x2n—l = (% _1j Xoni2

+(1+3%+ pjx2n _prn—Z +an
x2n+l +(1_ 2p)x2n71 = _(p _q - 2)x2n _px2n72 +bn
where a,,b, € AP(Z), p,geR with ¢g=0.

Remark 4.1: The last system comes from the re-
search of solutions of the following second order
differential equation with piecewise constant argument.

%[x(t)-i— px(1-1)]= qx(z[ile )

where [.] denotes the greatest integer function.

In the case where p =1, the system has a unique
solution (x,) _ in AP(Z), here we intend to study
the situation where p =1, the system becomes

_l4q q
0= (E_lj Xpi2 +[2+3Ej Xy, =X, 5 +a,

'x2n+l - x2n71 = (1+ q)xZn - xanZ + bn !
or more

(13)

{P(T) xanZ = 2an

(r—])xh_l = ((l+ q)r—])xz,,_2 +b,,
where
P(X)=(2-q)X*—(4+3¢) X +2.

We know that P(z) is invertible if and only if the
roots of P are with modulus different from 1.

Proposition 4.2: 1) Let ay,a,,a, € R. The equation
a,x* +a,x+a, =0 has roots of modulus 1 if and only

if |a2 +a0| =|a1| or
a, = a
|a1| < 2|a0|.

2) For a, eR", the following equation

APM
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agx* +a,x* +ax+a, =0, (14)
has roots of modulus 1 if and only if
|a, +a,| = ‘a3 +a1‘
or

2 _ 2
{ao —aydy = d3 — a4y

|a2 —a0| < 2|a3|.

Proof. Itis clear that £1 are roots of (14) if and only
if |a,+a,|=|a)| If o <4a,a,, the equation admits
two conjugate complex roots which are of modulus 1 if
and only if their product is equal 1, which is equivalent
to a, =a,, the above condition becomes then |a,|<
2|a,| For the second equation, it admits +1 as roots if
and only if |a, +ag|=|a, +a|, we can assume that
a, =1, if not we divide the equation by a,, it is a
matter to prove that

2 —

a; —a,a, =1-a,
|a2 —ao| <2,

since the equation admits always a real root r, it will

have non real roots with modulus equal to 1 if and only
if it will be factorized as follows

X’ +ax’ +ax+a, = (x—r)(x2 +cx+l) with |c[ < 2,
whch implies that » = —a, is aroot, in the sequel
(—ag +a,a,—q +1)a0 =0.

If a,=0, we obtain x*+a,x+a, =0 admits com-
plex roots with modulus equal to 1 then from the
previous result, we deduce that

a =1
|a2| <2
If ag—aza0 =1-aq,, the equation can be written as
follows

3 2 - .3 2 2
X+ ax’ tax+a, = x°+a,x +<l—ao+a2a0)x+a0
=(x+a0)(x2+(a2—ao)x+l)

We will have no real roots with modulus equal to 1
if and only if |a, —a,|<2. o

Corollary 4.3: 1) If g+#—4, the roots of P are of
modulus different from 1 (we assume that q #0).

2)If g=-4, P(X)=2(X+1)(3Xx+1).

Proof: It suffices to apply the previous proposition. o

Proposition 4.4: If q# -4, the system (13) admits
solutions if and only if

a,—2b, elm(z-1).
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If g=-4, the system (13) admits solutions if and
only if

{an elm(z+1)

a,—2b, elm(z-1)
Proof. First case: g #—4: the system becomes
X,,, = 2P(z)"a,
{(T -Dx,, , = 2((1+ q)t —I)P(z’)f1 a,+b,.
This system admits solutions if and only if
2((1+ q)T—I)P(r)fl a,+b, elm(z-1),
or yet
2((1+q)r—1)an +P(7)b, elmP(z)(r—1)=1Im(z-1),

since P(r) is invertible. Make the Euclidean division
of P respectively (1+¢)X -1 by X -1, we see that
the previous condition is equivalent to

2qa, —4qb, € Im(r—]) ,
identically
a,—2b,elm(z-1).

Second case: ¢ =-4:
The system becomes

2(z+1)(3c+1)x,,_, = 2a,
(z’—[)xzﬂ_l = (—37—1)x2n_2 +b,,

equivalently

{(T+I)(3z'+1)x2n_2 =a,

Xy, = (37 + ])_1 ((1 —7)x,,4 +b, )
Let us consider the following system
(z’-i—])((l—r)thl +b)=a,
{xw =(=3c-1)"((z=1)xy1-b,).
which has solutions if and only if

{(T+I)bn —-a, € Im(‘r+l)(‘r—])
= Im(f-i-l)mlm(z'—l),

which is equivalent to

{an elm(z+1)

a,—2b, elm(z—1).
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