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Abstract 
In this paper, we will study the most important effects in the nano-scale resonator: the coupling 
effect of temperature and strain rate, and the non-Fourier effect in heat conduction. A solution for 
the generalized thermoelastic vibration of nano-resonator induced by thermal loading has been 
developed. The Young’s modulus is taken as a linear function of the reference temperature. The 
effects of the thermal loading and the reference temperature in all the studied fields have been 
studied and represented in graphs with some comparisons. The Young’s modulus makes signifi-
cant effects on all the studied fields where the values of the temperature, the vibration of the def-
lection, stress, displacement, strain, stress-strain energy increase when the Young’s modulus has 
taken to be variable. 
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1. Introduction 
Diao et al. [1] were the first who discussed the effects of the free surfaces on the structure and the elastic proper-
ties of the gold nanowires by atomistic simulations. Although the atomistic simulation is a good method to cal-
culate the elastic parameters of the nano-structured materials, it is only used to homogeneous nano-structured 
materials (e.g., nano-plates, nano-wires, nano-beams, … , etc.) with a finite number of atoms. 

Recently, nano mechanical resonators have attracted considerable attention due to their many applications on 
technology. The analysis of various effects on the characteristics of resonators, such as the resonant frequencies 
and the quality factorsis crucial for designing high-performance components. Many authors have studied the vi-
bration and the heat transfer process of nano-beams [2]-[8]. Kidawa [2] studied a problem of transverse vibra-
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tions of a beam induced by a mobile heat source. The analytical solution of the problem was obtained by using 
the Green’s functions method. While, Kidawa did not consider the thermoelastic coupling effect between the 
governing equations. Boley [3] studied the vibrations of a simply supported rectangular nano-beam affected by a 
thermal shock distributed along its span. Manolis and Beskos [4] discussed the thermally induced vibration of 
structures consisting of nano-beams, exposed to rapid surface heating. They have also studied the effects of the 
damping and the axial loads on the structural response. Al-Huniti et al. [5] investigated the thermally induced 
displacements and stresses of a rod using the Laplace transforms technique. Ai Kah Soh et al. studied the vibra-
tion of micro/nano-scale beam resonators induced by ultra-short-pulsed laser by considering the thermoelastic 
coupling term in [6] and [7]. The propagation characteristics of the longitudinal wave in nano-plates with small- 
scale effects are studied by Wang et al. [8]. 

2. Variable Young’s Modulus 
The temperature dependence of the Young’s modulus for some materials was measured in the range of 293K 
and 973 K, using the impulse excitation method and compared with literature data reported. The data could be 
fitted with [9] 

( )0
0 e T TE E BT −= − .                                      (1) 

The values of parameters E0 and T0 are related to the temperature and the parameter B to the harmonic cha-
racter of the medium. 

Farraro and Rex found that no departure from linearity was detected when they studied the dependency of the 
Young’s modulus on the temperature, and the get the linear relation [10] 

0 1E E E T= − .                                          (2) 

where 0E  is the Young’s modulus in the standard case and 1E  is constant, and they measured it for pure 
Nickel, Platinum, and Molybdenum. 

Now, we will consider the Young’s modulus depends on the temperature by the following function 

( ) ( ) *
0 0 01E T E T E Eγ≈ − = ,                                     (3) 

where γ  is constant and 

( )*
01E Tγ= − .                                           (4) 

In this paper, the non-Fourier effect on heat conduction, and the coupling effect between temperature and 
strain rate in the nano-scale beam will be studied when Young’s modulus is variable as a function of tempera-
ture. A general solution for the generalized thermoelastic vibration of gold nano-beam resonator induced by 
thermal shock will be developed. Laplace transforms and direct method will be used to get the lateral vibration, 
the temperature, the displacement, the stress-strain energy of the beam. The effects of Young’s modulus will be 
studied and represented graphically. 

3. Problem Formulation 
Since nano-beams with rectangular cross-sections are easier to fabricate, such cross-sections are commonly 
adopted in the design of NEMS resonators. Consider small flexural deflections of a thin elastic beam of length  

( )0 x≤ ≤  , width 
2 2
b bb y − ≤ ≤ 

 
 and thickness 

2 2
h hh z − ≤ ≤ 

 
, for which the x, y and z-axes are defined  

along the longitudinal, width and thickness directions of the beam, respectively (Figure 1). In equilibrium, the 
beam is unstrained, unstressed, without damping mechanism, and the temperature is T0 everywhere [6]. 

In the present work, the Euler-Bernoulli equation is considered, and then, any plane cross-section, initially 
perpendicular to the axis of the beam remains plane and perpendicular to the neutral surface during bending. 
Thus, the displacements are given by [6] [7]: 

( ) ( ) ( ),
, 0, , , , ,

w x t
u z v w x y z t w x t

x
∂

= − = =
∂

.                               (5) 
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Figure 1. Cross-sections in the design of NEMS resonators.                 

 
Thus, the differential equation of thermally induced lateral vibration of the beam may be expressed in the 

form [6] [7] [11]-[13]: 
24 2

4 * 2 2
0

0T
T

Mw A w
x E E I t x

ρ
α

∂∂ ∂
+ + =

∂ ∂ ∂
,                                 (6) 

where ρ  the density of the beam, E is Young’s modulus, I [= bh3/12] the inertial moment about x-axis, Tα  
the coefficient of linear thermal expansion, ( ),w x t  the lateral deflection, x the distance along the length of the 
beam, A hb=  is the area of the cross section and t the time and TM  is the thermal moment as follows [6] [7] 
[11]-[13]: 

2

3
2

12 d
h

T
h

M z z
h

θ
−

= ∫ ,                                          (7) 

where ( )0T Tθ = −  is the dynamical temperature increment of the resonator, T(x, z, t) is the temperature dis-
tribution, and T0 the room temperature. 

According to Lord-Shulman model (L-S), the non-Fourier heat conduction equation has the following form [6] 
[7] [11]-[14]: 

2 2 2
0

2 2 2o
C T e

t K Kx z t
υρ βθ θ

τ θ
 ∂ ∂ ∂ ∂  + = + +  ∂∂ ∂ ∂   

,                               (8) 

Where u v we
x y z
∂ ∂ ∂

= + +
∂ ∂ ∂

 is the volumetric strain, Cυ  is the specific heat at constant volume, 0τ  the thermal 

relaxation time, K the thermal conductivity, 
*

0

1 2
TE E α

β
ν

=
−

 and ν  is Poisson’s ratio. Where there is no heat 

flow across the upper and lower surfaces of the beam, so that 0
z
θ∂
=

∂
 at 2z h= ±  For a very thin nano-beam  

and assuming the temperature varies in terms of a ( )sin pz  function along the thickness direction [6] [7] 
[11]-[13], where πp h= , gives 

( ) ( ) ( )1, , , sinx z t x t pzθ θ= .                                   (9) 

Hence, Equation (6) gives 

( )
224 2

1
4 * 2 3 2

20

12 sin d 0
h

T

h

w A w z pz z
x E E I t h x

α θρ

−

∂∂ ∂
+ + =

∂ ∂ ∂ ∫                             (10) 

Moreover, Equation (8) gives 

( ) ( ) ( )
2 2 2

2 01
1 12 2 2sin sin sino

C T wpz p pz pz z
t K Kx t x

υρ βθ
θ τ θ

  ∂ ∂ ∂ ∂
− = + −  ∂∂ ∂ ∂  

                  (11) 

After doing the integrations, Equation (10) takes the form 
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24 2
1

4 * 2 2 2
0

24 0Tw A w
x E E I t h x

α θρ
π

∂∂ ∂
+ + =

∂ ∂ ∂
.                                    (12) 

In Equation (11), we multiply the both sides by z and integrating with respect to z from 
2
h

−  to 
2
h , and then  

we obtain 
22 2 2

2 01
1 12 2 2

π
24o
T h wp

t Kx t x
βθ

θ τ εθ
    ∂ ∂ ∂ ∂

− = + −    ∂∂ ∂ ∂    
,                           (13) 

where C
K

υρ
ε = . 

For simplicity, we will use the following dimensionless variables [15]: 

( ) ( ) ( ) ( )2 2 01
1

0

, , , , , , , , , ,o o o o o
o

Ex w h c x w h t c t c
E T

θσ
ε τ ε τ σ θ

ρ
′ ′ ′ ′ ′ ′ ′= = = = = .          (14) 

Then, we have 
24 2

1
1 24 2 2 0w wA A

x t x
θ∂∂ ∂

+ + =
∂ ∂ ∂

,                                   (15) 

and 
2 2 2

1
3 1 1 42 2 2o

wA A
tx t x

θ
θ τ θ

  ∂ ∂ ∂ ∂
− = + −  ∂∂ ∂ ∂  

,                              (16) 

where 

1 * 2

12A
E h

= , 2 2

24
π

t oTA
h

α
= , 2

3A p= , 
2

4
π
24

hA
K
β
ε

= . 

For convenience, we dropped the prime. 

4. Formulation the Problem in the Laplace Transform Domain 
Applying the Laplace transform for Equations (14) and (15), this is defined by the following formula 

( ) ( ) ( )
0

e dstf s L f t f t t
∞

−= =   ∫ . 

Hence, we obtain the following system 
24

2 1
1 24 2

dd 0
d d

w A s w A
x x

θ
+ + = ,                                   (17) 

and 

( )
2 2

21
3 1 1 42 2

d d
d do

wA s s A
x x
θ

θ τ θ
 

− = + − 
 

.                                  (18) 

We will consider the function η  as follows: 
2

2

d
d

w
x

η= ,                                         (19) 

Then, we have 
2

1
1 1 22

d
dx
θ

α θ α η= − ,                                    (20) 
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and 
2

3 4 1 52

d
d

w
x
η

α α θ α η= − − + ,                                    (21) 

where ( )2
1 3 oA s sα τ= + + , ( )2

2 4 oA s sα τ= + , 2
3 1A sα = , ( )2

4 2 3 oA A s sα τ= + + , ( )2
5 2 4 oA A s sα τ= + . 

Consider the first end of the beam x = 0 is clamped and loaded thermally, which gives [6] [7]: 

( ) ( )0, 0, 0w t tη= = ,                                   (22) 

and 

( ) ( )1 00, t f tθ θ= ,                                    (23) 

where 0θ  is constant. 
By using Laplace transform, the conditions will take the forms 

( ) ( )0, 0, 0w s sη= = ,                                    (24) 

and 

( ) ( )1 00, s f sθ θ= .                                    (25) 

Consider the other end of the beam x =   is clamped and remains at zero increments of temperature as fol-
lows: 

( ) ( ) ( )1, , , 0w t t tθ η= = =   .                               (26) 

After using Laplace transform, we have 

( ) ( ) ( )1, , , 0w s s sθ η= = =   .                               (27) 

After some simplifications by using MAPLE programme, we get the final solutions in the Laplace transform 
domain as follows: 

The lateral deflection 

( )
( )( )

( )( ) ( )
( )( )

( )( ) ( )
( )( )

( )( ) ( )

1 2

2 2 2 2 2 2 2 2
1 2 1 3 1 2 1 2 3 2

3

2 2 2 2
3 1 3 2 3

sinh sinh
,

sinh sinh

sinh
.

sinh

k x k x
w x s

k k k k k k k k k k

k x

k k k k k

∆ − ∆ −
= +

− − − −

∆ −
+

− −

 

 





              (28) 

The temperature 

( )
( ) ( )( )

( )( )( ) ( )
( ) ( )( )

( )( )( ) ( )
( ) ( )( )

( )( )( ) ( )

2 2
2 1 1 2 2 2

2 2 2 2 2 2 2 2 2 2
1 1 1 2 1 3 1 2 1 2 1 2 1 2

2
3 2 3

2 2 2 2 2
3 1 3 1 3 2 3

sin sinh sin sinh
, ,

sinh sinh

sin sinh
.

sinh

k pz k x k pz k x
z x s

k k k k k k k k k k k k

k pz k x

k k k k k k

α α
θ

α α

α

α

∆ − ∆ −
= − −

− − − − − −

∆ −
−

− − −

 

 





    (29) 

The displacement 

( )
( )( )

( )( ) ( )
( )( )

( )( ) ( )
( )( )

( )( ) ( )

1 1 2 2

2 2 2 2 2 2 2 2
1 2 1 3 1 2 1 2 1 2

3 3

2 2 2 2
3 1 3 2 3

cosh cosh
, ,

sinh sinh

cosh
.

sinh

z k k x z k k x
u z x s

k k k k k k k k k k

z k k x

k k k k k

∆ − ∆ −
= − −

− − − −

∆ −
−

− −

 

 





        (30) 

The Strain 
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( )
( )( )

( )( ) ( )
( )( )

( )( ) ( )
( )( )

( )( ) ( )

2 2
1 1 2 2

2 2 2 2 2 2 2 2
1 2 1 3 1 2 1 2 1 2

2
3 3

2 2 2 2
3 1 3 2 3

sinh sinh
, ,

sinh sinh

sinh
.

sinh

z k k x z k k x
e z x s

k k k k k k k k k k

z k k x

k k k k k

∆ − ∆ −
= +

− − − −

∆ −
+

− −

 

 





        (31) 

where 
( ) ( )( )( )0 2 2 2

1 1 1 2 1 3
1 2

f s
k k k

θ
α α α

α α
∆ = − − −  and 1 2 3, ,k k k± ± ±  are the roots of the equation 

6 4 2   0k lk mk n− + − = ,                                 (32) 

and 
1 5l α α= + , 1 5 2 4 3 m α α α α α= − +  and 1 3  n α α= . 

5. The Stress-Strain Energy 
The stress on the x-axis, according to Hooke’s law is: 

( ) ( )*
0, ,xx Tx z t E E eσ α θ= − .                                (33) 

By using the non-dimensional variables in (13), we obtain the stress in the form 

( ) ( )*
0, ,xx Tx z t E e Tσ α θ= − .                                (34) 

By using Laplace transform, the above equation takes the form: 

( ) ( )*
0, ,xx Tx z s E e Tσ α θ= − .                                (35) 

The stress-strain energy, which is generated by the beam, is given by 

( )
3

, 1

1 1 1, ,
2 2 2ij ij xx xx xx

i j
W x z t e e zσ σ σ η

=

= = = −∑ ,                          (36) 

We can re-write Equation (36) to be in the form 

( ) ( ) ( )1 11, ,
2 xxW x z t z L Lσ η− −   = −     ,                           (37) 

[ ]1L− •  is the inversion of Laplace transform. 
To complete the solution in the Laplace transform domain, we have to determine the type of heating which we 

have used to load the boundary of the medium thermally. 
We have applied harmonic thermal loading as follows [16]: 

( ) ( )sinf t tω= ,                                   (38) 

after using Laplace transform, we obtain 

( ) 2 2f s
s
ω
ω

=
+

,                                   (39) 

ω  is the angular frequency of thermal vibration. 

6. Numerical Inversion of the Laplace Transform 
To determine the solutions in the time domain, the Riemann-sum approximation method is used to obtain the 
numerical results. In this method, any function in Laplace domain can be inverted to the time domain as 

( ) ( ) ( )
1

e 1 π1
2

t N n

n

inf t f Re f
t t

κ

κ κ
=

  = + − +    
∑                         (40) 
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where Re is the real part and i is imaginary number unit. For faster convergence, numerous numerical experi-
ments have shown that the value of κ  satisfies the relation 4.7tκ ≈  Tzou [17]. 

7. Numerical Results and Discussion 
Now, we will consider a numerical example for which computational results are given. For this purpose, Gold 
(Au) is taken as the thermoelastic material for which we take the following values of the different physical con-
stants [18]: 

( )318 W m Kk = ⋅ , ( ) 6 114.2 10 KTα
− −= × , 31930 kg mρ = , 0 293 KT = , ( )130 J kg KCυ = ⋅ , 

180 GPaE = , 0.44υ = . 
The aspect ratios of the beam are fixed as 10h =  and 1 2b h =  when h is varied,   and b change ac-

cordingly with h. 
For the nano-scale beam, we will take the range of the beam length   ( ) 91 -100 10 m−× . The original time t 

will be considered in the picoseconds ( ) 121 -100 10 sec−×  and the relaxation time 0τ  in the range 
( ) 141 -100 10 sec−× . 

The figures (Figure 2-7) were prepared by using the non-dimensional variables which are defined in (9) for 
beam length 1.0= , 0 1.0θ =  6z h=  and 0.1t = . 
 

 
Figure 2. The temperature distribution with different cases of 
Young’s modulus.                                         

 

 
Figure 3. The lateral vibration distribution with different cas-
es of Young’s modulus.                                         
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Figure 4. The stress distribution with different cases of 
Young’s modulus.                                         

 

 
Figure 5. The displacement distribution with different cases 
of Young’s modulus.                                         

 

 
Figure 6. The strain distribution with different cases of 
Young’s modulus.                                         

8. Conclusion 
The Young’s modulus has significant effects on all the studied fields. The values of the temperature, the vibra- 
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Figure 7. The stress-strainenergy distribution with different 
cases of Young’s modulus.                               

 
tion of the deflection, stress, displacement, strain, stress-strain energy increase when the Young’s modulus is va-
riable. The peak points of all the distributions increase when the Young’s modulus is variable with large differ-
ences in the case of Young’s modulus is constant. 
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