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Abstract

A new class of reflected backward stochastic differential equations (RBSDEs) driven by Teugels
martingales associated with Lévy process and Countable Brownian Motions are investigated. Via
approximation, the existence and uniqueness of solution to this kind of RBSDEs are obtained.
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1. Introduction

Recently, Y. Ren [1] proved via the Snell envelope and the fixed point theorem, the existence and uniqueness of
a solution for the following RBDSDEs driven by a Lévy process and a extra Brownian motion with Lipschitz
coefficients, where the obstacle process is right continuous with left limits (cadlag):

Yo=e+ [ (sY.Z,)ds+ [y, (Y, . 2,)dB! +K, —K,— X[ z{aH)
i=1

where the dH' is a forward semi-martingale 1td integrals (see He et al. [2]) and the dB is a backward Itd
integral.
Note that, in all the previous works, the equations are driven by finite Brownian motions. In their recent work,
Pengju Duan et al. [3] introduced firstly the reflected BDSDESs driven by countable extra Brownian mations:
Yo=&+[ f(sY,.Z, ds+zj 9;(s.Y,.2,)dB] + K —K, — [ 'Z.aw", (1.1)

1 sy 1 sy

where the dW is the standard forward stochastic 1td integral and the dB ! is the backward stochastic 1t integral.
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Under the global Lipschitz continuity conditions on the coefficients f and g, they proved via Snell envelope and
fixed point theorem, the existence and uniqueness of the solution for RBDSDESs (1.1). Next, J.-M. Owo [4] re-
laxed the Lipschitz continuity condition on the coefficient f to a continuity with sub linear growth condition and
derive the existence of minimal and maximal solutions to RBSDEs (1.1).

Motivated by [1] [3] [4], in this paper, we mainly consider the following RBDSDES driven by a Lévy process
and countable Brownian motions, in which the obstacle process is right continuous with left limits (cadlag):

Yt=§+J'tTf 5, ,Z,) ds+zjg s,Y, ,Z ng+KT—Kt—ifz§‘>dH§i>, (1.2)
i=1

1 lg 1515

The paper is devoted to prove the existence and uniqueness of a solution for RBSDESs driven by a Lévy process
and countable Brownian motions.

The paper is organized as follows. In section 2, we give some preliminaries and notations. In section 3, we
establish the main results.

2. Preliminaries and Notations

Throughout this paper, T is a positive constant and (Q,]—', P) is a probability space on which, {B‘ O<t<T}
are mutual independent one-dimensional standard Brownian motions and {L( 0<t ST} be a R -valued pdre
jump Lévy process of the form L, =bt+I, independent of {Bl’ ;0<t ST} , Which correspond to a standard Lévy

measure v satisfying J'R (Iny)v(dy)<ew and I],g S[Cei‘y‘v(dy) <o, forevery £>0 andforsome 1>0.
Let A denote the class of P-null sets of F . For each te[O,T] , we define
é[\m/ft,?" ]th
j=1
where for any process {n,}; Fi=o{n —n;s<r<tjvN, R"=F.
Note that {]—]",t € [O,T]} is an increasing filtration and {]—;‘EJ te [O,T]} is a decreasing filtration. Thus the

collection {J—],t € [O,T]} is neither increasing nor decreasing so it does not constitute a filtration.
Let us introduce some spaces:

e H; denotes the space of real-valued processes {¢;0<t<T} such that ¢ is J -measurable, for a..
te[0.T] and B([]|n[ dt) <.

. 77; denotes the sub set of ’Hﬁ formed by the F -predictable processes;
e S2 stands for the set of real-valued, cadag, random processes {¢;0<t<T! such that ¢, is ¥ -
F t t t

measurable, for any te[0,T] and ||¢||ZZ=E(SUP|¢’1|2)<°°

e AZ denotes the space continuous, real-valued, mcreasmg processes {K;0<t<T},suchthat K, is % -
measurable forae. te[0,T], K,=0 and E(|K | )<oo

e (% denotes the set of real valued sequences (x,) ., suchthat |x|>=3" x| <.

n>1

We will denote by H> (ﬁz) and P} ((2) the corresponding spaces of ¢ -valued processes {¢,;0<t<T}
2 T 2 > T
) =B ([l ¢t) =38

such that
) dtj <o,
In the sequel, for ease of notation, we set ||||[2 =||||
Furthermore, we denote by (H @ )) the Teugels Martingale associated with the Lévy process {L[;OstsT} .
More precisely =

le

HY =¢ TV +¢, T 41, T,

where T =1 - E( M) =) —tE L(li)) forall i>1 and L are power-jump processes. Thatis, L\" =L,
and LV =Y e (AL) for i=2, with" AL =L L _.
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In [5], Nualart and Schoutens proved that the coefficients c,, correspond to the orthonormalization of the
ponnomlaIs 1 X, X2,--- with respect to the measure ude) xv(dx)+ 0?5, (dx), i.e

q,( )=CiiX +cII X -+¢;, . The martingale ® ~can be chosen to be pairwise strongly orthonormal
martingale. That is, for all i, i, (HORD) =510 ™

Definition 2.1. A solution of a (1.2) is a ttrlplet of (RXZZ xR ) -valued process (Y,Z, K), which satisfies
(1.2), and

1) (Y,Z,K)eSixPE (1) A2

2) Y, =S, Vte[0,T]; .

3) K is a continuous and increasing process with K, =0 and | (Y, -S,)dK, =0.

Throughout the paper, we let the coefficients f:Qx[0,T]xRx/* >R and g;:Qx[0,T]xRx/* >R,
the terminal value &£:Q — R and the obstacle S: Qx[O T]—)]R satisfying the following assumptions:

(H1) forall (t,y,2)e[0,T]xRx/*, f(ty.z),{g;(ty.2 )}H are F -measurable such that

E[]]f(5,0,0) ds+ Y E[ [g, (5.0,0)f ds <-+oc;

=1

(H2) forall te[0,T] and (¥;,2).(Y,.2,) e Rx?,
|f(t,yl,zl)—f(t,yz,zz)rSC(|yl—y2|2+||zl—zz||2)

|g. t,yl,zl)—g.(t,yz,zz)rSC.|yl—y2|z+ocj||zl—zz||2
where C>0, C;>0 and «; >0 are constants with z Cj<o and a= Z a; <1.
(H3) ée LZ(Q,]:T,P),I.E. & isa F -measurable random variable such that, (|§| )<oo,
(H4) S is a real-valued, cadag process such that S, is J -measurable, for a.e. te[O,T] and S; <¢& as,

with E(sup (Sl+ )2) <o, Where S = max(St,O) . Moreover, we assume that its jumping times are inaccessible
0<t<T

stopping times (see He et al. [2]).

3. The Main Results

We first establish the existence and uniqueness result for RBSDEs driven by finite Brownian motions and a
Lévy process:

Yo=&+[ f(sY,.2, ds+zj g,(s,Y,,Z,)dB! +K; —Kt—ifzg‘)ng”. (3.1)
i=1

Forany n>1, we have the following existence and uniqueness result.

Lemma 3.2. Assume (H1) - (H4). Then, there exists a unique solution (Y,Z, K) of Equation (3.1).

Proof. For n=1, we obtain the existence and uniqueness result due to Y. Ren [1]. For any n>1, we can
prove the desired result following the same ideas and arguments as in Y. Ren [1]: it is a straightforward adapta-
tion of the proofs of Theorem 2 and Theorem 3 in Y. Ren [1]. Firstly, we consider the special case that is the
function f and g, do not depend on (Y, 2), ie. f(a,ty, z)_f(a)t) 9,(ot,y,2)=9,(at), for all
(ot y,2) e 2x[0, T]><]R><€2 It suffices to replace suitably 77 and _|'1 g(s)dB, in the proof of Theorem 2

respectively by VJ 1]-“08T and ZJ J g dBJ On the other hand, it suffices to replace
e (=) (0 (s Ve Z2) -0 (s V0 22 )eB,, [lefa(sViZ,)- g (s Ve 22
Theorem 3 respectively by Z"_:lj' e (YS—YS')(g (s Y ,Z ) 9; (s Y, Z! ))d—Bg

n (T p
0o, (57, 2.) -, (s 2)f
Now, we are ready to establish the main result of this paper which is the following theorem.
Theorem 3.3. Under assumptions (H1)-(H4), there exists a unique solution (Y Z, K) €S2 xP? (Zz)x A2 of

Equation (1.2).

ds,Cand « inthe proof of

ds, >°.C; and " ;. Therefore, we omit the details.
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Proof. (Existence.) By Lemma 3.1, for any n>1, there exists a unique solution of (3.1), denoted by
(Y".2"K"),ie, (Y",2",K")eSkxP?(¢*)x AL and
DY =g+ [T f (s, 20 )ds+ Y [T, (s,¥,, 20 ) @B+ K —K! -3 [ Z00aH;
= = 3.2)
2) Y28, Yte[0,T] and [ (¥ -S,)dKS =0.

The idea consists to study the convergence of the sequence (Y",Z", K”), and to establish that its limit is a
solution of (1.2). To this end, we first establish the following estimates:

supE(sup A +J' 2 dt+|K? )</1, (3.3)
n>1 0<t<T
where A is a non-negative constant independent of n. Indeed, applying 1t6’s formulato |Y," ’ , we have
n 2
N[ +E[ zo[ ds=E[ef +2E[V f (s,¥, 20 )ds + 2E[ ¥/ dK? + Y E[ o, (s.v0.20) ds.
j=1

From assumption (H2) and Young’s inequality, for any 6 >0, we have

n n 20\ a2, 0 n on 2C n a2 0
20 £ (s,Y0,20 )<7Y Jr—c‘f(s,\(s ,zs)2 (7+49JY +0|z! 2+E|f(s,0,0)|2,
o, (s.0.20)[ <@+ 0)C, [ + (L4 0)ay |27 2+(1+%)|gj(s,o,o)|2.

Using again Young inequality, we have forany >0,
Tynqen _ T a1 2 n n\2
2E[ Y/dK = 2E[ S.dK} SEE&JEJSJ + BE(K? K.
Since

KP—K? =Y =&~ [Tf (s, 20 )ds - ng (s.v),2?7)dB! ij ), te[0,T],

2N

we have, forany te[0,T],

E(KT”—K[')ZSSE[Y” lef [T (s v020)d ‘ "9, (sv2,2!)dB! 2]
<5E( +lef +2r [ [ +cfz: +|f(s,0,0)| )ds)
+5E[Zj (1+9 4 (1+0)a, ( j|g 500|jds+j Al J
Therefore,
N[ +E[ [z s <Elef +E j((— QJY” 9Zs”z+g|f(s,O,O)|Zst+%Eos<tSJ<pT|SS|2
5/3E(Yf2+|§|2+2TjT(c Vol , )|2)ds)
+5ﬁZEj [1+9 " +(@1+0)a, |2 2+£1+%)|gj(s,O,O)|2st+5ﬂELT 2| ds

+(1+¢9)aj

Z! 2+(1+%)|gj(s,0,0)|2)ds.

+ZEI [ 1+6)C
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Consequently,

(1-58)EN,[ +[1-6-(1+0)a~55(2TC +(1+ 27| ds

(1+ )a+1]
s(1+5ﬁ)E|§|z+H%+ej (5ﬂ+1)(1+€)§; +10ﬂTc}Ej

Yn

C T
+(§+10ijL | (5,0,0)[ ds+(1+9j(l+5ﬂ ZEj l9,(5.0,0)[ ds+ﬂEsup IS,

0<s<T

l-«a 6<1—a—5/)’(2TC+a+1)
5(2TC+a+1)" l+a+58a

We choose f,6>0 such that, g< . Then, there exists a

constant c=c(e,T,C)>0, such that

2
E[y,"

Y,

2 T 2 T 2 2\ (T 2 2
SCE(|(§| +L ds+L | (5,0,0) ds+§jt |gj(s,0,0)| ds+r§£|85| ]
Applying Gronwall’s inequality, we get

Ely,"

’ < ceCTE(|§|2 +LT| f (s,0,0)|2 ds+jzo:‘j:|gj (s,0,0)|2 ds+§,§g§|ss|2j.

Therefore, we have the existence of a constant ¢, such that

) )

< clE(|§|2 +J1T |f (s,0,0)|2 ds+j§_;jtT |gj (s, 0,0)|2 ds + sup |Ss|zj,

Kn

t

which by Burkhdélder-Davis-Gundy’s inequality provides

(sup A +J' 2" ds+|K" j
0<t<T

< clE[|§| +J'0T |f (s,O,O)|2 ds +§‘IIOT |gj (s, 0,0)|2 ds +sup |SS|ZJ <.
= <s<

Now, we show that (Y",Z",K") is a Cauchy sequence in S> foZ(fz)xA;. To this end, without loss of
generality, we let m <n. Then, by difference, we obtain

Yoy =[N (s Y0 z0) - (s 0 zr ))ds+zj (9,(s.¥0.28)-g;(s, Y0, 20")) 08!

! 3 (3.4)
+ Y [Tay(s ¥ z0)dB) + [ (aKD —dKk )= D[ (200 -z )aH (.
j=m+l i=1
Applying 1t0’s formula to |Y," -Y," ? , We get
VoY =2f (YY) (s Y2 (s Yz )ds 2 ZI (Y2 -Y")g; (.Y, 2! dB!
j=m+1
+2§m:j: \& —Y;")(gj (s.v.z0)-g;(s. Y., Zs”‘))stj +2jtT (Y2 -Y") (KD ~dK?)
1
(3.5)

ds

_22;‘]: (AR FALRE AR +%mgj (s.¥0.20)-g, (SaYST,Z:')Z

s_iilj-:(z:ﬁ) _zsm(i))(zsn(i) _Z;“(J))dI:H(i)’ H(j):L.
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Taking expectation in both side of (3.5) and noting that LT (Y =Y")(dK! —dK[") <0, we have

i )

<2B[] (YY) (F (s Y0 20) - f (s, Y20 ))ds+ ZEj ‘g (s.v z)

j=m+1

vy Mz -z

ds (3.6)

Seffo(sv20) -0 sv0 20 o

Using again Young’s inequality, assumption (H2) and the estimates (3.3), we obtain,

| )

<c,Ef Jmﬂ(ﬂcj + 20, +E[} ], (s.0,0)[ ds),

VAL 1—“ zr -z

YARALR

2C © l-a

where C, :EJFZHCJ' are

Therefore, by Gronwall’s inequality, we have

2 T

E( + 'ft

which, by Burkholder-Davis-Gundy inequality provides
su +

e[swpe v+

Well, from assumptions (H1)-(H2), we have

VAR AL

z; -7

’ ds) < 2e%" Zn: (/?,TCj +Aa; + EJ'OT |gj (s,0, O)|2 ds),
j=m+1

Y," — Ym zZ!-Z77

dsj<c > (#7C, + 4 +E[; |9, (5.0.0)f s).
j=m+1

(410, + 2ty +E[; |9, (5.0,0)f 65 <o0
=t

Consequently, we get,

(squ”—Ym| +I zr -z j—)O as n,m — o, (3.7)
0<t<T

Moreover, from (3.4) together with Holder’s and Burkholder-Davis-Gundy’s inequalities, we have

Esup [K" - Km| <BE[Y, - Y"‘| +BE sup v, —Y," +6TEH AARAE f(s,Ys"‘,Zs”‘)zds
0<t<T 0<t<T
2
+6ZEI0‘gj(s,YS Y0)-g;(s. v z7) ds+GZEIO‘gj (s.v2.z0) ds
= j=m+1
T n mlI2
+6E[ |20 -z| ds
which, together with assumption (H2) and (3.7), provides
Esup [K{ - K/ ? —0, asn,m— co. (3.8)

0<t<T

Consequently, Y 2", KZ) isa Cauchy sequence in S2 xPz(fz)xAz which is a Banach space. Therefore,
there exists a process K e SZ x 3><.AZ such that

A Y| +j

(sup K| j—>0 as n — oo, (3.9
0<t<T

Now, let us show that the process (Y,Z, K) € Sﬁ xP} (KZ)X.A; satisfies our Equation (1.2). From Cauchy-

0<t<T
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Schwarz inequality, together with (H2), we have

Ujf (s.¥).z0)ds—[ £ (s.Y,, Z)ds‘ j<CTE(Tsup

0<t<T

Zn

AR Y|+j

j—)O asn — oo.

Also, by Burkhdélder-Davis-Gundy’s inequality, we get

e
su ZM0gH z<'>dH<'>)
e up| /22 am 0 [ 200

(sup J

0<t<T

SCE[ZIO ‘gj (s.¥/.20)-g, (s,YS,ZS) ds + z J'O |gj(s,YS,ZS)2
j=1 j=n+1

Now, from (H1)-(H2) and the fact that (Y,Z)e Sz xP? (fz) , We have

[icj ]Esup v, + Z(iaj ]E_[OT |2, ds + 25“ EJ'OT l9; (s,0,0)|2 ds < oo,
j=1 0<t<T i =i

jscEIOT "

and

ZIQ(SY Z!)dB! - ng s,Y,,2,)dB!

which implies that

Moreover,
n 2
E[ngj(s,Ys”,Zs”)—gj(s,Ys,Zs) ds)
j=1
<E i Tsqu Y| +aj j—>0 asn — oo,
j=1 0<t<T
Therefore,
[sup ZJ g,(s¥0.20)dB-3 [ gj(s,vs,zs)@gjﬁo, asn -,
0<t<T j=1

On the other hand, from the result of Saisho [6] (see p. 465), we have
J'OT (Y-S, )dK! > J'OT (Y,-S,)dK, P-as., asn— .

Finally, passing to the limit in (3.2), we conclude that (Y Z, K) is a solution of (1.2).
(Uniqueness.) Let (Y z' K') (i=12) be two solutions of (1.2).
Applying It6’s formula to e” |Y1 Y2| we get

e VY + e
_ zj:e/’s (Yj—Yf)( f (s,Y;_,zsl)— f (s,Yj_,zj))ds

vioyef

+2§“feﬂs (Y2 =¥2) (95 (s Y2, 22) g (5¥2,27))dB) + 2 e (V2 Y7 ) (dK! - dK?) (3.10)
—22] e’ (Y- )( zl )dH +Zj e’ |g
_ZJ' eﬂ5< )(Zl(l) Zz(j))d[H(i),H(jq )

i,j=1 s

(s,Ysl_,Zsl)—gj (s,Ysz_,Zf)2 ds
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Taking expectation in both side of (3.10) and noting that LT (Y —¥7)(dK: —dKZ) <0, we have
E(eﬁ1 vi-ve[ 4 p[ e ’ s)
<2E[le (Y2 -YE)(f (s,Y2,28)- £ (s,¥2,22))ds (3.11)

ki T
+YE[ e”|g
Sef

2 T
\ARa ' e’ |zt -2

(s Y2 Z8) =g, (s ¥2,22) ds.

Using again Young’s inequality (Zab s£a2 +1_Tab2j and assumption (H2), we obtain,

: |

ef"S

Y2 eﬂs Z: - z2

(e/”‘|Yl Y2| +,Bj e’y

[ 2¢ +J§c +—JEI ey,

l-«a

1+a Zl 22

Choosing /3> +Z-1 J 1

all te [O,T] .
On the other hand, since,

Ki—KZ =(Yy =YE) = (¥ - ¥7)- j(f(s\(1 - f(s¥2,22))ds
+zj( (s¥2.2!)-g,(s.v2,22))oB! - ZJ( ~Z2)an0, tefo,T],

we have K{=K?, ae.,forall te[0,T]. Then, we complete the proof.

,we have Y} =Y?, ae,forall te[0,T].So, we have Z!=2Z7,ae., for
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