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Abstract	

We	consider	a	wavelet‐based	solution	to	the	stochastic	heat	equation	with	random	 inputs.	Com‐
putational	methods	based	on	 the	wavelet	 transform	are	analyzed	 for	solving	 three	 types	of	sto‐
chastic	heat	equation.	The	methods	are	shown	 to	be	very	convenient	 for	solving	such	problems,	
since	the	initial	and	boundary	conditions	are	taken	into	account	automatically.	The	results	reveal	
that	the	wavelet	algorithms	are	very	accurate	and	efficient.	
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1.	Introduction	

Several applications in science and engineering involve stochasticity in input data. This is usually the result of 
the stochastic nature of the model coefficients, boundary or initial conditions data, the geometry in which the 
problem is set, and the source term. Uncertainty may also be introduced into an applied problem owing to the 
intrinsic variability inherent in the system being modelled [1]. Generally, stochastic volatility leads to random-
coefficients in model equations. 

The stochastic heat equation with random inputs (SHERI) is a stochastic partial differential equation (SPDE) 
that has received considerable attention in recent years. The approach to the solution depends on the type of 
random input present in the equation. Usually, the SHERI is analyzed and solved for only a random source term 
or for random coefficients only (see for example [2]). In this paper, we analyze the wavelet solution to the 
SHERI where both a random source term and random coefficient are present. The equation is given by: 
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In this case,  ,x t  is random coefficient and F is the random source term. In this form, the SHERI usually 
leads to a complex nonlinear solution. 

Currently, several numerical methods are available for solving SPDEs. These include the classical and popu-
lar Monte Carlo method (MCM), the stochastic Galerkin method (SGM), and the stochastic collocation method 
(SCM). It is well known that MCMs have very slow convergence rates since they do not exploit the regularity 
available in the solution of SPDE’s with respect to input stochastic parameters. Stochastic Galerkin methods and 
SCM’s tend to have faster convergence rates compared to MCM’s. However, often, scientific and engineering 
problems involve irregular dependencies of the quantity of interest with respect to the random variable. As such, 
SGM’s and SCM’s become inefficient and may not converge at all [3]. 

In order to overcome the pitfall of global approximation, localized methods are used to arrest the inefficien-
cies inherent in SCM’s and SGM’s. Adaptive wavelet collocation methods are relied upon to remedy this situa-
tion. The use of this method has the additional advantage of eliminating the dreaded curse of dimensionality. 
Moreover, it maintains a better convergence rate in addition to producing optimal approximation, not only for 
PDE's, but also, for PDE-constrained optimal problems [4]. We consider wavelet based-methods in this paper. 

Wavelet-based methods for solving differential equations may be classified in two ways, the wavelet colloca-
tion methods and the adaptive wavelet schemes. To implement the adaptive wavelet scheme, we consider a sec-
ond-generation wavelets constructed form the lifting scheme. Wavelets constructed in this form constitute a Ri-
esz basis and have compact support, the desirable properties that guarantee a multiresolution analysis and re-
quired approximation. 

The rest of the paper is organized as follows: In Section 2 we review the concept of multiresolution analysis 
in wavelet bases. This is one of the key concepts that will be used in the paper. In addition, the general proper-
ties of wavelet solutions to SPDE’s are considered. Section 3 analyzes the solution of the SHE with random co-
efficients. The stochastic heat equation with random source term is solved in Section 4, while a detail analysis of 
the full stochastic heat equation with all types of random inputs is solved and analyzed in Section 5. The paper 
ends with the conclusion in Section 6. 

2.	Preliminaries	

2.1.	Wavelets	and	Multiresolution	Analysis	

A wavelet is a function   in  2L R  such that  22 2 , ,j j x k j k Z   , is an orthonormal basis for  2L R . 
We outline here some of the ideas which are fundamental to the general approach to the theory of wavelets. The 
concept of multiresolution analysis is central to our discussions. A multiresolution analysis is a decomposition 
of the Hilbert space  2H L R  into a chain of closed subspaces  j j Z

V


 which form a sequence of succes-
sive approximation subspaces of H such that the following hold: 

1) 1j jV V   for all j Z  

2) jj
V



  is dense in  2L R  and  0jj
V




  

3)    2j jf x V f x V     for all j Z  
4)    j jf x V f x k V     for all ,j k Z  
5) Each subspace Vj is spanned by integer translates of a single function  f x . That is, for any  2f L R  

and any    0 0,k Z f x V f x k V     . All subspaces are therefore scaled versions of the central space V0. 
6) There exists a function  x , belonging to V0, such that the sequence    ,x k k Z    forms a Riesz 

basis or unconditional basis for V0. The approximation of a function    2f x L R  at a resolution 2j is defined 
as the orthogonal projection of  f x  on Vj. In general a function    2f x L R  may be approximated by its 
projection jP f  onto the space Vj. To compute the orthogonal projection requires that there exists a unique 
function    2x L R  , which property (6) assures us of. The orthogonal projection of    2f x L R  on Vj is 
then defined by: 

 , ,j j k j k
k

P f C x




                                      (2) 
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where 

   , 2 j
j k k

k

x a x k 




                                    (3) 

2.2.	Wavelets	

The goal of multiresolution analysis is to develop representations of a function  f x  at various levels of reso-
lution 2j. To achieve this we seek to expand the given function in terms of basis functions  x  which can be 
scaled to give multiple resolutions of the original function. The notion of scale implies that the function is re-
placed at a given level (scale) by the best approximation that can be drawn at that scale (subspace). We give two 
examples of the the most commonly applied wavelets. 

First, we define the Haar wavelet. Let X denote an infinite dimensional Banach space. A set   1n n
x




 in X  

such that 1nx  , for all n and such that for every x X  there is a unique sequence of scalars   1n n n
l x




, for 

which 
1 i ii

x l x



 , or 

1
0

n

i ii
x l x


   as n  is called a Schauder basis for X. A Schauder basis  nx  

for a separable Banach space X is called an absolute basis if whenever n na x  converges then 
1 i in nl
a x



  
converges for every subsequence of indices ni. The Haar orthogonal system (see for example [7]) forms an ab-
solute basis for the spaces  1pl p   . 

In the space  0,1pL , 1 p    the Haar system of functions      0 0
0 1, , ,k

m    1, 2,m   ; 1,2, , 2mk    
defined by    0

0 1x  , for all  0,1x , 

   0
1

1
1, if 0,

2

1
0, if

2

x
x

x



       
 

 

     

1 1 2
2 , if ,

2 2

1
0, if 0,1 ,

2 2

1
2 , if ,

2 2

m
m m

k
m m m

m
m m

k k
x

k k
x x

k k
x



      
     
     

 

  

and where we put    k
m x  equal to the average of the left hand and right hand limits at the finite set of points 

where it is not defined. Then the Haar system is a Schauder basis for  0,1pL , 1 p   . The Haar system of 
functions is the precursor and generalization to the Haar wavetets. The Haar wavelets are the given by: 

 
1, for 0 1

0, otherwise

x
x

 
 


                                  (4) 

 
1, for 0 1 2

1, for 1 2 1

0, otherwise

x

x x
 

   



                               (5) 

The Haar basis is convenient for  pL R , 1 p   , that is, it is an unconditional basis. It is however not 
suitable for smoother function spaces such as pH  spaces (Sobolev spaces). In this case   and   have sup-
port widths 1, hence this is an example of an orthonormal basis of compactly supported wavelets. However they 
are not suitable for the study of continuous function spaces since they would not belong to the spaces. A more 
suitable basis is the Daubechies wavelets. 

In general Daubechies wavelets depend on an integer 1N   and N even. They arise out of insisting on the 
requirement that the scaling function   be able to exactly represent polynomials of order up to, but not greater 
than p, where 2p N . Daubechies wavelets are defined in terms of their scaling functions. Thus, these (scal-
ing) functions determine the nature of the wavelet function. They are defined as follows: 

For N  , a Daubechies wavelet of class 2D N  is a function  2L    defined by: 
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     
2 1

2 1
0

2 1 2 ,
N

k

N k
k

x h x k 


 


                                (6) 

where 0 2 1, , Nh h   are filter coefficients satisfying prescribed conditions. Daubechies wavelets improves the 
simpler Haar wavelets by making use of longer filters. This results in smoother scaling functions and wavelets. 
In addition, the larger the size 2p k  of the filter, the higher is the number k of vanishing moment. A high 
number of vanishing moments leads to a better compression of regular parts of the function. However, increas-
ing the number of vanishing moments also inceases the size of the support of the wavelets, leading to problems 
in analysis at discontinuous points in a function. 

2.3.	Weak	and	Strong	Solutions	of	SDE	

Solutions of SDE’s may be classified as weak or strong. If there exist a probability space with filtration, Brow-
nian motion  B̂ t  adapted to that filtration, a process  X t  adapted to that filtration, such that  0X  has 
distribution 0F , and for all t integrals below are defined, and  X̂ t  satisfies: 

           
0 0

ˆ ˆ ˆ ˆ ˆ0 , d , d
t t

X t X X s s s X s s B s                          (7) 

then  X̂ t  is called the weak solution to the SDE 

         d , d , dX t X t t t X t t B t                              (8) 

A weak solution of the stochastic differential equation above is a triple  ,X W ,  , , F ,   0t
F  where 

 , , F  is a probability space equipped with the filtration   0t
F  that satisfies the usual conditions; X is a 

continuous,  F -adapted d -valued process and W is ans m-dimensional  tF -Brownian motion on the 
space; and the conditions: 

      2

0
, , d 1

t
b X s s X s s s                             (9) 

holds for all 0t  . Hence we have: 

           
0 0

0 , d , d , 0
t t

X t X X s s s X s s B s t                         (10) 

 X t  is called a strong solution to the equation above with initial value  0X  if for all t > 0,  X t  is a func- 
tion      , 0 , ,F t X B s s t  of the given brownian motion  B t  and  0X , integrals   

0
, d

t
X s s s  

and     
0

, d
t

X s s B s  and the integral equation below is satisfied. 

           
0 0

ˆ ˆ ˆ ˆ ˆ0 , d , d
t t

X t X X s s s X s s B s                         (11) 

2.4.	Wavelet	Approximation	to	Stochastic	Differential	Equations	

The solution of a SDE requires the evaluation of an integral of the type: 

   
0

d
t
S u B u  

where    0,1t
B t


 may be considered as a fractional Brownian motion (FBM) and S is a stochastic process. To 

accomplish this, the above stochastic integral must be approximated by representing it with respect to FBM us-
ing fractional integrals. This approximation can be used for SDE’s without explicit solution, if the equation is 
driven by fractional noise. Optimal wavelet approximations may be used to develop efficient simulations. The 
method may be summarized as follows: 

1) Obtain an approximation for fractional noise 
2) Apply an appropriate numerical scheme (for example, implicit or explicit Euler scheme) to obtain an ap-

proximation of the solution 
3) Prove the almost sure convergence of the approximation to the solution. 
Let     0,1t

B t


 denote the one dimensional FBM with hurst index  0,1H   (Gaussian random process).  

If 
1

2
H  , the classical stochastic integration is not applicable. However, by the Holder continuity of B,  
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   
0

d
T
S u B u , defined in terms of fractional integration exists. The optimal wavelet approximation of the FBM 
   0,1t

B t


 with Hurst index H is given by 

       ,2 2jH j
j k

j k

B t t k k  
 



 

                            (12) 

where   is the mother wavelet and ,j k  are i.i.d  0,1N  random variables. 
The fractional integral of the function f with respect to the function g is defined as: 

                1d 1 d
b bn

a a ba a b
f x g x D f x D g x x f a g b g a 

                      (13) 

If   ,a a pf I L a b
  ,   1 ,b b qg I L a b

   for 
1 1

1
p q
  . Let 0 1T  . We consider the fractional in-

tegral over  0,1 . Then 

                1
0 00 0

d 1 d 0+
T T

T TS u B u D S u D B u u S T B T B
  

                     (14) 

where 0 1   and 

   
 

 
   
     ,1

1
d

1

x

a a ba

f x f x f y
D f x y I x

x a x y


 

 

 
  
     

                 (15) 

   
 

 
 

   
     1 ,1

1
d

1

x

b a ba

g x g x g y
D f x y I x

b x y x




 
 

  
  
     

                 (16) 

See, for example, [6]. 

2.5.	Second	Generation	Wavelets	

Second-generation wavelets are a generalized form of bi-orthogonal wavelets. Their applications easily fit func-
tions defined on bounded domains. These wavelets form a Riesz basis for certain desirable function spaces. The 
lifting scheme is a method for constructing second generation wavelets that are no longer translates and dilates 
of a single scaling function. The lifting scheme is given by: 

12
1 1

0

ˆ
i

i i i i
j j j j

j

   


 



                                   (17) 

See, for example, [1]. 

2.6.	The	Wavelet	Stochastic	Collocation	Method	

The second generation collocation method makes the treatment of nonlinear terms in PDE’s easier to handle. 
Moreover, the use of wavelets enables the solution of differential equations with localized structures or sharp 
transitions more amenable. In order to solve such problem more efficiently, the use of computational grids that 
adapts dynamically in time to reflect local changes in the solution play an effective role. 

Wavelet-based numerical algorithms may be classified into two main types namely the wavelet-Garlekin me-
thod and the wavelet collocation method. The wavelet-Garlekin algorithm uses gridless wavelet coefficient 
space while the collocation method relies on dynamically adaptive computational grid [8]. A clear advantage of 
the wavelet-collocation method is that it facilitates the easy treatment of nonlinear terms in a stochastic partial 
differential equation. However, traditional biorthogonal wavelets are not suitable for handling boundaries. Omit-
ting the translation-dilation relationship, biorthogonal wavelets, leads to second generation wavelets [9] which 
uses second generation MRA of a function space as given below. 

Let  :jM v L j   J  where L is the function space. 
1) 1j jv v   
2) j

j
v

 J
 is dense in L, and 

3) for each j J , jv  contains a Reisz basis given by the scaling function  :j j
k k K , where jK  
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denotes some index set. 
Since j j

k v  , it follows that 1j j
k v  . Hence 

1

1
,

j

j i j
k k l l

l

h 






 
K

                                    (18) 

Here, the MRA is not based on the scaling function j
k . It is rather defined in terms of the filter coefficients 

,k lh  that satisfies (16). The resulting wavelets become the basis functions for jW , the complement of jV  in 
1jV  . It follows that 1j j jV V W   . Hence the second generation wavelets form a Reisz basis for the fun-

tional space L. It follows that wavelets at level j can be expressed in terms of the scaling functions as follows: 
1

,
j j

k k l l
l

g                                        (19) 

Since 1j j j
k V W    , it follows that 

1
, ,

j j j j
k l k m k m

l m

h h                                     (20) 

Given the scaling function coefficients j
kC , we have: 

1
,

j j j j j
k m k m l l

m l

C h C g d                                   (21) 

where 1
,

j j j
k k l ll

d g C    and 1
,

j j j
k k l ll

C h C   . 
Second generation wavelet transform may be considered in terms of filter banks, where filters not only act 

locally but may be potentially different for each coefficient. Now we can set 

   j j j
k k

k

f x C x                                   (22) 

where  j j
k kC f x . The interpolating function has the following properties: 

1) Compact support that is zero outside the interval  2 1,2 1N N   . 
2)  x  is interpolating, that is   ,0k jk  . 
3) Linear combinations of  j

k x  reproduce the polns up to degree 2 1N   
4)  x  satisfies the refinement relation 

   
1

1
,

j

j j j
k k l l

l

x h x


 






                                  (23) 

5)  x  is the autocorrelation of Daubechies scaling functions of order 2N. 
Define the detail function as: 

   j j j
m m

m

d x d x                                  (24) 

Hence      1j j jf x f x d x   . 
The lifting scheme is applied to infinite or periodic domains for the construction of the first-generation wave-

lets. The lifting scheme has the following advantages: 
1) Faster implementation of the wavelet transform by a factor of 2. 
2) No auxiliary memory required. The original signal is replaced with its wavelet transform. 
3) Inverse wavelet transform is simply the reversal of the order of operations and switching of addition and 

operations. The scaling function and mother wavelet have vanishing moments, that is 

  ,0d , 0 2 1p
pD

x x x p N                                (25) 

 d 0, 0 2 1p

D
x x x p N                                  (26) 

where D is the domain over which the wavelets are constructed. 

2.7.	Grid	Adaptation	

Consider the function  f x  defined on a closed interval  . Consider the grid 
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 : ,j j j
kx k j   G H                               (27) 

where the grid points j
kx  may be uniformly or nonuniformly placed. For nested grids, 1j jG G  we must 

have 1
2

j j
k kx x  . From the secon generation wavelets we have: 

     
0

1
0 0

0 j

J
J j j

k k l l
jk l

f x C x d x 


 

  
K L

                          (28) 

[8]. Let ε denote the prescribed threshold, then the approximation Jf  may expressed as the sum of two terms 
made up of wavelets whose amplitude is above and below the threshold. That is: 

   J J Jf f x f x                                     (29) 

where 

     
0

1
0

0
0

j
l

J
J k j j

k l l
jk

d

j

l

f x C x d x



 








   
K L

                          (30) 

   
1

0
j
l

J
J j j

l l
j

d

j

l

f x d x












  
L

                                (31) 

Hence 

    1
J Jf x f x C                                   (32) 

and the number of significant wavelet coefficients N  is bounded by ε as 
1 2

2
NC  N                                    (33) 

where the coefficients iC  depend on  Jf x . Thus 

    2
3

J Jf x f x C 
  NN                              (34) 

The adaptive grid is calculated as follows: 
1) Sample  f x  on the grid JG  
2) Perform the forward wavelet transform to obtain the values of  0 0

kC kK  and   , 0 1j j
ld l j J   L . 

3) Analyze wavelet coefficients j
ld  and create a mask M for the grid points j

kx , associated with wavelets 
for which j

ld  . 
4) Incorporate into the mask M all grid points associated with the scaling functions at the coarsest level of res- 

olution. 
5) Starting from 1j J   level of resolution, recursively extend the mask to include grid points of the 

coarser level of resolution necessary for computing wavelet coefficients at level j hat are masked by the mask M. 
The process of grid adaptation for the solution of PDE’s is made up of the following steps [10]: 
1) Use the values of the solution  J

kU t  at tG   computational grid to compute the values of wavelet coef-
ficients corresponding to each component of the solution using forward wavelet transform. 

2) Analyze wavelet coefficients j
ld  and creat a mask M for the grid points k

jx , associated with wavelets for 
which j

ld  . 
3) Extend the mask M with grid points associated with type I or II adjacent wavelets. 
4) Perform the reconstruction check procedure to obtain a complete mask M. 
5) Construct the new computational grid t t

G , which will be used for the next step of time integration. 
When solutions of differential equations are intermittent in both space and time, methods combining adjust-

able time step with spatial grid to obtain approximate solutions. However, several problems depend on small 
spatial scales that are highly localized and as such, using a uniformly fine grid does not necessarily lead to and 
efficient method of solution. To address this concern, locally adapted grids are appealed to. 

Wavelets can be used to used as an efficient tool to develop adaptive numerical methods capable of limiting 
the global approximation error associated with the numerical scheme. In addition to being fast, such wavelet- 
based schemes are asymptotically optimal when applied to elliptic differential equations [10] [11]. Moreover, 



A.	Y.	Aidoo,	M.	Wilson	
 

 
2233

they are fast. 
The second generation adaptive wavelet can be used to discretize PDE’s as follows: 

inu f L                                      (35) 

onu g B                                     (36) 

where L  is a general partial differential operator, B  an operator that defines applicable boundary condi-
tions, and  0,D T   , where nD   , T  . Here, Ω is an open, connected, and bounded set with boun- 
dary  . We denote a point in Ω by  T

1 2 1, , , nx x x x   . Consider the multiscale decomposition 

 
0

, .
J

j j
k k

j k

u d x J
 

   
K

                              (37) 

where   is a localized basis function and j
kd  are the expansion coefficients. The truncated sum  JU x  is a 

good approximation of  u x  at level J. it follows that 

      d 0.J J
kU x U x x x x


                              (38) 

In order to construct grid points that adapt to intermittent solution, we consider the collocation points j
kx  

such that j
kd  . That is: 

 1
2: , , ,j j j j j

k k k kG x x x k j d      H L                       (39) 

The second generation wavelet decomposition takes the form: 

   
0

j
k

J
J j j

k k
j

d

k
U x d x









 
H

                               (40) 

[9] This approximation is known as nonlinear approximation in wavelet basis. The method is a combination of 
the fast second generation wavelet transform with finite difference approximation of derivatives. 

3.	The	Case	of	Random	Input	Coefficient	

In real thermal environments, the heat transfer coefficient of media surfaces are subject to temporal and spatial 
variations due to several factors [12]. However, accurately predicting spatial distribution of the heat transfer co-
efficient is very complicated since these external influences are usually nonlinear and are fleeting in nature [13]. 
In addition, the complexity is compounded by a measurement uncertainty of more than fifty percent for the 
overall heat transfer coefficients of heat transfer surfaces during heat exchangers [14]. Due to the inherent un-
certainties described above, the distribution of temperature and thermal stresses in media is analyzed taking into 
account probability theory. The stochastic heat equation devoid of a source term but characterized by a random 
input is given by 

u
u

t


 


                                      (41) 

with    0,u x f x . The solution depends on the nature of the random coefficient, κ. If κ is a constant, the 
above equation simply becomes the standard heat equation with the solution given by: 

  0e tu t u                                       (42) 

If κ is random, three possible approaches to the solution are possible. Two of these methods are provided by 
[15]. We outline the third method here. We assume that the stochastic input coefficient κ satisfies  ,x   is 
positive and uniformly bounded almost surely, that is: 

  min max: , , 1P x x D                                   (43) 

In this case the solution is a complex nonlinear function of the coefficient κ [16]. A reasonably approximate 
solution may be obtained by applying the stochastic collocation method or the adaptive wavelet stochastic me-
thod [1]. This method exploits the properties of compactly supported wavelet that form Reisz bases. When im-
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plemented as interpolating wavelet bases, they induce norms that are 2
pL -stable, and they constitute a stable 

multiresolution analysis of the stochastic space 2
pL . In addition the composition of the wavelet basis eliminates 

the difficulty associated with solutions made up of dense stiff matrices. The number of wavelet coefficients at 
each resolution 2J is approximately constant [17]. 

We assume a stochastic solution of the form: 

     
0

,
N

i i
i

u x t U x W t


                                  (44) 

where W0 = 1 and  0U x  is the mean solution and  iW t  is the wavelet basis [18]. where 0 < κmin < κmax < ∞. 
Here,  , : 1, 2, , 2N

j k j    is a wavelet Riesz basis for  2L D  where J denotes the scale parameter. The 
expansion represents a stochastic process in the form of a linear combination of orthonormal wavelet basis. We 
assume that the stochastic source is controlled by an independent Wiener process on a complete probability 
space  , , F P  [19]. 

To obtain the approximation given by the equation above which yields an optimal wavelet basis by minimiz-
ing the total mean square error, we consider the sample space Ω equipped with the  -algebra F  and the 
probability measure P . Together they form the probability space  , , F P . Let 

       
1

, i i i
i

u x t u x t x  




                               (45) 

where  u x  denotes the mean of  u x , and where   1 1
,i i

x 



 are eigenpairs of the covariance kernel 

 ,C x y . That is, for 

           , , ,C x y u x t u x u y t u y                             (46) 

and 

     , d
D
C x y y y x                                 (47) 

and the random variables   
1i i

t



 are defined by: 

        1
, di iD

i

t u x t u x x x 


                            (48) 

where  i t  are of zero mean and uncorrelated. 

4.	Stochastic	Heat	Equation	with	Source	Term	

We consider the heat equation with an additional forcing term. The quation now becomes: 

,
u

u F
t


  


                                    (49) 

A weak solution may be given as 

     0 0
, e e , d

t t stu t x u F s t s                                (50) 

where e t  is a smooth kernel. While this solution is valid for several distributions F, it is not valid for all. We 
consider the case where F is a space-time white noise. For any fixed location in space, the solution to the SHE  

which is almost Holder-
1

4
. However the solution has temporal regularity resembling Brownian Motion (BM). 

The greatest difficulty encountered in solving this problem involves the representation of the source term. [20] 
[21] have shown that spectral methods can be relied upon to obtain an accurate enough solution. Thus, we as-
sume a solution of the form: 

     
0

, , ,
N

k
k

u x t u x t  


                                (51) 

where uk are deterministic coefficients and 1 , 1, ,i N   are orthogonal wavelet basis, instead of multidi-
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mensional Hermite polynomials [22]. Similar to the Karhunen-Loève expansion, this method generates optimal 
basis. This means that truncating the first L levels of wavelet resolution yields enough accuracy. The approxima-
tion of the function  u x  can be represented as: 

   
0

jJ
J j j

k k
j k Z

u x C x
 

                                 (52) 

For any intermediate resolution level j (0 ≤ j < J) we have 

     1
j

j j j j
k k

k

u x u x C x






  


                             (53) 

where    00 0 0
k kk

u x C x


   and apply the wavelet collocation method (see for example [5]). 

Ususlly,      
0

, , d ,d

t
u t x G t s x y F s y     where G is the fundamental solution to the problem  

2

2
0

u u

t x

 
 

 
. 

5.	SHERI	

We consider the partial differential equation with random inputs in the form: 

         , , , , , , , in 0,tu x t a x u x t f x t D T                           (54) 

   , , 0 on 0,u x t D T                                 (55) 

   0, ,0 , onu x u x D                                (56) 

where   denotes the gradient operator with respect to x D , with the assumption that  
  min max: , 1P a a x a D      , with min max0 a a    . For finite dimensional noise, the stochastic 

coefficient  , ,a x t  satisfies the condition above and  , ,f x t  satisfies: 

    min max: , , , , 0,1 1P f f x t f x D t                            (57) 

where min maxf f     . In addition, the stochastic input data have the form: 

     0
1

, , ,
N

n n
n

d x t y d x t 


                              (58) 

where N   and    1 , , : N
Ny y y       is a real-valued vector of independent random vari-

ables [1] [23]. 
Using polynomials that have the property of diagonal interpolation matrix, leads to the stochastic collocation 

method. We re-formulate the problem by letting D denote a bounded domain in d ,  1, 2,3d   and Ω, F , 
P denote a complete probability space, where Ω denotes the sample space and 2F , the  -algebra of 
events and  : 0,1P F  is a probability measure. The representation of a general second-order random 
process by generalized polynomial [24]. This leads us to consider the stochastic initial boundary value problem: 

Theorem 1. Find  : 0, nU D T    such that P-almost surely in Ω. 

    
    
 0

in 0,

subject to on 0,

on 0

a u f D T

b u g D T

u u D t

 

  

  

L

B                         (59) 

where L  denotes the differential operator and B  denotes a boundary operator. 
The above problem may be solved using Lagrange Interpolation in parameter space. Let   1

M

k k
y


 denote a set 

of distinct points in parameter space, and let     
1

M

k k
y


 P  denote a set of basis functions. We seek the 

approximation     2
, ;0,

hM MU L W D T  P  of the solution u of the problem above, of the form: 
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     ,
1

, , ,
h

M

M M k k
k

U y x t C x t y


                              (60) 

After solving for the finite element approximation of the solution  , ,ku y x t , we solve for the finite element 
approximation of each interpolation point in the set  

1

M

k k
y


. The coefficients   

1
,

M

k k
C x t


 are then deter-

mined by imposing the condition: 

     
1

, , , , 1, , .
h

M

l l k M k
l

C x t y U y x t k M


                          (61) 

Instead of using global polynomial interpolating spaces, piecewise polynomial interpolation spaces requiring 
only a fixed polynomial degree is needed. this method is based on refining the grid used and is suitable for 
problems having solutions with irregular behavior. 

For each parameter dimension 1, ,n N  , define  2: p
n nV L  . The required approximation is based on a 

sequence of subspaces  
0n

n i
V




 of V of increasing dimension 

ni
M  which is dense in nV , that is, 

0n ni i nU V V


  . 
The sequence of spaces must be nested in the wavelet multiresolution analysis of the form: 

10 1 2 n ni i nV V V V V V


         

where 

  : 0 2n n

n n

i i
i j n nV span y j    

and where ni  represents the scaling level of all the basis functions  ni
ny  with compact support (that is, 

   2n n

n

i i
jsupp  ◯ , and n

n

i
j  is a polynomial of degree p). For n N-dimensional problem, define  2N

pL   . 
Then the sequence of subspaces n

lV  of nV  is given by 

 
1 1| |

: 0 2n n

n n

NN
i in

l i j n n
n ni l i l

V V span y j
  

     
 
                        (62) 

where  1, , N
Ni i i     is a multi-index and 1 Ni i i l    . The finer subspaces N

lV  are defined as the 
direct sum 

1

1
0

, where
l

N N N N N
l l l l l m

m

V v W W V v





                            (63) 

hence we have: 

0 1
N N N

L LV V W W                                   (64) 

The hierarchical sparse-grid approximation of L is given by: 

        
,

0

, , , , ,
h m

i

L
N i i

M L j j
l i l j B

U y x t I U y x t c x t y
  

                     (65) 

where     
,

2, , ;0
h m

N
M LU y x t V L W D T   and :N n N

L lI V V  denotes the approximation operator, 
 

1
n

n

N ii
j jn

 


  denotes a multi-dimensional hierachical polynomial. The iB  multi-index is defined by: 

0 2 , odd,1 , if 0
.

0,1;1 , if 0

ni
N n n n

n n

j j n N i
j

j n N i


       
     

  

The approximation spaces   N
p LV   and the chosen basis have the following properties: 

1) 1, 0,1, ,n nV V n N    

2) Supp    1
1

2
N

nn n

n

N ii
jn

 


 ◯  

3)  ijO  is an interpolating basis for iV  
4) There is a constant C, independent of the level L, such that 

 2

2 22

0

2
p

j

L
i l
j L

l i l j B

C CL u


  

   
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For example, consider the hat function: 

   1 , if 1,1

0, otherwise

y y
y

   
 


 

The major disadvantage of this that the linear hierarchical basis does not form a stable multiscale splitting of 
the approximation scale. The scheme does not ensure efficiency and optimality with respect to complexity as 
previously claimed. 

A multi-resolution wavelet approximation though similar, performs better to achieve optimality since it pos-
sesses the additional property: 

5) Riesz Property: The basis i
j  is a Riesz basis. Hence there exists a constant 0RC  , independent of the 

level L for all  LI u , the following is true 

2 21

0 0N
j j

L L
i L i

R j N R j
l i l j B l i l j B

C C I C C




     

                             (66) 

By implication, other methods without this property are not 2
pL  stable. 

6.	Conclusion	

Analytical	Error	Estimates	

Suppose the wavelet decomposition is truncated at level J, we define the residual of the truncation by 

     jr x u x u x                                     (67) 

This error is a function of the wavelet thresholding parameter   and the order of the wavelets. If  u x  is a 
sufficiently smooth function, there exits   such that j

kd  , j J  . Hence the residual approximation at 
level J is bounded above [25]-[27], and 

  ~ , 0.Jr x                                       (68) 

     
2

~ , 0.
i i

p m nm J
x xD u x D u x N                              (69) 

Wavelets can handle periodic boundary conditions efficiently. Moreover, the use of antiderivatives of wavelet 
bases as trial functions smoothen singurarities in wavelets. The basic principle is summarized as follows: 

1) Represent the geometric region for the bvp in terms of wavelet series. 
2) Represent the functions defined on the boundary and on the interior of the region in terms of wavelet series 

defined on a rectangular region containing the domain. 
3) Convert the differential equation to some weak form. 
4) Formulate and solve the wavelet Garlerkin problem for the domain and differential equation, using local-

ized wavelets as orthonormal basis. 
An important property of this method is that the coding for the solution is independent of the geometry of the 

boundary [28]. The wavelet basis is more efficient than finite element basis for the approximation of the bound-
ary measure. The associated error E is given by: 

 

 

2

2

j
f L

L

U u
E

u






                                     (70) 

We have shown that wavelet-based solution to the stochastic heat equation with random inputs is stable. 
Computational methods based on the wavelet transform are analyzed for every possible type of stochastic heat 
equation. The methods are shown to be very convenient for solving such problems, since the initial and bound-
ary conditions are taken into account automatically. The results reveal that the wavelet algorithms are very ac-
curate and efficient. 
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