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Abstract 

The maximum of k numerical functions defined on pR , p 1≥ , by ( ) ( ) ( ){ }kf x f x f xmax 1max , ,= 
, 

px R∀ ∈  is used here in Statistical classification. Previously, it has been used in Statistical Dis-
crimination [1] and in Clustering [2]. We present first some theoretical results on this function, 
and then its application in classification using a computer program we have developed. This ap-
proach leads to clear decisions, even in cases where the extension to several classes of Fisher’s li-
near discriminant function fails to be effective. 

 
Keywords 
Maximum, Discriminant Function, Pattern Classification, Normal Distribution, Bayes Error, 
L1-Norm, Linear, Quadratic, Space Curves 

 
 

1. Introduction 
In our two previous articles [1] and [2], it is shown that the maximum function can be used to introduce new ap-
proaches in Discrimination Analysis and in Clustering. The present article, which completes the series on the 
uses of that function, applies the same concept to develop a new approach in classification that can be shown to 
be versatile and quite efficient. 

Classification is a topic encountered in several disciplines of applied science, such as Pattern Recognition 
(Duda, Hart and Stork [3]), Applied Statistics (Johnson and Wichern [4]), Image Processing (Gonzalez, Woods 
and Eddins [5]). Although the terminologies can differ, the approaches are basically the same. In pR , we are in 
the presence of training data sets to build discriminant functions that will enable us to do some classification of a 
future data set into one of the C classes considered. Several approaches are proposed in the literature. The Baye-
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sian Decision Theory approach starts with the determination of normal (or non-normal) distributions if  go-
verning these data sets, and also prior probabilities iq  (with sum 

1 1C
ii q

=
=∑ ) assigned to these distributions. 

More general considerations include the cost i jc  of misclassifications, but since in applications we rarely 
know the values of these costs they are frequently ignored. We will call this approach the common Bayesian one. 
Here, the comparison of the related posterior probabilities of these classes, also called “class conditional distribu-
tion functions”, is equivalent to compare the values of i i ig q f= , and a new data point 0x  will be classified into  
the distribution 

0i
g  with highest value of ( )0ig x , i.e. ( ) ( ){ }0 0 0maxi jj

g g=x x .  

On the other hand, Fisher’s solution to the classification problem is based on a different approach and remains 
an interesting and important method. Although the case of two classes is quite clear for the application of Fish-
er’s linear discriminant function, the argument and especially the computations, become much harder when we 
are in the presence of more than two classes. 

At present, the multinormal model occupies, and rightly so, a position of choice in discriminant analysis, and 
various approaches using this model have led to the same results. We have, in pR , 1p ≥  

( )
( )

( ) ( )11
2

1 22

1 e ,
2π

p
pf R

−′− − −
= ∈

x x
x x

Σ

Σ

µ µ
                         (1) 

1) For discrimination and classification into one of the two classes, we have the two equations: 

( ) ( )
( )

( ) ( )11
2

1 22 e , 1, 2,
2π

i i ii
i i i p

i

q
g q f i

−′− − −
= = =

x x
x x

Σ

Σ

µ µ
 

and their ratio ( ) ( ) ( ) ( )1 2 1 1 2 2g g q f q f=x x x x , supposing the cost of misclassification can be ignored. 
2) In general, using the logarithm of ( )g x  we have: 

( ) ( ) ( ) ( ) ( )11 1ln ln 2π ln ln .
2 2i i i i i i ig p qφ −′= = − − − − + +x x x xΣ Σµ µ               (2) 

Expanding the quadratic form, we obtain:  

( )i i i iφ ′ ′= + +x xA x B x C , 

where  

1 12, ,i i i i i
− −= − =A BΣ Σ µ  and ( )11 ln 2π ln ln .

2i i i i i ip q− ′= − + + +C Σ Σµ µ              (3) 

This function ( )iφ x  is called the quadratic discriminant function of class iπ , by which we will assign a 
new observation to class 

0i
π  when ( )

0 0iφ x  has the highest value among all ( )0iφ x . Ignoring iA ,  
( )i i iθ ′= +x B x C  is called the linear discriminant function of class i. We will essentially use this result in our 

approach.  
An equivalent approach considers the ratio of two of these functions  

( ) ( ) ( )1,2 1 2φ φ∆ =x x x                                  (4) 

and leads to the decision of classifying a new observation as in class 1π  if this ratio is larger than 1. 
The presentation of our article is as follows: in Section 2, we recall the classical discriminant function in the 

two-class case when training samples are used. Section 3 formalizes the notion of classification and recalls sev-
eral important results presented in our two previous publications, which are useful to the present one. Section 4 
presents the intersections of two normal surfaces and their projections on Oxy. Section 5 deals with classifica-
tion into one of C classes, with 2C > . Fisher’s approach for multilinear classification is briefly presented there, 
together with some advantages of our approach. In Section 6, we present an example in classification with 

4C = , solved with our software Hammax. The minimum function is studied in Section 7 while Section 8 
presents the non-parametric approach, as well as the non-normal case, proving the versatility of Hammax. 

2. Classification Rules Using Training Samples 
Working with samples, since the values of , 1, 2,i i =Σ  are unknown, we use plug-in values of the means and 
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variances and obtain the following results: 
1) 1 2= =Σ Σ Σ  using *S  and , 1, 2i i =x   
The decision rule is then: 
For a new vector 0x , allocate it to class 1π  if 

( ) ( ) ( ) ( ) ( )
1 1* *

1 2 0 1 2 1 2
1 1ln
2

q
q

− −  −′ ′− − − + ≥  
 

x x S x x x S x x ,                 (5) 

and to class 2π , otherwise. Here *S  is the estimate of the common variance matrix Σ , and can be obtained 
by pooling 1S  and 2S .  

We can see that the discriminant function ( )ld x  is linear in x , since  

( ) ( ) ( ) 1*
1 2

−′= − −ld x x x S x A ,                              (6) 

where ( ) ( ) ( )
1*

1 2 1 2
1
2

−′= − − +A x x S x x  and 0 1π∈x  if ( )0 0≥ld x . 

2) Different covariance matrices: 1 2≠Σ Σ  
For a new vector 0x , we consider the quadratic discriminate function ( )qd x , and allocate it to 1π  if 

( ) 1 1 1 1
0 1 1 2 2 0 0 1 2 0

1 1ln
2

qk
q

− − − −  −   ′ ′ ′= − − − − ≥       
qd x x S x S x x S S x ,                (7) 

and to 2π , otherwise, where  

( ) ( )1 1
1 2 1 1 1 2 2 2ln

.
2

k
− −′ ′+ −

=
S S x S x x S x

 

3. Classification Functions 
3.1. Decision Surfaces and Decision Regions 
Let a population consist of C disjoint classes. We now present our approach and prove that for the two class case 
it coincides with the method in the previous section. 

Definition 1. A decision surface ( )D x  is a surface defined in 1pR +  that separates points assigned to a 
specific class, from those assigned to other classes.  

Definition 2. Let { } 1

C
i i i i

g q f
=

=  be a finite family of densities { } 1

C
i i

f
=

, with prior weights { } 1

C
i i

q
=

, with  

( ) ( ) ( ){ }max 1max , , , p
Cg g g R= ∈x x x x

. 

A max-classification function { }igϕ  is a mapping from a domain pRΩ ⊂  into the discrete family 
{ }1,2, ,C , defined as follows: 

For a value 0 ∈Ωx , { } ( )0 0ig iϕ =x , s.t. ( ) ( )
0 0 max 0ig g=x x . 

3.2. Properties of gmax(⋅) 
There are several other properties associated with the max function and we invite the reader to look at these two 
articles [2] and [1], to find: 

1) Clustering of densities using the width of successive clusters. 1L -distance between 2 densities is well-known 
but does not apply when there are more than 2 densities. Let us consider k densities  

( ) , 1, , ,if i k=x   with 3k ≥  and let 

( ) ( ) ( ) ( ){ }max 1 2max , , , , p
kf f f f R= ∀ ∈x x x x x

. 

A 1L -distance between all densities taken at the same time, cannot really be defined, and the closest to it is a 
weighted sum of pairwise 1L -distances. However, using maxf , we can devise a measure which could be consi-
dered as generalized 1L -distance between these k functions, since it is consistent with other considerations re-
lated to distances in general. This measure is 
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( )1 2 max1
, , , d 1pk R

f f f f≡ −∫ x x
 

and is slightly different than the case 2k = . We have the double inequality 

1 2 11 1
max 2 , , ,i j k i ji j i j

f f f f f f f
<

− ≤ ≤ −∑∑ . 

2) Considering now { }max max ig g= , we study the basic properties of maxg , and its role as a classifier. Sev-
eral original results related to 1L -distances, overlapping coefficients and Bayes errors, are established, for two 
and more densities. This error can be shown to be ( )max1 dg− ∫ x x  and several applications were presented. 

From [6] and [7], we have the double inequality 

{ } { } ( )max1 1

1 1max min d 1 ,
2 pi j i i jRii j i j

g g q g g g
k<

 
− + ≤ ≤ − + 

 
∑∑∫ x x  

with Bayes error given by  

( ) ( ) ( )1,2, , max
1 11 d , , ,p

q
k R

Pe g q
C C

    = − =  
 ∫ x x





 
since ( )max dpR

g∫ x x  still represents the unconditional probability of correct classification. 

4. Discrimination between 2 Classes 
For simplicity and for graphing purpose we will consider only the bivariate case 2p =  in the rest of the article. 
However, all arguments can be applied to the case 2p > , and the basic answer on the classification of a new 
data point is still provided. 

4.1. Determining the Function gmax 

Our approach is to determine the function maxg  and use it with the max-classification function { }igφ . This is  

achieved by finding the regions of definition of maxg  in 2R , i.e. by determining their boundaries as projections 
onto the horizontal plane of intersections between transformed normal surfaces ( ){ } 3, ix g x R∈ , and the value 
of { }max,x g  there.  

1) For the two-class case we show that this approach is equivalent to the common Bayesian approach recalled 
earlier in Section 2. First, from Equation (6), equation ( ) 0=ld x  determines precisely the linear boundary of 
the two adjacent regions where max 1g qf=  and ( )max 21g q f= −  respectively, and hence the two approaches 
are equivalent in this case. Second, from Equation (7), ( ) 0=qd x  also determines the quadratic boundary (ies) 
of the region separating max 1g qf=  from ( )max 21g q f= −  since the two surfaces 1g  and 2g  intersect each 
other along curves which have quadratic projections (Straight lines, Ellipses, Parabolas or Hyperbolas) on the 
horizontal plane. But whereas the common Bayesian approach only retains only the linear, or quadratic, boun-
dary for decision purpose, maxg  retains a partial surface on each side of the boundary and atop of the horizontal 
plane. This fact makes the max-classification function much more useful. 

When the dimension of p exceeds 2 we have these projections as hyperquadrics, which are harder to visualize 
and represent graphically.  

2) For the C classes case, 2C > : In general, when there are C classes the intersections between each of the 

2
C 
 
 

 couples of normal surfaces { }if  are space curves in 3R , and their projections into the horizontal plane  

determine definition regions of maxf . 
These regions are given below. Once they are determined they are clearly marked down as assigned to class i, 

or to class j, and the family of all these regions will give the classification regions for all observations. Naturally, 
definition regions for maxg  are deformations of those of maxf , but have to be computed separately since there is 
no rules to go from one set of regions to the other. They are identical only in the case 1 2 1Cq q q C= = ⋅⋅⋅ = = . 

4.2. Intersections of Normal Surfaces 
In the non-normal case, the intersection space curve(s), and its projection, can be quite complex (see example 6). 
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Below are some examples for the normal case. 
Two normal surfaces, representing 1f  and 2f , always intersect each other along a curve, or two curves in 
3R , which, when projected in the (x, y)-plane, give(s) a quadratic curve, whose equation can be obtained by 

solving 1 2f f= , where  

( )
( )

( ) ( )11
2

1 22

1 e , 1,2
2π

i i

i p
i

f i
−′− − −

= =
x x

x
Σ

Σ

µ µ
. 

In 2R , taking the logarithm, we have: 

( ) ( )

2 2

2

2

1ln , 2
2 1

1ln , 1,2.
2π 1

i i i i

i i i i

i i

x x y y
i i

x x y yi

x y i

x x y y
f x y

i

µ µ µ µ
ρ

σ σ σ σρ

σ σ ρ

       − − − −
 = − − +             −        

 
 + =
 − 

 

Equaling the two expressions we obtain equations of the projections (in the horizontal plane) of the intersec-
tions curves in 3R . There are several cases for these intersections, depending on the values of the mean vectors 
and the covariance matrices. We do not give them here, to avoid confusion, but they are sketched in the appen-
dix and are available upon request. Instead, we give clear examples and graphs of the different cases. 

1) A straight line (when covariance matrices are equal), or a pair of straight lines, parallel or intersecting each 
other. 

2) A parabola: This happens when 1 2≠µ µ  and 
1 2x xσ σ  and 

1 2y yσ σ . 
Example 1.  

Let 1

5.00
1.43
 

=  
 

µ , 2

4.58
2.97
 

=  
 

µ , 1

2 2
2 5
 

=  
 

Σ , 2

1 1
1 4
 

=  
 

Σ  and 1 20.6325, 0.5ρ ρ= = . 

Figure 1 shows the graph of { }1 2max ,f f  in 3D where the intersection of these two normal surfaces is a 
parabola. 

maxf ’s boundary: The equation of this parabola is 
20.5 2.85 1.3066 4.4 0x x y− + + − =  

 

 
Figure 1. maxf  3D-view. 
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3) An ellipse: When 1 2=µ µ , and 1 2ρ ρ= . 
Example 2.  

Let 1 2

4
4
 

= =  
 

µ µ , 1

0.3525 0.2714
0.2714 0.3790
 

=  
 

Σ , 2

2.2031 1.6962
1.6962 2.3687
 

=  
 

Σ , 1 2 0.7425ρ ρ= = , (
2 1

2.5x xσ σ=  

and 
2 1

2.5y yσ σ= ). 

Figure 2 shows the graph of { }1 2max ,f f  in 3D, where the intersection of these two normal surfaces is an 
ellipse. 

The equation of this ellipse is  
2 25.3114 7.6069 4.94 12.0634 9.0923 38.6461 0x y xy x y− + − − + =  

4) A hyperbola: This happens when 1 2≠µ µ  and 
1 2x xσ σ≠ , 

1 2y yσ σ≠ . 

Example 3. Let 1

1.5
1.0
 

=  
 

µ , 1

1.80 0.27
0.27 1.00
 

=  
 

Σ , 1 0.16ρ = , 2

1.0
1.0
 

=  
 

µ , 2

3.00 1.45
1.45 1.00
 

=  
 

Σ , 2 0.84ρ = . 

Figure 3 shows the graph of { }1 2max ,f f  in 3D, where the intersection of these two normal surfaces is a  
 

 
Figure 2. maxf ’s 3D view. 

 

 
Figure 3. maxf ’s 3D view. 
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hyperbola. 
The equation of this hyperbola is 

2 20.562 3.049 2.3702 2.4957 1.8133 1.3936 0.x y xy x y− + − − + + =  

5. Classification into One of C Classes (C ≥ 3) 
The maxg  function is quite simple when the three class covariance matrices are equal, as can be seen from Fig-
ure 4(a). Then the discriminant functions are all straight lines intersecting at a common point. These lines are 
projections of normal surface intersection curves. 

In the case these matrices are unequal they can intersect according to a complicated pattern, as shown in Fig-
ure 4(b). 

5.1. Our Approach 
For normal surfaces of different means and covariance matrices, in the common Bayesian approach we can use 
(6) or (7), or equivalently, classify a new value 0x  into the class 0j  such that ( ) ( ){ }0 0 0maxj jj

φ φ=x x . In 
the common Bayesian approach, we have the choice between: 

1) One against all, using the ( )1C −  discriminant functions (6), with the dichotomous decision each time: 
0x  is in group j or not in group j. 
2) Two at a time, using ( )1 2C C −  expressions (6) or (7) with regions delimited by straight lines or qua-

dratic curves, each expression classifies new data as in iC  or jC .  
As pointed out by Fukunaga ([8], p. 171) these methods can lead to regions not clearly assignable to any group.  
In our approach, we use the second method and compile all results so that 2R  is now divided into disjoint 

sub-regions, each having a surface atop of it, which constitute the graph of maxg  in 3R . Then, for a new ob-
servation 0x , to classify it we just use the max-classification function { }igϕ  given in Definition 2. 

5.2. Fisher’s Approach  
It is the method suggested first [9], in the statistical literature for discrimination and then for classification. It is 
still a very useful method. The main idea is to find, and use, a space of lesser dimensions in which the data is 
projected, with their projections exhibiting more discrimination, and being easier to handle.  

1) Case of 2 classes. It can be summarized as follows:  
2, 2, 1 1C p r p= = = − = : Projection into a direction which gives the best discrimination: Decomposition of 

total variation  
,T W B= +S S S  

with 1 2W = +S S S  and ( )( ) ,
i

i i i
D∈

′= − −∑
x

S x m x m  1

k i
i k

Din ∈

= ∑
x

m x , 1, 2.i =  We then search for a direction 

w  such that  

( )
2

1 2
2 2

1 2

m m
J

s s
−

=
+

w
 

 

 

is maximum, where im  and 2
is  are projected values into that direction. We have ( )1

1 2W
−= −w S m m  with 

( )( )1 2 1 2B
′= − −S m m m m . 

Fisher’s method in this case reduces to the common Baysian method if we suppose the populations normal. 
Implicitly it already supposes the variances equal. But Fisher’s method allows the consideration that variables 
can be can enter individually, so as to measure their relative influence, as in analysis of variance and regression. 

2) Fisher’s multilinear method (extension of the above approach due to CR Rao): C classes, of dimension p 
and 1r C p= − < .  

Projection into space of dim r : Decomposition of total variation in original space: 

( )( )T
′= − −

x
S x m x mΣ , 1

1 C
i ii n

n =
= ∑m m , T W B= +S S S , with 
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(a) 

 
(b) 

Figure 4. (a). maxg  3D-view in the case of three equal covariance matrices; (b) maxg  3D-view in the case of three 
unequal covariance matrices. 
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( )( )1 i

C
W i ii D= ∈

′= − −∑ ∑ xS x m x m , 

( )( )1 .C
B i i ii n

=
′= − −∑S m m m m  

The projection from a p-dim space to a ( )1C − -dim space is done with a matrix W  and we have ′=y W x . 
Using y , let the projected quantities be ,W W′=S W S W  B B′=S W S W . We want to find the matrix W  so  
that the ratio ( ) B WJ =W S S   is maximum. Solving 0B i Wλ− =S S  to obtain iλ  and then solving  

( ) 0B i W iλ− =S S w  to have eigenvectors iw , we obtain the matrix W , which often is not unique. Within the 
( )1C − -dim space a probability distribution can be found for the projected data, which will provide cut-off val-
ues to classify a new observation into one of the C classes.  

We can see that Fisher’s multilinear method can be quite complicated. 

5.3. Advantages of Our Approach  
Our computer-based approach offers the following advantages: 

1) It uses concepts at the base: Max of { } 1

C
i i

g
=

, and is self-explanatory in simple cases. It avoids several ma-
trix transformations and projections of Fisher’s method, which could, or could not be done.  

2) The determination of the maximum function is essentially machine-oriented, and can often save the analyst 
from performing complex matrix or analytic manipulations. This point is of particular interest when this analysis 
concerns vectors of high dimensions. To classify a new observation 0x  into the appropriate group, say 0j , it 
suffices now to find the index 0j  so that ( ) ( )

0 0 max 0jg g=x x . This operation can always be done since C is 
finite.  

3) Complex cases arise when there are a large number of classes, or a large number of variables (high value 
for p). But as long as the normal surfaces can be determined the software Hammax can be used. In the case 
where p is much larger than the sample sizes, we have to find the most significant dimensions and use them only, 
before applying the software. 

4) It offers a visual tool very useful to the analyst when 2p = . The full use of the function maxg  in 3R  
necessitates the drawing of its graph, which could be a complex operation in the past, but not now. In general, 
the determination of the intersections between densities (or between ig ) in 1pR + , and their projections into 

pR , gives more insights into the problem: in classical statistical discriminant analysis, we only deal with these 
projections, and do not consider the curves in pR , of which they are projections (Equation (6) and Equation 
(7)). Hence, for any other family of densities which has the same intersections in pR  as those already consi-
dered, we would have the same classification rule. For 3p ≥  integration of maxg  is carried out using an ap-
propriate approach (see [1]) and classification of a new data point can again be made. 

5) Regions not clearly assignable to any group, are removed with the use of maxg , as already mentioned.  
6) For the non-normal case, maxg  can still provide a simple practical approach to classification, as can be 

seen in Example 6, where maxg  does allow us to derive classification rules. [10] can be consulted for this case. 
7) It permits the computation of the Bayes error, which can be used as a criterion in ordering different classi-

fication approaches. Naturally, the error computed by our software from data is an estimation of the theoretical, 
but unknown, Bayes error obtained from population distributions. 

6. Output of Software Hammax in the Case of 4 Classes 
The integrated computer software developed by our group is able to handle most of the computations, simula-
tions and graphic features presented in this article. This software extends and generalizes some existing routines, 
for example the Matlab function Bayes Gauss ([5], p. 493), which is based on the same decision principles. 

Below are some of its outputs, first in the case of classification into a four-class population. 
Example 4. Numerical and graphical results determining maxg  in the case of four classes in two dimensions 

1 2 3 4, , ,f f f f , i.e. ( )~ , , 1, 2,3, 4i i iN i =X Σµ , with 

1 2 3 4

40 48 43 38
, , ,

20 24 32 28
X X X X       

= = = =       
         
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1 2

35 18 28 20
,

18 20 20 25
S S

−   
= =   −   

, 

3 4

15 25 5 10
,

25 65 10 70
S S

−   
= =   −   

 

{ }max 1 1 2 2 3 3 4 4max , , ,g q f q f q f q f= , where 1 2 3 40.25, 0.20, 0.40, 0.15q q q q= = = = . Figure 5 gives the 3D 
graph of maxg  in Oxyz (with projections of the intersection curves onto Oxy): 

To obtain Figure 6 we use all intersection curves given in Figure 7 below. 
In this example we have all hyperbolas as boundaries in the horizontal plane. Their intersections will serve to 

determine the regions of definition of maxg . Figure 8 below shows us these regions. 
Classification: For the new observation, for example (25, 35), we can see that it is classified in 4C .  
Note: In the above graph, for computation purpose we only consider maxg  within a window [ , ] [ , ]a b c d×  in 

Oxy, with 18.06a = , 61.94b = , 3.32c = , 56.68d = . We can show that outside this window the values of 
the integrals of 1 1 4 4, ,q f q f  are negligible and using these results we can compute ( )2 max d 0.7699

R
g =∫ x x . 

7. Risk and the Minimum Function  
1) When risk, as the penalty in misclassification, is considered in decision making we aim at the min risk ra-

ther than the max risk. In the literature, to simplify the process, we usually take the average risk, also called Bayes 
 

 
Figure 5. 3D Graph of maxg . 

 

 
Figure 6. Regions in Oxy of definition of maxg . 
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Figure 7. Projections of intersection curves of ig  surfaces onto Oxy. 

 

 
Figure 8. Points used to determine definition regions of maxg . 

 
risk, or the min of all max values of all different risks, according to the minimax principle. 

We suppose here that risk iR  has if  as its normal probability distribution, function of 2 variables x and y,  
and various competing risks { } 1

C
k k

R
=

 are present. 

A minimum-classification function { } ( ),
ig x yψ  is defined similarly to { } ( ),

ig x yφ . 

Definition 4. A min-classification function { }igψ  is a mapping from a domain pRΩ ⊂  into the discrete 
family { }1, 2, ,C , defined as follows: 

For a value 0 ∈Ωx , { } ( )0 0ig iψ =x , s.t. ( ) ( )
0 0 min 0ig g=x x . 

2) A relation between the max and min functions can be established by using the inclusion-exclusion prin-
ciple: 

( ) ( ) ( ) ( )1
max 11 min , min , , 1 min , , .kk

i i j i j l ki i j i j lf f f f f f f f f−

= < < <
= − + + ⋅⋅ ⋅ + −∑ ∑ ∑ 

 
Integrating this relation we have a relation between ( )max df∫ x x  and various integrals on the minimums of 
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subgroups of { } 1

C
i i

f
=

. For classification purpose we classify a new set of data ( )0 0,x y  as belonging to the  

class having the lowest risk at that point. The function ming  represents the minimum risk, but is, however, the 
invisible part of the graphs since it lies below all surfaces ig . 

Example 5. The four normal distributions are the same as in Example 1 but represent the densities of the 
risks associated with the problem. Using the same prior probabilities the function ming  is given by Figure 9(a) 
while its definition regions are given by Figure 9(b). 

For ming , similarly to maxg , we can approximately compute ( )min d 0.007546g =∫ x x . 
Remarks: a) For the two-population case this integral is also the overlap coefficient and can be used for infe-

rences on the similarity, or difference between the two populations.  
b) The boundaries between regions defining maxg  are in general linear or quadratic curves coming from the 

intersections of normal surfaces. Boundary between regions defining ming  can be simpler since they might not 
come from these intersections. 

8. Applications and Other Considerations 
8.1. The Software Hammax 
This software has been developed by our research group and is part of a more elaborate software to deal with 
discrimination, classification and cluster analysis, as well as with other applications related to the multinormal 
distribution. This software is in further development to be interactive and more user-friendly, and has its own 

 

 
(a) 

 
(b) 

Figure 9. (a). 3D-graph of ming  in Oxyz; (b). Regions defining ming . 



T. Pham-Gia et al. 
 

 
677 

copyright. It will also have more connections with social sciences applications. 

8.2. The Non-Parametric Density Estimation Approach 
A more general approach would directly use data available in each group to estimate the density of its distribu-
tion. The maxg  function approach to classification would then follow, exactly as for the normal case. But, un-
less we approximate the density obtained by parametric methods, different regions of definition of maxg  can 
only be obtained empirically, to be used in the classification of a new data 0x . Densities of all classes are now 
estimated by the classical kernel density estimation method for two variables, 1x  and 2x . Using the kernel 

( )
21 exp

22π
tK t

 −
=  

 
, 

they are estimated by 

( )
1

1 1 2 2
1 2

01 2 1 2

ˆ ˆ1, , 1, , ,
n

j j
i

j

x x x x
f x x K K i C

nh h h h

−

=

 − −     = =    
     

∑   

where ( )1 2ˆ ˆ,j jx x  is the j-th observation. Optimal values for 1h  and 2h  has been discussed by various authors 
([11]). We refer to [1] where a numerical example was redone, using density estimation. Also, we have the as-
sociated function *

maxg . The Bayes error 
( ) ( )2
1 3 *

1,2 max1 d 0.125
R

Pe g   = − =∫ x x , 

computed by simulation, gives the same value as for the parametric normal case. 

8.3. Non-Normal Model 
As stated earlier an approach based on the maximum function is valid for non-normal populations. We construct 
here an example for such a case.  

Let us consider the case where the population density ( )1 1 2,f x x  in [ ]20,1 , given by 

( ) ( )2
1 1 2 1, ; , ,i i i iif x x h x α β

=
=∏  

where ( ); ,i i i ih x α β , 1, 2i = , are independent standard beta densities of the first kind, i.e. 

( ) ( ) ( )11; , 1 ,ii
i i i i i i i ih x x x Betaβαα β α β−−= − , 

with , 0i iα β > , and 0 1ix≤ ≤ .  
Similarly, we have: 

( ) ( )2
2 1 2 1, ; , ,i i i iif x x xk γ δ

=
=∏  

where ( ); ,i i i ixk γ δ  are also independent beta densities. 
Example 6. For 1 3α = , 1 6β = , 2 4α = , 2 7β = , 1 4γ = , 1 5δ =  and 2 6γ = , 2 5δ =  and 0.35q = , 

the maxg  function is defined in [ ]20,1  by 

( ) ( ) ( ){ }max 1 2 1 1 2 2 1 2, max 0.35 , ,0.65 ,g x x f x x f x x=  

We can see that the last two functions intersect each other along a curve in 3R , the projection of which in 
2R  is the discriminant curve giving the boundary between the two classification regions, as given by Figure 10, 

with an equation which is neither linear nor quadratic, since its expression is 

( )
( )

( )
2

1 1
1 12 3

1 1 1

7 1 2
, 0 1,

7 1 2 13

A x x
f x x

A x x Bx

− +
= ≤ ≤

− + +
 

where ( ) ( )4,5 6,5A beta beta=  and ( ) ( )3,6 3,7B beta beta= . Figure 10 illustrates this case. 
This curve will serve in the classification of a new observation in either of the two groups.  
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Figure 10. Two bivariate beta densities, their intersection and its projection. 

 
Any data above the curve, e.g. (0.2, 0.6), is classified as in Class 1. Otherwise, e.g. (0.2, 0.2), it is in Class 2. 

Numerical integration gives  
( ) ( )2
0.35

1,2 max1 d 0.1622.
R

Pe g= − =∫ x x  

9. Conclusion 
The maximum function, as presented above, gives another tool to be used in Statistical Classification and Anal-
ysis, incorporating discriminant analysis and the computation of Bayes error. In the two-dimensional case, it al-
so provides graphs for space curves and surfaces that are very informative. Furthermore, in higher dimensional 
spaces, it can be very convenient since it is machine oriented, and can free the analyst from complex analytic 
computations related to the discriminant function. The minimum function is also interested, has many applica-
tions of its own, and will be presented in a separate article. 
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Appendix 
In 2R , taking the logarithm, we have the equations for a family of quadratic curves:  

2 2
11 12 22 1 22 2 2 0a x a xy a y a x a y a+ + + + + = , 

where,  

( ) ( )2 1

11 2 2 2 2
2 1

1 1
2 1 2 1x x

a
σ ρ σ ρ

= −
− −

, 

( ) ( )2 1

22 2 2 2 2
2 1

1 1
2 1 2 1y y

a
σ ρ σ ρ

= −
− −

, 

( ) ( )2 2 1 1

2 1
12 2 2

2 11 1x y x y

a ρ ρ
σ σ ρ σ σ ρ

= −
− −

, 

( ) ( )
2 2 1 1

2 2 1 12 1

2 1
1 2 22 2

2 1

1 1 ,
4 1 4 1

x y x y

x y x yx x

a
µ ρ µ µ ρ µ

σ σ σ σσ σρ ρ

   
= − + − − +      − −   

 

( ) ( )
2 2 1 1

2 2 1 12 1

2 1
2 2 22 2

2 1

1 1 ,
4 1 4 1

y x y x

x y x yy y

a
µ ρ µ µ ρ µ

σ σ σ σσ σρ ρ

   
= − + − − +      − −   

 

( ) ( )
2 2 2 2 1 1 1 1

2 2 1 12 2 1 1

2 2

1 1

2 2 2 2

2 12 2 2 22 2
2 1

2
2

2
1

1 12 2
4 1 4 1

1
ln .

1

x y x y x y x y

x y x yx y x y

x y

x y

a
µ µ µ µ µ µ µ µ

ρ ρ
σ σ σ σσ σ σ σρ ρ

σ σ ρ

σ σ ρ

   
= + − − + −      − −   

 −
 −
 − 

 

The forms of these quadratic curves depend on the values of the above coefficients, which, in turn, depend on 
the parameters of the two normal surfaces. 
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