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Abstract 

A simplified model of clouds’ microstructure dynamics under turbulent conditions is presented. The nature 
of rain stimulation by acoustic waves, based on the drops injection in the region of turbulent coagulation, is 
described. The conditions for effective rain stimulating are estimated. 
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1. Introduction  
 
The investigations of clouds’ microstructure represent a 
significant step for studying the possibilities and pros-
pects to stimulate rain and ultimately to control weather 
patterns. The most commonly used methods have been 
by “seeding” the cloud by various agents that causes a 
large scale fracture within its structure or by direct in-
jecting of large drops of water into the cloud. However, 
these methods require the use of artillery and rocket sys-
tems or flying devices which can be pretty costly. Scien-
tists have been searching for cost-effective alternative 
methods. 

To bring the changes in the clouds’ microstructure by 
using the impact of acoustic waves were an interesting 
idea from the start. Theoretical calculations have esti-
mated that the impact of intense acoustic waves upon a 
cloud would initiate the coagulation of the drops which 
would create a shift of the maximum in the distribution 
of the drops towards larger sizes. The experiments, con-
ducted with both, overland fog and artificial fog in a 
chamber have confirmed these estimations [1,2]. What 
became apparent, that the impact of acoustic waves has 
to be extremely intense (~140 dB) and has to last for a 
long time (minutes). However, it would not be realistic to 
obtain the required parameters of the acoustic waves in 
the clouds while the source of sound waves is on the 
ground. But the clouds in nature, comparative to an arti-
ficial fog or an overland fog may, intrinsically be “oper-
ating” under turbulent conditions. And the turbulent con-
ditions combined with acoustic waves could sufficiently 
enhance the effectiveness of stimulating the rain. 

There are many theoretical and empirical models de-
scribing the clouds' microstructure and its dynamics due 
to the drops’ coagulation and condensational growth [1, 
2]. These models represent various approaches to the 
movement of the drops and their interaction. In the pre-
sent paper a simplified model of the drops’ movement, 
coagulation and condensational growth under turbulent 
conditions is represented. On the basis of the represented 
model, the possibilities of rain stimulating by the impact 
of acoustic waves under turbulent conditions are exam-
ined. 
 
2. The Motion of Drops under Turbulent 

Conditions in the Air 
 
After the nucleation of drops in a supersaturated air the 
main processes that have been involved in the formation 
of the clouds microstructure are: 

- Condensational growth and evaporation of drops; 
- Coagulation of the drops by colliding;  
- Pulverizing of the drops. 
The speed of the drop relative to the air particles plays 

the main role in these dynamics. Due to the air viscosity 
the drop gets involved by the turbulent streams of the air. 
But the density of the drops is much greater than the air 
density and due to inertia of drops their trajectory deviate 
from the air particles trajectory. It means that drops 
move relative to the surrounding air. The relative veloc-
ity of a spherical drop in the viscous air is determined by 
the following equation: 
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Here d is the drop velocity relative to the surround-
ing air particles,  
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is the time of Stokes relaxation of the drop’s velocity in 
the viscous air, a  is the local velocity of the air parti-
cles at the position of the drop, d

v
  and a  are the 

densities of the water and the air correspondingly,   is 
the kinematic viscosity of the air, d  is the radius of the 
drop. The air resistance, proportional to the drop's accel-
eration is neglected. The mass of the air in a hydrody-
namic boundary layer is neglected as well. 

r

The pattern of the random turbulent flows is a super-
position of numerous vortices of various spatial scales 
and the variance of the air particle velocity 
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is determined by the spatial spectral density of the ran-
dom field of rates , where  is the spatial 
wave number of the vortex,  is the vortex size. For 
atmospheric turbulence we have 

 E k 2π /k 
l

  5/32π / 2π vk lE k C k   ,  0 ,  mk k k , 

where 0  and m  are the spatial wave numbers which 
correspond to the outer 0  and the inner  scales of 
turbulence correspondingly. 

k k
L ml

The air particles being involved with vortices of vari-
ous sizes have curvilinear trajectories of movement. So 
the acceleration of the air particles in some direction may 
be represented as a superposition of accelerations of 
various frequencies  which depend on the vortex 
size 
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Let’s assume a model of dynamic turbulence. Accord-
ing to the model kinetic energy of the air particles is sta-
tionary and the particles have only tangential accelera-
tion caused be the curvilinearity of their trajectories. In 
this case the magnitude of tangential acceleration equals 
to the air velocity in the vortex raised to the second 
power and divided by the size of the vortex, while the 
frequency equals to the air velocity in the vortex divided 
by the size of the vortex. 
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In this case the quasistationary solution of Equation (1) 
has the form 
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Let’s analyze the obtained solution. For small drops 
the time of Stokes relaxation (2) is much less than the 
characteristic time of small-scale turbulent pulsations 

  1d T k    and the amplitude of relative velocity of 
the drop has the square-law dependence on the radius of 
the drop  
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For larger drop if the time of Stokes relaxation is in 
the range of the turbulent pulsation’s    1

0T dk   
 T mk  the dependence of the relative velocity on the 

radius of the drop became linear 
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Very large drop with  is too inertial to 
move with the air particles and its relative velocity cor-
responds to the velocity of the turbulent flows 

 0 1d T k  

1/3
06πd vv C k  . 

 
3. Condensational Growth of the Drops 
 
The clouds arise in a supersaturated air consequently to 
the heterogeneous nucleation of drops. The boundary 
between the water and the air is subjected to the molecu-
lar unevenness, so the kinetic coefficient of the conden-
sation q, determining the dependency of the growth rate 
u on the supercooling would be quite high and we can 
disregard the kinetic supercooling and; accordingly a 
kinetic supersaturation. It means that the supersaturation 
at the growing surface corresponds to the equilibrium 
conditions.  

The process of condensation gets always accompanied 
by the latent heat release, and the value of the drop’s 
overheating, relatively to the air is at exactly the correct 
level, which is needed to transfer the latent heat of con-
densation from the growing surface of the drop to the 
cloud and can be obtained by the condition of the heat 
transfer 
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Here  du r  is the growth rate of the drop, H  is the 
specific heat of evaporation, a  is the specific heat ca-
pacity of the air, a

c
K  is the thermal diffusivity of the air, 

T  is the thickness of the thermal boundary layer at the 
surface of the moving drop. So, the value of the steam 
concentration at the growing surface  S  differs from 
the concentration of saturation in the cloud  due to 
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the curvature of the drop’s surface and the overheating of 
the drop 
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.       (7) 

Here   is the surface energy of the water-air bound-
ary, m  is the molar volume of the water,  is the gas 
constant,  is the absolute temperature.  

V R
T

The steam transfer from the cloud to the growing sur-
face of the drop takes place due to the difference be-
tween the steam concentration in the cloud  and at 
the drop’s growing surface   
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Here  is the steam molecular diffusion coefficient 
in the air, 

aD

D  is the thickness of the diffusive boundary 
layer at the surface of the moving drop. 

The thickness of the boundary layers depends on the 
relative velocity of the drop. The estimations have shown 
that the airflow of the drops in the cloud has a laminar 
character and the following expression can be used 
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Substituting (7) and (8) in (6) and taking into account 
(9) the expression for the drop’s growth rate can be ob-
tained 
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Here eq  is the radius of the drop which is under the 
equilibrium conditions, i.e. do not grow and do not 
evaporate. It is obvious, that the condensational growth 
rate depends on the drop’s velocity, relative to the air and 
the atmospheric turbulence considerably intensifies the 
condensational growth. However the defining factor re-
mains in the difference of the values between the drop‘s 
radius and the critical radius. The value of the critical 
radius is determined by the value of the supersaturation 
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Although a size of an individual drop is minute, a 
combined surface adds up to a rather large amount. For 
example, in a cubic meter of the cloud with 2 g of water 
capacity and the average drop size about 20 µm, the total 

surface of the drops is about 0.3 m2. In the course of a 
few seconds, all the steam that makes the supersaturation 
condenses on the growing surface of the drops. The 
spersaturation in the cloud decreases to some quasi equi-
librium level which is much less than the water volume 
content of the cloud M. It means that at the stationary 
conditions the growth of the larger drops occurs due to 
the evaporation of smaller drops and the water content of 
the cloud practically does not change. 
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Here  dW r  is the density of the size distribution of 
the drops,  

 
0
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

 . 

The Equations (11) and (12) describe the dynamics of 
the size distribution of the drops at the stationary condi-
tions. Estimations give that the condensational growth 
rate under the stationary conditions is very low and it is 
doubtful that condensational growth can provide a fa-
vorable conditions for the rain to occur. The rate of con-
densational growth under the stationary conditions does 
not rank over 1 μm/h and it would take too much time for 
the rain drops to form. At the same time the condensa-
tional growth under the nonstationary conditions is very 
important and efficiently changes the drops' sizes. 
 
4. The Drops’ Coalescence 
 
The relative motion of the drops can lead to their colli-
sions and coalescence. The disappearance of two collid-
ing drops and the appearance of the drop with the com-
mon volume lead to the change in the size distribution of 
the drops. The Smoluchowski equation describing the 
dynamics of the size distribution due to drops collisions 
can be represented at the following form 
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Here the first term corresponds to the disappearance of 
the drops of radius 1  due to their collisions with the 
smaller drops; the second term corresponds to the disap-
pearance of the drops of radius 1  due to their collisions 
with the larger drops, and the third term corresponds to 

r

r
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the appearance of the drops of radius  due to colli-
sions of the smaller drops.  

1r

 1,  P r

P r

x

The function  corresponds to the space 
volume that in time unit becomes free of the drops of 
radius 2  due to their capture by a larger drop of radius 

1 . In general the determination of 2  is a very 
knotty problem because it is necessary to take into ac-
counting the interaction between colliding drops. The 
case of the drops movement caused by the atmospheric 
turbulence is simpler because the radius of spatial corre-
lation of turbulent random field of velocities is consid-
erably greater than a distance between drops, participated 
in coalescence. It means that the drops that have a possi-
bility to collide move at the same direction and the larger 
drop having greater velocity runs down the smaller one. 
In that simplified model a function  can be 
represented as  

 1 2,  P r r 


r

r r
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Here 1  and 2  are the velocities of the larger and 
the smaller drops correspondingly, max  is the maximal 
transversal distance between trajectories of drops which 
could have a collision. If a hydrodynamic interaction 
between the drops is neglected then max 1  2 . 
However the moving drop in a real viscous air is sur-
rounded by a laminar hydrodynamic boundary layer with 
thickness 
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The opposite airs particles and drops have to flow 
round the moving drop. The tangential shift of the iner-
tialess drop equals 

1 2 1aS r r 2     , 

where 2  is the hydrodynamic boundary layer thick-
ness of the opposite drop. Taking into account inertia of 
the opposite drop and assuming for the simplicity the 
circular motion of air round the larger drop we have the 
less value of its tangential shift 
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2  is the time of Stokes relaxation of the opposite drop. 
Then the maximal transverse distance between trajecto-
ries of drops which could have a collision equals:  
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Thus the possibility of collision depends on the drops’ 
sizes and velocities. The velocities of the drops depend 
on the intensity of turbulent mixing and for any intensity 
of turbulence; there exists a minimal radius for the drop 
that allows it to absorb smaller drops. For example, for 
the following parameters of turbulence L0 = 200 m, Lm = 
10 mm and the root mean square velocity of the turbulent 
flows av  = 3 m/s, the low borderline of the diapason for 
the turbulent coalescence c  equals 43 µm, while at r av  
= 5 m/s we have c  = 32 µm. and at r av  = 10 m/s - c  
= 20 µm. If the drops in the cloud are distributed in the 
range of diapason of the radiuses, smaller than c , the 
coalescence does not take place, the cloud remain stable 
and the drops have continue to grow slowly through the 
condensational mechanism. The rate of growth in such a 
cloud could have pick up for example, with the changed 
temperature or increased intensity of turbulence. 

r

r

The rain condition can be caused also by injecting the 
cloud with drops of the radiuses substantially larger than 

c . The required number of injected drops that can intake 
all the water content of the cloud is about 200 in a cubic 
meter. If the radius of the injected drop is significantly 
greater than the average radius of water drops in the 
cloud its exponential growth would have occurred. 

r

 
5. The Rain Stimulation by Acoustic Waves 
 
A propagating sound wave evokes a wavy motion of air 
particles.  

2π
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P t
v
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 .           (16) 

Here S  is the sound wave’s pressure, SP   is the 
wave period of sound, sc  is the sound speed. Due to air 
viscosity the drops have a wavy motion as well. The am-
plitude of relative velocity of the drop is 
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S d
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            (17) 

Awakened by sound wave, the movement of the drops 
intensifies the heat and the mass transfer and according 
to (11) increases the condensational growth rate. How-
ever, the effect of sound wave could be even more in-
dispensable for the coagulation of the drops. The mecha-
nism that is involved in the coalescence under the impact 
of acoustic wave is actually similar to the mechanism 
that is involved in the coalescence under the turbulent 
conditions. For example, the effectiveness of the coales-
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cence under turbulence with parameters Cv = 0.265 
m4/3·s–2 and Lm =10 mm can be matched up by the sound 
wave with S  = 180 Pa and frequency 17 Hz. The coa-
lescence of the drops under the effect of acoustic wave 
can be described by the same Equations (13-15), as it 
were under the turbulent conditions, however, the value 
of the drops’ velocities have to correspond to (17).  

P

 

Figure1. The change of the density of the size distribution of 
the drops  dδW r  under the impact of acoustic wave. 

It is evident, the best result in the coalescence can be 
achieved if the period of the sound equals to the time of 
Stokes velocity relaxation of the larger of the two coa-
lescing drops. That would secure the maximum relative 
velocity for the larger drop, provide the minimum thick-
ness for its boundary hydrodynamic layer and ensure the 
maximum contrast of velocities between the larger and 
the smaller drops. Note, that the turbulence frequency of 
17 Hz is the optimum for the drops with the radius 67 
µm. For the smaller drops the effectiveness of turbulent 
coalescence decreases (proportional to ) and acoustic 
waves with the correspondent frequency would be more 
effective. 

2r

120 Pa the number of the newly formed in a cubic meter 
drops came to 10000 and at  = 140 Pa came to 
13500. 

SP

Thus the stimulating effect of acoustic wave results in 
producing not actually the rain drops, but the drops 
which are good and ready to coalesce under the turbulent 
conditions. The impact of acoustic waves becomes espe-
cially effective with a near-rain cloud. It means that the 
drops are distributed in a close proximity to the border-
line of the diapason for a successful turbulent coales-
cence and a single coalescence would be sufficient. As it were in the case of the coalescence under the ef-

fect of turbulence, for any intensity of the sound wave, 
there exists a minimum radius for the drop that is able to 
consume a smaller drop. Or, in other words, for a drop of 
any size, there exists a threshold point of intensity for the 
sound wave which would have just ensured a consump-
tion of smaller drops. For example, for the drops with the 
radius 30, the threshold point of intensity for the sound 
wave has to be 50 Pa with the frequency 120 Hz, for the 
drops with the radius 25 μm we have 60 Pa with the fre-
quency 175 Hz and for the drops with the radius 20 μm 
we have 80 Pa with the frequency 265 Hz. 

The main concern in the realization of the acoustic 
wave rain stimulation is the actual delivery of the right 
intensity sound wave to the cloud. For example, the in-
tensity of 100 Pa with the radius of the acoustic spot of 
200 m corresponds to the acoustic power of 3 MW. That 
power could not very likely be achieved by the means of 
electro-mechanical translators. However, a certain per-
spectives have become visible with a connection to the 
sound wave’s generation by means of the fuel gas explo-
sion. For example, the energy of a single impulse of in-
dicated intensity and the duration correspondent to nec-
essary frequency is about 30 kJ , which corresponds to 
mechanical energy, released from the explosion of 2g of 
propane. 

The impact of sound wave is especially effective for 
the sizes of the drops, which are unable to coalesce under 
turbulent conditions, in other words for the drops, which 
are in the range for the stable cloud. In Figure 1 the 
change of the density of the size distribution of the drops 

 (109 m–4) under the impact of acoustic wave is 
represented. In the represented case the water capacity is 
2 g/m3, the radiuses of the drops were initially distributed 
in the range from 20 µm to 30 µm. Acoustic wave has 
the intensity S  = 100 Pa, frequency is 130 Hz, the im- 
pact duration is 1s. It can be seen the disappearance of 
the drops in the ranges from 27 to 29 µm and from 24 to 
25 µm. Their coalescence leads to formation of the drops 
with the radius around 32 µm. A total number of ap-
peared single coalesced drops is about 6800 in a cubic 
meter. If the size of appeared drops is in the range of an 
effective coalescence under turbulence they could repre-
sent the base for the follow up rain. Note that at  =  

 dW r

P

SP
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