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Abstract

In this paper we consider a sequence of Markov dependent bivariate trials whose each component results in

. X 0)(0)(1)[1
an outcome success (0) and failure (1) i.e. we have a sequence {[Y "J,n 20} of S :{[0],(1],(0}(1]} -

valued Markov dependent bivariate trials. By using the method of conditional probability generating func-
tions (pgfs), we derive the pgf of joint distribution of (XO XU aYooLy! ) where for i=0,1, X',k de-

nkd? Tkl Tnkd? Tnk? n,kf
notes the number of occurrences of i-runs of length k' in the first component and Yni , denotes the number
of occurrences of i-runs of length k’ in the second component of Markov dependent Bivariate trials. Further
we consider two patterns A, and A, of lengths k, and k, respectively and obtain the pgf of joint dis-
tribution of (Xn, Ao Yo, AZ) using method of conditional probability generating functions where X, , (Yn, Ay
denotes the number of occurrences of pattern A, (A,) of length k (k,) in the first (second) n components
of bivariate trials. An algorithm is developed to evaluate the exact probability distributions of the vector

random variables from their derived probability generating functions. Further some waiting time distribu-

tions are studied using the joint distribution of runs.

Keywords: Markov Dependent Bivariate Trials, Conditional Probability Generating Function,

Joint Distribution

1. Introduction

The distributions of several run statistics are used in
various areas such as reliability theory, testing of statis-
tical hypothesis, DNA sequencing, psychology [1], start
up demonstration tests [2] etc. There are various count-
ing schemes of runs. Some of the most popular counting
schemes of runs are non-overlapping success runs of
length k [3], overlapping success runs of length k [4],
success runs of length at least k, (- overlapping suc-
cess runs of length k [5], success runs of exact length
k [6].

The probability distribution of various run statistics
associated with the above counting schemes have been
studied extensively in the literature in different situations
such as independent Bernoulli trials (BT), non-identical
BT, Markov dependent BT (MBT), higher order MBT,
binary sequence of order Kk, multi-state trials etc. But
very little work is found on the distribution theory of run
statistics in case of bivariate trials which has applications
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in different areas such as start up demonstration tests
with regard to simultaneous start ups of two equipment,
reliability theory of two dimensional consecutive (K,r)
out of (k+1,n): F -Lattice system etc as specified by
[7]. [7] have studied the distribution of sooner and later
waiting time problems for runs in Markov dependent
bivariate trials by giving system of linear equations of
the conditional pgfs of the waiting times. The distribution
of number of occurrences of runs in the two components
of bivariate sequence of trials and their joint distributions
are still unknown to the literature.

Consider a sequence {X,,n>0} of S -valued trials
where S is set of all possible outcomes of trials under
study. The simple pattern A is composed of specified
sequence of K statesi.e. A=aa,---a, where
a,,8,,--8, € S . The number of occurrences of patterns
can be counted according to the non-overlapping or
overlapping counting scheme. The non-overlapping cou-
nting scheme starts recounting of the pattern immediately
after the occurrence of the pattern while the overlapping
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counting scheme of patterns allows an overlap of pre-
specified fixed length in the successive occurrences of
patterns.

Recently the study of distributions of different statis-
tics based on patterns has become a focus area for many
researchers due to its wide applicability area. Distribu-
tion of W, ., the waiting time for the r'" occurrence
of pattern A of length k in the sequence of multistate
trials is studied by [1,8,9]. [10] considered the sequence
X, X,,--- generated by Polya’s urn scheme and study
the waiting time distribution of W, , for r=1.

Joint distribution of number of occurrences of pattern
A, of length k and pattern A, of length k, in n
Markov dependent multi-state trials is studied by [11].
[12] considered a sequence X;,i=1,2,--- of m -
dimensional i.i.d. Random column vectors whose entries
are {O,l} -valued i.i.d. random variables and obtain the
waiting time distribution of two dimensional patterns
with general shape. The general method, which is an
extension of method of conditional pgfs, is used to study
these distributions by [12].

Even though the distribution of waiting time of the
pattern of general shape in the sequence of multi-variate
trials with i.i.d. components has been done, the joint
distribution of number of occurrences of patterns
A, (i=12,---,m) in the sequence of i" component of
the m-variate trials X,,X,,---, X, 1is still unknown.
Here we derive the pgf of joint distribution of number of
occurrences of runs in both the components of the
bivariate trials and generalize this study to the distribu-
tion of number of occurrences of patterns in both com-
ponents of the bivariate trials.

In this paper we consider the sequence {[;(” j, n> O}
n

of S -valued Markov dependent bivariate trials. In Sec-
tion 2, we obtain the pgf of joint distribution of number
of occurrences of i-runs of length k| in first compo-
nents and i-runs of length k’ in the second compo-
nents of the bivariate trials (i =0,1). We study this joint
distribution of runs under the non-overlapping counting
scheme of runs by using the method of conditional pgfs.
Further in section 3, we study the joint distribution of
number of occurrences of pattern A, of length k, in
the first component and number of occurrences of pattern
A, of length k, in the second component of bivariate
trials. In Section 4, we develop an algorithm to evaluate
the exact probability distributions of the random vari-
ables under study. As an application of the derived joint
distributions, in Section 5, we obtain distributions of
several waiting times associated with the runs and pat-
terns in bivariate trials. In Section 6 we present some
numerical work based on distribution of runs and pat-
terns. Finally in Section 7, we discuss an application and
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generalization of the studied distributions.

2. The Joint Distribution of Number of
Occurrences of Runs

0Y(0) (1) (1 )
Let S= s s , . Consider the sequence
0){1)10)11

X
{(Y nj,n > 0} of S -valued Markov dependent bivari-

ate trials with the transition probabilities,

(G-I e GG

i=12,---,n
and the initial probabilities

G

Let Xr: o (Yn' 2 ) be the number of i -runs (i=0,1) of

length k! (kf) in n trials associated with the first
(second) component of bivariate trials (i.e. number of
i-runs in Xy, X+, X, (Y,,Y,,+++,Y,) ). In this section

n
we derive the joint distribution of
( x 0 x 1 . Y 0 Y 1 )

nkd? Tkl ? Tnkd? Tnk?
Let ¢, (t,.t:5,,5,) be the pgf of distribution of
( x 0 x 1 ,Y 0

1 .
NPERA S A ,Ymk]2 ) . Assume that for a non-negative

integer ¢<n, we have observed until (n—c)th trial
(i.e. we have observed
imls i m2 imleime
fine ¢C( g c(’m"J’m‘)(to,tl;so,sl) as pgf of condi-
tional distribution of number of i -runs of length k' in
X csrs s> X, and number of j-runs of length ka in

Yoci»'o"» Y, given that we have observed

XO Xl xn—c .
) KRR and currently have i-run of
Y, Y, Y

n-c

XY,
,i=0,1,---,n—=c). We de-
Y;

length m/ in first component and j -runs of length

mj? in the second component of bivariate trials is ob-

served, m{ =1,2,--- k', m{ =12k}, i,j=0,L.
We define a®=1-a for a=0,1.

Now by assuming =m,, =1, we have,
B (t,1:50,8 ) = A" (4, 15808)  (2.1)
Also we have,
(gi‘mil;j'm’z) (t),t;s,,5, ) =1form =1,2,...k/,
m? = 1,2,...,kj2 andi, j=0,1
Conditioning on the first trial we have the following
system of recurrent relation of conditional pgfs for

2.2)
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¢(0,0;0,0) ( tO :tl 5 SO ) Sl )

(0,1:0,1) (0.1:L1)
= Poooofni + Poo.oi®hi

(1,1;0,1) (LL;1,1)
FPoos0Br T+ Poori P

Conditioning on the next trial from each stage, we
have the following system of recurrent relations of con-
ditional pgfs for ¢=1,2,---,n and i, j=0,1.

i)

(o
iml 415 j,m? +1 i,1;§,m3 +1
plj Ij¢({l : ) ij,icj¢£_1 : )
|m,+lj 1 IJ .1
Ij IJC ({ 1 ) p'J Ich¢£ 1 )
if m=12,-,ki-2, m{=12kj-2,

¢c(i,mil;j,mjz)

iml 41§, m +1 i1 j,m?+1
(i h (11:3.m} 1)

= pu IJ¢C 1 pu ch¢c—l
(l m.+1] 1) (I RN 1)
Ij ije ¢c 1 ij, chc¢c 1
if mi=ki-1, m{ =12 kj-2,
imi; j.m7 |ljm +1 i1 j,m? +1
¢(E ) = IJ ij c( 1 ) ij, i°j¢£’1 J )
(| Jic 1) (| ;¢ 1)
IJ jje e -1 p'J Ich¢c 1
if mi=ki, mj=12--ki-2
i,ml:j.m? iml+1;j,m? +1 Jij.m 4l
¢c( ! =Dy, ij¢c(—l : ) 0 IcJ¢c( 1 )Sj
(I m! +1; j¢ 1) ( ljc,l)
IJ IJ ¢c 1 + plj ICJC¢
if mf=12,-.ki-2, m=kj-1,
i,mil;j‘m |m,+1 s m +1 IJm +1
¢£ ) - Ij ij [E 1 ) pIJ ch¢c( 1 )Sj
(I mi+1; ¢ 1) (l NEA )
” jje re- -1 pIJ Ic]c¢c 1
it m =k =1, m? =k -1,
i,m;j,m? i1 j,m3+1 Aij.mi 1
¢c( J) = Ij ij c( 1 : ) pIJ |°J¢C( 1 ) j
i1;%, i1
Ij Ij ¢£1 ) plj chc¢£1 )
it m=ki, mj=kj-1,
im';j,m? i,ml+1;.1 i€.1;,1
¢£ J)_ u ij c( 1 ) pIJ ,cj¢c( 1 )
|m,+IJ W1 RS
plj Ij ¢£ 1 ) Ij Ich c( 1 )
if m=12--k-2, m=kj,
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¢(i‘mil;j,m ) (I mi+1; ], 1) ¢(ic‘l;j‘l)

c - Ijlj c-1 i ij,i%j c-1

(lm,+]] ) ‘p. CC¢c(|111 1)

IJIJ°°1 ij.i%

if m=ki-1, mj=kj

A i g gl

( ) p CC¢£IIJ 1)

IJIJ°°1 if.i%]

it m =k, m=k?
Thus we have (ké +k11)<k§ +k12) recurrent relations

of conditional pgfs for ¢=1,2,---,n—1 and these can be

written as,

QC (toatl;soasl):
1 1 1 1
(A+ZBi‘ti+ZBJ.ZSJ.+ZZBIJ : JJ (to,tl;so,sl)
i=0 i=0 i=0 j=0
(2.3)
where

_ (0,0;0,0) (0,1;0,1) (0,1;0,kg) (0,1;L,1)
¢c —\7c c c c

!
,,¢<1,k1‘ iLk?)
C

¢<0,1;1,k12>
C

(LL;Lk?)
X

1
and A+) B, +ZB S; +ZZBU ;S; isasquare

i=0 i=0 j=0
matrix of size (ké +k/ )(kg +k/ ) . Each row of this ma-
trix  corresponds to corresponding element of
2 (t).t;5S,,5,) and its elements are the coefficients of
elements of ¢ (t),t55,5,) -
For ¢=0, we have,

fo (t09t1;50a51):l

where 1 is the column vector with all the elements

equal to 1.
Using (2.3) recurrently for ¢=1,2,---,n, we have,
Qn (toatl;soasl)
1 1 1 1 n
=| A+ Bt + D Bis;+> > Bits; | ¢, (t,155,8)
i=0 j=0 i=0 j=0
(2.4)
Hence from (2.1) and (2.4) we get the pgf of distribu-
tion of (X Okl X! ol ,Ynokz ,Ylkl as,
b, (t07t1;507sl)
. 1 "5
=p|A+) Bt +ZB s JrZZBfftlsJ 1
- i=0 i=0 j=0
0Js
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where pis the first column of identity matrix of order

(ko +k (ko +K).

3. The Joint Distribution of Number of
Occurrences of Patterns

Let A/ =aa,--a and A,=bb,---b  be two pat-
terns of lengths k, and k, respectively where
a,b, €{0,1}, i=12,--,k;j=12,--,k,. We consider
the non-overlapping counting scheme of patterns in
which to count the number of occurrences of pattern A
in a given sequence of n trials, one has to restart
counting from scratch each time the pattern A occurs.
Let X, , denotes the number of non-overlapping oc-
currences of patterns A, in the first component of n
bivariate trials (i.e. in X,,X,,---,X) and Y, de-
notes the number of non-overlapping occurrences of pat-
terns A, in the second component of n bivariate tri-
als (i.e. in Y.,Y,,---,Y,). Consider the random vector
gxn)Al Yoa, ) In this section we obtain the pgf of joint
istribution of (XH,AI,YHVAZ) using method of condi-
tional pgfs.

Let pgf of joint distribution of (Xn‘A],YnﬂAZ) be
¢, (t.,t,) =4, (t). Assume that for a non-negative integer
c<n, we have observed until (n—c)th trial i.e.

X X X
YL D™ | For c<n, we define, the fol-
v )Ly, Y

n-c
lowing conditional pgfs.

Let ¢"V(t) be pgf of conditional distribution of
number of occurrences of patterns A, in X, ., -, X,
and number of occurrences of pattern A, in
Yo co»t> Y, of bivariate trials given that currently (i.e.

at (n—c)th trial) we have observed none of the sub-

X i
patterns of A, and A, and (Ynclz[j],where

(=

Similarly let, ¢"))(t) be pgf of conditional distribu-
tion of number of occurrences of patterns A, in
Xooes1o» X, and patterns A, in Y, .,,--.Y, of
bivariate trials given that at (n—c)m trial we have ob-
served the sub-pattern of length i of A, in the first
component and none of the sub pattern of A, is ob-
served in the second component of bivariate trials and
() e s '

=| | where i=1,2,---,k; and j=0,1.

Yoe j

Let ¢C('AJZ) (E) be pgf of conditional distribution of
number of occurrences of patterns A, in X, .-, X,
and patterns A, in Y, _.,,---,Y, of bivariate trials
given that at (n—(:)th trial we have observed none of
the sub-pattern of A, in the first component and a sub
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pattern of the length j of A, in the second compo-

X i
nent of bivariate trials is observed and [YHJ = [b J
|

n-c
where i=0,1 and j=1,2,---,k,.
Also let ¢C(,i/’\jl)’ A, (t) as pgf of conditional distribution of
number of occurrences of pattern A, in X _.,,---, X,

and pattern A, in Y, -,Y, of bivariate trials given

n-c+l>"”
that at (n—c)" trial we have observed the sub-pattern

of length i of A, in the first component and a sub
pattern of the length j of A, in the second compo-

X ai
nent of bivariate trials and (Yn_CJ = [b J where
]

n-c
i=1,2,,k and j=12,-k,.
Let,
a’=l-a, i=12,-k
and bj =1-b;, j=12,---,k,.
For c<n, we assume that at (n—c)th trial, the

sub-pattern of length i of A, is observed in the first
component of bivariate trials. If we condition on the next

: Xn—c+l a_c -
trial as = ™ i.e. the sub-pattern of leng-
n—c+l1 yn7c+1

th i of A, observed at (n —C)th trial breaks at
(n—c+1)" trial then to check whether any sub-pattern
of A, of length r(r<i) has occurred, we define the

indicator function & as,

i ¢
& =1 {al =8 & =& g8 = 8,8, = ai+1}
i=L2,---,k -Lr<i.

Similarly we have indicator function 81-2, as,

gjzr =1 {bl = bi*”Z’bZ = bjfr+3""’br71 = bj’br = bJ?H}
j=1,2,k -Lr<j.
Let
i 1 i 1 .
U, =maxg;, U, :rnax{r|gir =1Lr :1,2’...’|}
1<r<

i=12,---,k -1
v/ :maxgjzr and v = max{r|gj2r =1,r=L2,--, j}
1<r<j
j=12,---,k, -1
Assuming m,, =1, we have,
¢n (tl’tz ) = ¢r§0,0) (tl’tz) (3.1)

We also have,

¢éi’j)([):1 forV[;jeS;
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for i=1,2,---,k; and j=0,1;

( )=1 for i=0,1and j=1,2,---,K;;
¢0A1 " (_)—1 for i=1,2,---,k and j=1,2,---,k,. (3.2)

Now for each 1<c<n (c denotes the number of
trials remaining to observe) we condition on the next trial
to obtain the recurrent relations of conditional pgfs as

follows.
)

A ()= Dy ' 1h, o, (0P, 1y 400 (1)

A ()b, ¢£ Rn
if i,j=0,1,

W (h)=1

u abC

¢C(IAJ|) (—) pa,] aj by ¢CIJ;1A11 Ay (!)
+ paij.a.C b [¢C(i/\)1/\2 (_)U + ¢C(all+1/\ ) (—)(1 h uli )j

By (A 0T 1)
(i+1.06) (E)

ajj.ajbf LA

if =12,
¢£‘IAJI) (') palJ aj, by ¢CIJ;1/$1 Ay (E) tl
P [¢ffi’il (Ou +a %) @) (1-u )j

By e[ 00+ 01 -0

AT o)

k —2;j=0,1

aIJ a|+lbl

if i=k-1j=0,1

i,j 1,1 af 1
¢‘S’AJI) (1—:) = paijvalbl ¢C(—1,)A1~Az (I-:)+ pa,j,afbl ¢C(_11A)2 (E)
1b¢ acﬁblc
A @+, 0
if i=k,j=0,1.
Similarly we have recurrent relations of the condi-

tional pgfs ¢C('AJZ) (t) for i=0,1 and j=1,2,---,k, as
follows.

#i ()=
+ pib_’a]bgl (ﬂ;(l’izi\)l,,\z ('[)vJ + C( 1”1{:1) (;)(l—vlj )j
+ pib-,afbg , ((15&1:12:) (E)V1j +¢c(i‘b'c+l) ('g)(l—vlj )j

(a]c,j+l)

+ pibj,afbj+l¢c‘l»/\2 (!)

+Pp

A ke
aljvalbl

pib ab ¢clljj\1| Ay (_)

j+1

it j=1,2,,k —2;
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(1,j+1)

¢(§I}\Jz) (!) plb aleH C-1LA|LAy (t)tz

g, [ A O+ (1) |
) ()40 555 () 1y
+ P, it Pe1.n, (t)v +¢) (!)( V1)

(af,j+1)
+ pibj,afbm(éc—l,Az (!)tz
if j=k, -1

i , Pl
¢c(AJZ) (!) = pibj Laphy ¢c(1—1])A| Ay (1-:)+ pibj,alcbl ¢C(f111\)2 (E)

1,bf af ,bf
0 L 0, A 0)
1 1
if j=k,
The recurrent relations of the conditional pgfs
¢(" ('g) for i=1,2,---,k and j=1,2,---,k, are as
follows
¢é»l;\11)»Az (—) paib] aj41Dj4 ¢CH{I/\JI*':\)Z (E)

* paibi vai+1b1;+1 (¢£I§1Al 2\z ( ) + ¢<EIJ;1 bJ+‘) (E)(l _Vlj )j
D, a,Hbm(rxﬁc(uiifl)z(t)u;+¢5C(a‘ff;’l"”)(;)(1--u;))

(o8.4)

el 0l (1-v0)
el ) 1-u)y
AT @ - -w)

if =12,k -2 j=1,2,k —2

(i+1,j+1)
pa,bJ a,+lbj+l¢c LA A, (E)tl

il ()=
- palb a|+1b1+1 (¢£I:1/:12 2\z ( )V + ¢<EIJ;1ADJ+]) (E)(l _Vlj )j t1
* palb a|+1b1+1 (¢£ui /i;rllz ( )U + ¢(al+1 Hl) ( )(1 - uli )j

(U'z ,vz‘)

+%wm¢(%+MMQWM
) @ (1-w0)
c(a'f‘f) (©)(1-u))v/
+ c(fffb i*‘)(;)(l—uj)(l—vﬂ )j

if =k -1 =12
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¢c JApLA, (_) = paib Japbj ¢clljj\1| Ay (_)

1Lvd ) 1,bS,, ;
By [ 00+ 00 |
(af,j+1) (E)

abj.afbj, T ohA2
+p a,b alb° (¢£ 111\2)( )V +¢c(l lH)( )(l_vlj)j
ifi=k;j=12k -2
¢éll\]1)’\2 (- palb al+1bj+1 ¢Cltl/\11+/l\z (_)t2
|+1 i+1,bj .
a,b a|+lbj+l (¢C LAy, Az — V +¢£ lAJ l)(l)(l_vlj )\J
+1 P Eal .
a,b Jafbj (¢Cu§ /J\l Az — U +¢C(all/\J )( )(l_ull )jtz
(u2.2) j
+pa|b al+1bj+l ¢c LALA, (I)u Vl
g5 (0t (1) d50 () 10
+¢(a-+1 ,+1)( )(l—uf)(l—vﬂ ))

=12k -2 =k, -1

(i+1,j+1)
pa,b aHle ¢c LA Ay (E)tltz

|+1 v2 (|+1 bﬁl) j
a.b by c LA, A2 c LA, (I)(l_vl) tl

u +1 " .
a1bJ afibj (¢C 21/11 A2 - ul C(a'l lAJ )(E)(l_u1| )jtz

¢c ALAS (_

uz v2

+
j
U V

a1b] afubfy ¢ “LAr A2

) (ul (1) o 511”(0(1—11?)“"
S w-u)-w)

ifi=k -1 j=k, -1

¢c JALA, (_) pa,bJ a,bj+1¢clljj\ll Ay (E)tz
l’vj +1 i
By, [ A O 00w
af, j+1
abj.afbj, 1¢°(*1,/J\z )(E)tZ

g, [ AT O 4T 1)

ifi=k;j=k —1

P
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¢(£,i;\jl),A2 (_) pa'bJ aj,ib ¢cltll\ll Ay (‘_:)

* paibj afby (¢C(E’l‘)l"2 (I) ul + C(ailﬂl\ ) (E)(l _uli )j
(|+1 bc) (E)

Pty it Fotn
Dy (¢£ii’iz> ui+ 1)
i =12k -2 =k,
A0, (0= Py i Ba s (D
By (AT O+ ()
o o A (o
Py [¢§“i§jﬁ‘]) (Ou +% () (1-u ))

ifi=k —1;j=k,

£l
A ()= Pupy a0, 040, AL (1)

B i O+, el (O

a,b ab°¢°'
iti=k;j=k,

The above system of (k +2)><(k +2) recurrent re-
lations of conditional pgfs ¢ (_), (i,j=01);

A0 (), (i=01- ,kl,j—Ol) gl (1),
(|:0,1,121,2,,k2) and ¢ LA /\2 (_)
(i:1,2,--~,k1;j:1,2,--~,k2) can be written as follows.

t_(A+&q+%g+8@&)ﬂ4@)EC:ZJ,gn
- (A+Bt, +B,t, +B,tt, )1 ifc=1

(3.3)
where 1 is column vector with all its elements 1 and

¢, (t) is column vector with its elements as follows.
(¢C(o,o) ¢C(0,1) ¢C(|,o) ¢C(1,1) ¢C(1/,\ol) ¢ék/]\11) ¢C(f)/,\12)
k) (L : (ki k2)
A5 ) A )
From (3.1) we get,
¢n (thZ) :E'?n (tl’tz)

where p is first column of identity matrix of order
(k +2)x(k, +2).

The recurrent use of (3.3) gives the pgf of (Xn‘ A Yoo )
as follows.

¢ (1)=

p'(A+Bt+B,t, +B,tt,)' 1 (3.4)
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1

Yn k2 )
We note that the pgf of ( N Al,Yn’Az) is a particular
case of pgf of ( S Xy

kl’

4. Exact distribution of ( o Xh Y,

nki’ nkg’

kZ’Ynlkﬁ)‘ Hence we de-

velop an algorithm to obtain the exact probability distri-
bution of (Xokl X! Y°k2 ,Yl ) which can further

kl B
beapplied to obtain the exact probability distribution of
(XrLAI Yo, ) from its pgf.

Observe that the pgf of joint distribution of

(X Okl X! ol ,Y°kZ ,Yl ) as obtained in (2.5) in general

involves matrix polynomial P, (to,tl;so,sl) in t,,t,s,
and s, of order n where

P, (ty.t:50,5,)
1 1 1 1 n.
= (A+Z B't,+>. stj +3 B,‘ft,st
i=0 j=0 i=0 j=0

Hence the joint probability distribution can be ob-
tained by expanding the polynomial with respect to

t,,t,s, and s,.
That is,
0 _ A V2 L
P(Xn kI XO’Xn,kll - Xl’Yn,ké - yO’Yn,klz - yl)

= coefficient of t,ts)°s)" in ¢, (t,.t:55,,5,)

0 1 _ 0 1 —
P((Xnkl’xnk]) _7(Yn,k%’Yn,k|2)_X) (4 1)
= coefficient of t* s* in ¢, (t,.t;5,.5,)

Exact formula to obtain the coefficient matrix is quiet
tedious since multiplication of matrices is not commuta-
tive operation. But the interesting recurrent relations are
found between these coefficient matrices. Let

C, (%5 %5 Yo, 1) =C, (X;X) be the coefficient matrix of

t*s? in the expansion of matrix polynomial
P, (t,.t:8,5,) andfor n>1, let

D, = {(5,X>|Xi, y; =0,1,---,n for i = 0,1}. The following

Lemma gives the recurrent relations of the coefficient
matrices of C, (g;z) with C_, (Z;X)'
Lemma 4.1 Let C, (g;y) be the coefficient matrix

of t*s¥ in the expansion of the matrix polynomial
P, (t,.t:8.S,) Then C, (g;z) satisfies the following

recurrent relation.

Copyright © 2011 SciRes.

+_ lecn—l(ﬁ_guﬁz_gjn)Biazl{ |+1>0y e]+1 9}

i=0 j=0
4.2)
with C, (0:0)=A, C/(e.:0)=B, C/(0; em) B
and C( ) ,+1) B,lj2 for i,j=0,1. Here e is the
i" row of the identity matrix of order 2.
Proof Obviously for n=1, we have,
A if x=05y=0
B! if x=¢,;y=0,i=0,1

Ci(xy)=1B}  if x=0;y=¢;,,i=01
B; if x=g,5y=6,,i=01;j=0,1

(0] otherwise

where O is the null matrix of same order as that of A.
For n=2, observe that C, (5, y) satisfies (4.2).
Assume that Equation (4.2) is true for some r(2<r<n).
Hence we have,

1 1 1 1 r
( BB zzssft.s,j - Y c(xy)es
i=0 j=0 =0 j=0 (x.y)eDy
Then
1 1 1 r+l
(A+ZBft, +> Bis;+> > Blts, ]
i=0 j=0 i=0 j=0
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Hence we get the required proof of the lemma.
Theorem 4.1 The exact probability distribution of

(X:kl s Xl kl ,Yn0k2 9Ynl’k12 ) iS giVen by,
0 1 . 0 1 _
((X K2 n,kll )=X (Yn,kg ’Yn,k,2 )= X) 4.3)
=p'Cy(xy)1

where C, (g,y) is the coefficient matrix of t*s’ in
expansion of matrix polynomial P, (t,,t;s,,s,) and it
satisfies (4.2)

Proof The proof follows by applying the Lemma 4.1
to matrix polynomial P, (t,.t;s,,s,) involved in the

ngf of distribution of (x° X Yo Y ) in (2.5).

kl’ kla

Remark 4.1 The expected number of failure-runs of

length k; in first components of n Markov dependent
bivariate trials is given by,

d
E(X:kl ) = oL,
On simplifying this expression, we have,

n i—
E(X!, ): P> (A+B +B; +B2 +B2+B2+B2)"
n,ky ==

=]

{(By+Bii ) 1
(4.4)

5. Waiting Time Distributions Related to
Runs and Patterns

The exact probability distribution of

(Xokl X! YOkZ,Y1 ) from its pgf given in (2.5) can

kl’

be expressed as,
P(X! s X! ) =X5X Y] ) =y

=p '{Cn_l (x z)A+iCn_l (x—e.1;y)B1{x—¢,, >0}
i=0

+21:Cn-1(5;z J+1)Bl{y J+1>0}

=0

1
+ Cooi (l_gm;x_gjﬂ)

i=0 j=0
B {x-e, >0y-e, >0}} 1

(5.1
The components of the above expression can be inter-
preted as follows.

p'{Co (xy) AL

= P({(Xokl s r:kll ) :K’(Yn(?kg sYnlyklz ) :X};

X! 0
{(ank" n—1,k,‘)_x(Y -1k3° n1k2) X})
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For i=0,1,
E'{Cn—l (X_Qm;z) Bil} 1
({(Xn Ky’ r:,kf):Z’(Yn(?kg’Ynl,kIZ):X}; ’

{(Xn lkl’ n— lkll) X= eH'1’(Yn01k2’Yn 1k2) y})
and

p'{Coi(xy-e.)B}1
=P[O X =X 000 Y ) =y

0 X! _ 0 1 _
{(X 1k n—l,kll )= 5’(Yn-1,kg ’Yn-1,|<12 )= X_giﬂ}
Similarly for i, j=0,1,
E'{C (X e|+l’y e]+])Bilj2}l
0 l _ 0 1 _ .
- P({(X k7 n,k,')_z’(Yn,kg’Yn,klz)_X}’

{(Xn]kla n]kl)_x e|+1a(Y01kz> n1k2) y- ej+1})

(5.2)
so that

P((X0gs X Lg) = X0 Y, ) =)
_P({(Xok“ rlm,kf):é’(Yn(Tkg’Yr:.klz)=X};
{(xo k" kl) X (YO 1k3 -1,k12):X})
+§P({(X:,ké’xi.kf)zlﬂn(fkg’ﬁkf):X};
{
1
-

| o 0 1 _
n-1,k} Xn—l,kll ) =X §i+1 ? (Yn—l,kg ’Yn—l,klz ) - X})

(X
(X0 X0 =X Y ) = s

{
HESIS
+§J ({ nkd? rl\,kf)_X(YOkz’ ,kf):X};

0 1 _ 0 1 _
{(Xn—l,k}) ’ Xn—l,kll )=X-¢&, ’(Yn—l,kg ’Yn—l,kl2 )= X_QHI})

(5.3)

The above interpretation is useful for deriving differ-
ent waiting time distributions.

Let F, be the event that failure-run of length k|
occur for the first time in the i™ component of the
Markov dependent bivariate trials and F' be the event
that success-run of length k' occur for the first time in
the i™ component of the Markov dependent bivariate
trials i=1,2.

Let W, be the waiting time for sooner occurring
event between F), F’ F',F’. To obtain the distri-

kl) X(YOIKZa _Lklz):X_ng}

M_

0
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bution of sooner waiting time we define the following
random variables.

W' : The waiting time for sooner occurring event
between F., Fy F',F’ given that F is the sooner
event (i.e. j-run of length k' of i” component of
bivariate trials is the sooner event) i=1L2 and j=0,1.

W' The waiting time for the first occurrence of
j—run of length k in the i" component of the

X
bivariate trials {[YnJ,nZO}, i=1,2 and j=0,1.
n

W, : The waiting time until the occurrence of both
events F' and F} simultancously, i,j=0,1 (i.e. i-
run of length k! in the first component and j -run of
length ka in the second component of the bivariate
trials occur simultaneously).

Then we have,

. (5.4)

=

Let wq(t), we,;(t), l//J() and " (t) be the pgf
of W, WS'J, Wj' and ij , i=1,2 and k,j=0,1
respectlvely In the next sub-section we obtain the sooner
waiting time distribution.

5.1. Sooner Waiting Time Distribution

The probability that O-run of length k; (i.e. event F,)

occurs for the first time at m™ trial given that none of

the events F} F', F’ has occurred until m" trial

(i.e_ P (Wsl,o = m)) can be written as follows.
P(W., =m)
:P(( k“Xlkl’Y(’kanl,k]z)=(1»0=0a0);

(Xr?q lk"xrln 1k ’Yn(q) 1k3° Yr:] 1k2) (0,0,0,0))
=p'{C,,(0,0,0,0)}B}1
:E' Amleél m> ké

Hence pgf of W, can be given as,

i, (t)=tp'(1-At)" Bl.

Similarly the probability that 1-run of length k' (i.e.
event F') occurs for the first time at m™ trial given
that none of the events F} F, F’ has occurred until

m"  trial (i.e. P(WS"1 = m)) can be written as follows.

Copyright © 2011 SciRes.

P(We, =m)
:P((>(Okl’><1 kl;Y kZ’YrTII ):(0’19090)9

(xo kb2 Xrln—l,kll ;Yr:-l,kg ’Yn:—l,klz ) = (0’ 0, O’O))
= p'{C,(0,1,0,0)}B] 1
=E'Am_l Blll
Hence pgf of Wg, is,
vs, (t)=tp (1-At) " B/L.
Similarly P(Ws 0= m) and P(WSZ’1 = m) is given by,
P(Wg,=m)=p'A"'B}1
P(WS, =m)=p'A"'B1

m > k|

and pgf of W¢; is,

wa;(t)=tp'(1-At)" B/Lj=0,1.
Now the probability that both events F' and sz
occurs simultaneously for the first time at m™ trial
(i.e. P(Wi’]j2 = m)) can be written as follows.
;Y0

mkl’ mkz’

P(Wor =m)=P((X0,, Y! ) =(10,10);
0

1 VI 1
m-1,k)? xrn—l,klI ’Ym—l,ko Ym 1,k ) (0’ 0, O’O))

= p'{C,(0,0,0,0)} B 1= p'A™'B 1

X

P(W,? =m)= P((Xokl,xlkl,Yokz,Yl J=(1.0,01);

Ve ) =(0.0.0.0))

1 (0,0,0,0)} Bt 1=p'A™"'B}} 1

0 1 0
(Xm lkl’Xm lkl’Y
-pic
P(W,? =m)= P((x0 X! oY

m,kg

Y )=(0.1.1,0);

kl >

0 1 VO 1 _
(X —1k xm—l,kll ’Ym—l,kg ’Ym—l,klz ) - (0’ 0, O’O))
=p'{C,(0,0,0,0)}Bf 1=p'A"'B}; 1
((Xokls mkl’YrT?kz 7Y15k12):(0,1a071);

0 1 vo 1 _
(X —1k? Xm—l,kll ’Ym—l,k(% ’Ym—l,klz ) - (0’ 0, 0’0))

=p'{C,(0,0,0,0)} B} 1=p'A"'B}1
In general,

P =m) - p A" 81

P(W, =m)=

i,j=0,1
Also pgf of Wij12 is,

V() =tp (1 - AL By
Hence from (5.4), the exact probability distribution of
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random variable W; is given by,
2

o, =) A ST TS 1.

i-1 j=0 i~0 j-0
m > min k., k', k5, k7 ). (5.5)
The pgf of W is given by,

e =tor-a |

Here we note that it is quiet difficult to study the later
waiting time distribution between F,, F’ F',F?,
particularly when one is interested in studying the wait-
ing time distribution for the later occurring event be-
tween more than two events. For the waiting time distri-
bution of later occurring event between any two runs in
the components of the bivariate trials or for the two pat-
terns in the two components of bivariate trials the theory
can be developed in general. For this we refer [13] who
derive the waiting time distribution of later occurring
event between the two events K, and F where F
(i=0,1) is the event that i-run of length k; occurs
for the first time in the sequence of higher order Markov
dependent BT. [13] use the joint distribution of number
of occurrences of 1-runs (i.e. success-runs) of length k,
and the number of occurrences of 0-runs (i.e. failure runs)
of length k.

2 1

2B+,

1 1
1 j=0 i=0 j=

Bﬁzjl (5.6)
0

5.2. Waiting Time Distribution for Runs

Let erj,i be the waiting time for the r" occurrence of
i -run of length k! for the j™ component of bivariate
trials, i=0,1; j=1,2. We obtain the distribution of
W,Ij‘i using distribution of ank

; number of occur-
i

rences of i-run of length k! for the j" component
of n bivariate trials i=0,1; j=1,2. The pgf
#, (t,.1,:8,,5,) of joint distribution of

(x° X! X0 x;kz) as obtained in (2.5) is as
|

nke? Tkl Thkd?

follows.
é, ( t03t1;507sl)

1 1 1 1 n
= p'(A+ZB§ti +Y Bis;+> > Bl’ts, j 1
- i=0 j=0

i=0 j=0
In particular pgf of marginal distribution of X' ol is
obtained by setting t, =s, =s, =1 in the pgf o

4, (t,,1:5,,5,) of (x° XLy, Y

nk$,0? ki’ nk0’ nkii

) and
is as follows.

@, (to,l;l,l)

1 n
= p‘(A+ Byt, + B/ + . sz +Bot, + Bt + Bje + Bff} 1
1 <

(5.7)
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Let pgf of X! , be ) (t) for i=0,1; j=1,2.
Then pgf of X; o1 I (5.7) can be expressed in a simpli-
R0
fied form as follows.
‘//é,o (ttl)) =, (to zté,l;l,l) :E'(Aol + D(]) t(]) )nl

where A =A+B +B; +B+B/; +B/] and
D! =B + B! + B2,

The exact probability distribution of X; () can be
obtained from Lemma 4.1 as follows. ‘

P(X;’ké = r):E'Cn(r)l (5.8)

where C,(r) is the coefficient matrix of (t(l))r in the
matrix polynomial (Aé + D(l)té) and in general for
2<m<n C,(r) satisfies the recurrent relation

C,(r)=C,(r)A +C,, (r-1)D,

Aé ifi=0
with Cl(i): D(], ifi=1
(0] otherwise

where O is the null matrix of order same as matrix
A and D;. The probability in (5.8) can be written as
follows.

P(Xrlhkl = r)zgl{cn—l(r)% +Cn—1 (r_l) Dé}l

0

The above components of P( Xr:kl = r) can be in-
terpreted as follows. o

B’{Cn—l (r)At]v}l: P(Xr]],k(]) = r;xr]H,ké - r)

P{C, (ND1=P(X),, =rX! | = r—1) (5.9)
Now we have,
I _ 1 _ VA ! —
P(WrOsO - m)_ P(Xm,ké =0 ’Xm—lqktl) = _1)

Using the pgf of X; ¥ and interpretations in (5.9)
we have, o

P(W, ,=m)=p"{C,,(r,~1)Dy}1
Particularly when 1y, =1, we have,
P(w, =m)=p'(A™")Dj1
The pgf of Wlfo is given by,
£(s)=sp'(1-As) Dl
and formula for exact probability is
P(W), =m)=p'(A)" DL, m>k.

Similarly waiting time distributions of Wrij!i , 1=0,1
and j=1,2 can be obtained.
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6. Numerical Study

In this section we present the numerical study based on
the joint distribution of patterns in the sequence of
bivariate trials. We consider the sequence

AT ——

dependent bivariate trials with m, =1 with transition
probabilities as follows.

Poo.00 = 0.2, Poo.o1 = 03, Poo.10 = 0.4, Poo.11 =0.1,
Poroo =035 Poro1 = 0.1, Pyy o = 0.5, Poyyy =0.1,
Pio.00 = 0.1, Pioor = 0.4, Pioto = 0.3, Pios1 = 0.2,
Piioo = 0.2, Pioi = 0.2, Piio = 0.2, P = 0.4

Let A, =01 and A, =110. The joint distribution of
(Xn,AI’Yn,AZ) is evaluated numerically for n=10 us-
ing the algorithm given in Theorem 4.1. The evaluated
joint pmf of (X, .Y, ) is described in the following
Table 1.

7. Application and Extension

[14] introduced the two-dimensional engineering system
consisting of a grid of mxn components arranged in
m-rows and n-columns. The system and its compo-
nents can be either in working or failed state. The system
fails if and only if a grid of size rxsS components fails.
Particularly, for m=r+1, we can formulate the states
of the components in this system as a sequence of n
independent bivariate trials. We assume that the i"
component in a column is in state 1 if it is in failed state
and in state 0 otherwise. For i=1,2,---,n we define,

1if firstr componentsini" column arein failed state
' 0 otherwise
and

v - {1 if last r components in i" column are in failed state
=

0 otherwise

The reliability of consecutive-(r,s)-out-of-(r +1,n):

F-Lattice system can now be obtained simply by using
the joint distribution of (X,L,\I,Yn‘,\2 as,
P(consecutive- (r,s) -out-of-(r +1,n) : F-Lattice system
works) = P(X,, =0.Y,, =0),
where A, is 1-run of length s in the first component
and A, is 1-run of length s in the second component
of the bivariate trials.

Extending the concept of bivariate trials to multivari-
ate trials, the joint distributions of number of occurrences
of patterns A; of length k; (i=12,---,m) in the i"
component of m-variate trials can be used to get the
reliability of general two-dimensional consecutive-
rxs -out-of-(m,n) : F-Lattice system.
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Table 1. Distribution of (X, .Y, )-

Yion,
xm,m Sum
0 1 2 3
0 0.00257  0.00666 0.00179  3.5E-05 0.01106
1 0.04765  0.08133  0.02006  0.00044 0.14949
2 0.16288  0.21551  0.04793 0.00113 0.42744
3 0.14927  0.15937 0.03184  0.00075 0.34122
4 0.03465  0.0294  0.00497  9.9E-05 0.06912
5 0.00101 0.00058  7.3E-05 1.2E-06 0.00167
Sum 0.39803  0.49285 0.10666 0.00245 1.00000

The pgf ¢, (t,.t,,--,t, )=¢,(t) of joint distribution
of Xr'mi,i =1,2,---,m, the number of occurrences of
patterns A; of length k, in the i" component of
m -variate trials obtained in general by using the method

of conditional pgfs is of form,

¢, (t)=p' A+Zn:Biti + zm; Bjtit, +..+ Bttt | 1
- i=1 i

i,j=1
i<j

(7.1)

Extending the Lemma 4.1 for the pgf in (7.1) exact
joint probability distribution of X:‘, A ,=12,---,m can
be obtained.

The above study of runs and patterns can be extended
in another direction by generalizing the sequence of
Markov dependent bivariate trials to the sequence of
Markov dependent multivariate trials. In the following,
we discuss briefly the method of deriving the joint dis-

n,A?,kl > n,A3

tribution of (Y Y , ) oY 2 j where Yn
sR2 N,AY Ky »

(i=1,2,---,r) denotes the number of occurrences of
two dimensional patterns of rectangular shape
Ai2 (i = l,2,~-,r) in the sequence of Markov dependent
multivariate trials.

Let Sp={X = (X%, %,) [ =0,Li =1,2,++-,m|

so that #(S; ) =2". Consider the sequence of m -variate
S? -valued Markov dependent trials { X;,i2 O} . Let the
transition probabilities of these Markov dependent trials
{X;,i>0} be,

P(X, =y X, =x)=R

> Z,Xesnﬁ, r>1.

and initial probabilities be P(X,=x)=m, V xeS;.
Consider the two dimensional pattern of rectangular

shape, A} =a,a,--a, (i=12,,r) where

8,1,815,7> By €S, . Let Y oo (i=1,2,--,r) be the

=il =i

number of occurrences of ‘patterns A’ in N trials
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X, X5, -+, X, . We obtain the joint distribution of
(Yn,/\f,kl’Yn,/\%,kz""’Yn,AE,k,j using the method for de-

riving joint distribution of number of occurrences of pat-
terns A; (i=1,2,---,r) in the sequence of multi-state
trials as done by [11]. For this consider the following
transformation of sequence of m -variate sequence of
S, -valued Markov dependent trials {X;,i>0} to the
univariate sequence of Markov dependent trials
{Z;,i>0}.
Define the function g:S2 —S.” such that

m
g(x)=>.2""x, where S’ = {g (x)|xe Sé} . Hence
i=1
Sy ={0,1,2,m,2rn —1}. Bach x in S} can be treated
as a m-digit binary number. The function g(x) con-
verts this m-digit binary number into a unique equiva-
lent decimal number in S’ .

Now corresponding to the m -variate sequence of
S, -valued Markov dependent trials {X;,i>0}, we
have the univariate sequence of S’ -valued Markov
dependent trials {Z;,i>0} where Z,=g(X;). The
transition probabilities for the sequence of trials
{X;,i=0} and for the converted sequence of trials
{Z;,i=0} are related as follows.

P(X, =YX, =x)=P

Xy
=P(z,=9(y)Z.. =9(x)=p,
Xes;, r>1

X,
where g(x)=i and g (y) = j. Convert the pattern
A} =a,a,-a, (i=12,r) intoa pattern
A =hyb, "'biki where by = g(@ij)
Now the original problem of studying the joint distribu-
tion of (Yn,/\f,kl ,anA%,kz ,...,YM%,kr j in the sequence of
S> -valued Markov dependent trials X, X,, -, X,
reduces to the problem of studying distribution of

(Yn‘Allo,k] ’Yn,Alzo,kz ,---,Yn’Aer’kr ) for the sequence of

S\ -valued Markov dependent trials Z,,Z,,---,Z, . [15]
obtain the joint distribution of number of occurrences of
i-runs (i=0,1,2,---,m) of length k;, while [11] ob-
tain the joint distribution of number of occurrences of
patterns in the sequence of {0,1,---,m}-valued Markov
dependent trials using the method of conditional pgfs.
The related waiting time distributions can also be studied
following the same process as in Section 5 in the case of
Markov dependent multivariate trials.
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