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Abstract 
Analytical investigation on a combined heat and mass transfer of air flow near a continuously 
moving infinite plate with a constant heat sink is performed in the presence of a uniform magnetic 
field. To observe the thermal radiation and Soret effect on the flow, thermal radiation and thermal 
diffusion term are added in energy and concentration equations. A flow of model is established by 
employing the well known boundary layer approximations. In order to obtain non-dimensional 
system of equations, a similarity transformation is applied on the flow model. Perturbation tech-
nique is used as main tool for the analytical approach. The numerical values of flow variables are 
computed by a FORTRAN program. The obtain numerical values of fluid velocity, temperature and 
species concentration are drawn for the different values of various parameters. To observe the ef-
fects of various parameters on the flow variables, the results are discussed in detailed with the 
help of graph. 
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1. Introduction 
Fluid dynamics is the science which is concerned with the study of motion of fluids or that of bodies in contract 
of fluids. Fluids are classified as liquids and gases. The former are mot sensibly compressible expect under the 
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action heavy forces whereas the latter are easily compressible and expand to fill any closed space. The heat 
transfer processes are of great interest in power engineering, metallurgy, astrophysics and geophysics. The 
processes of mass transfer have of great interest in the production of materials in order to obtain the desired 
properties of a substance. Chemical reactions including combustion processes are often decisively determined 
by the mass transfer. The combined heat and mass transfer occur due to buoyancy forces caused by temperature 
difference and concentration difference. A natural convective heat transfer flow of fluid was first studied by 
Finston (1956) [1]. Sparrow and Gregg (1958) computed a similar solution for laminar free convection from a 
non-isothermal vertical plate [2]. A Finite difference solution of transient free convective flow over an isother-
mal plate was obtained by Soundalgekar and Ganesan (1981) [3]. A numerical study on the natural convective 
cooling problem of a vertical plate was completed by Camargo et al. (1996) [4]. Chemical reactions including 
combustion processes are often decisively determined by the mass transfer. Callahan and Marner (1976) studied 
a free convective unsteady flow with mass transfer past a semi-infinite plate [5]. An investigation on free con-
vective unsteady flow with mass transfer past an infinite vertical porous plate with constant suction was com-
pleted by Soundalgekar and Wavre (1977) [6]. Soundalgekar and Ganesan (1980) observed that Transient free 
convection flow on a semi-infinite vertical plate with mass transfer [7]. 

Combined heat and mass transfer problems (Jaluria; 1980) are of importance in many processes and have 
therefore received a considerable amount of attention. In many mass transfer processes, heat transfer considera-
tions arise owing to chemical reaction and are often due to nature of the process [8]. In processes such as drying, 
evaporation at the surface water body, energy transfer in a wet cooling tower and flow in desert cooler, heat and 
mass transfer occur simultaneously. The combined heat and mass transfer flows play a special role in power en-
gineering, metallurgy, condensation, evaporation and rectification of a fluid. In the separation processes as dry-
ing of solid materials, distillation, extraction and absorption; the combined heat and mass transfer occur due to 
buoyancy forces caused by temperature difference and concentration difference. Pera and Gebhart (1971) was 
the first author to study the natural convective heat and mass transfer problem [9]-[14]. Hady, Mohamed and El 
Shehabey, (2013) focused on the effects of heat source/sink, viscous dissipation, radiation and work done by 
deformation on flow and heat transfer of a viscoelastic fluid over a nonlinear stretching sheet [15]. Viskanta and 
Grosh (1962) considered the thermal radiation effects on the boundary layer flow and heat transfer over a wedge 
in an absorbing and emitting media [16]. Bestman (1990) observed the boundary-layer flow past a semi-infinite 
heated porous plate for a two-component plasma [17]. Sattar and Alam (1994) considered the thermal-diffusion 
as well as transpiration effects on MHD free convection and mass transfer flow past an accelerated vertical por-
ous plate [18]. 

2. Analysis and Solution 
2.1. Mathematical Flow 
A mixed convective heat and mass transfer unsteady flow of air near an infinite vertical plate is considered here. 
The flow is assumed to be in the x-direction, which is chosen along the plate in upward direction and y-axis is 
normal to it. Initially, it is considered that the plate as well as the fluid particle is at rest at the same temperature 
( )T T∞=  and the same species concentration level ( )C C∞=  at all points. Where, C∞  and T∞  are fluid 

concentration and temperature species of uniform flow respectively. It also assumed that the plate and the fluid 
particles outside the boundary layer move with a uniform velocity 0U  as well as a magnetic field B of uniform 
strength is applied normal to the flow region. To realize the model of boundary layer phenomena, we can draw 
the configuration of the model. The suitable physical configuration with co-ordinate systems is shown in Figure 
1. 

The unsteady two dimensional problems are governed by the following system of coupled non-linear partial 
differential equations. 

0v
y
∂

=
∂

                                         (1) 

( ) ( )
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Figure 1. Physical configuration with co-ordinate system.              
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boundary conditions, 

0 ,  ,  at  0w wu U T T C C y= = = =  

0 , , atu U T T C C y∞ ∞= → → →∞  

where, ,x y  be the Cartesian coordinate; ,u v  are velocity components, g is the local acceleration due to grav-
ity, β  is the is the thermal expansion coefficient, *β  is the is the concentric expansion coefficient, wT  de-
notes the wall temperature, wC  is the species concentration at the wall, υ  is the kinematic viscosity, ρ  is 
density, k is thermal conductivity, pC  is specific heat at constant pressure, 0Q  denotes the heat sink, 0B  is 
uniform magnetic field, rq  unidirectional radiative heat flux, ck  for chemical reaction, mD  is coefficient of 
mass diffusivity, m is mass per unit area. The radiative heat flux term by using the Rosseland approximation is 
given by [15]. 

44
3

s
r

e

Tq
k y
σ ∂

= −
∂

 

Where, sσ  is the Stefan-Boltzmann constant and ek  is the mean absorption coefficient, respectively. If tem-
perature differences within the flow are sufficiently small, then the rq  can be linearized by expanding 4T  in-
to the Taylor series about T∞ , which after neglecting higher order terms takes the form by [15]. 

4 3 44 3T T T T∞ ∞≅ − . Then the Equation (3) becomes, 

( )
2 32 2

0
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2.2. Mathematical Formulation 
In order to obtain similar solutions we introduce a similarity parameter σ  as, 
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( )tσ σ=  

Such that σ  is the time dependent length scale. In terms of this length scale, a convenient solution of equa-
tion is considered as, 

0v V υ
σ

= −  

Here, the constant 0V  represents a dimensionless normal velocity at the plate which is positive for suction 
and negative for blowing. 

We consider the following dimensionless variables, 

yη
σ

=  

( )
0

uf
U

η =  

( )
w

T T
T T
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Then we get, 

( ) ( ) ( ) ( ) ( )0 0r mf f V G G Mf
t
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where, Grashof number, ( )
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Hence following the works of Sattar and Alam (1994) [18] one can try a class of solutions of the Equations 
(6), (7) and (8) by assuming that, 

c
t

σ σ
υ
∂

=
∂

  (c is a constant)                                 (9) 

Now integrating (9) we obtain 

2c tσ υ=                                         (10) 
where the constant of integration is determined through the condition that 0σ =  when, 0t = . It thus appears 
from (10) that, by making a realistic choice of c to be equal to 2 in (9) the length scale σ  becomes equal to 

2 tσ υ=  which exactly corresponds to the usual scaling factor considered for various unsteady boundary layer 
flows (Schlichting,1968). Since σ  is a scaling factor as well as a similarity parameter, any value of c in (9) 
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would not change the nature of the solution except that the scale would be different. Finally, introducing (9) 
with 2c =  in Equations (6), (7) and (8) we respectively have the following dimensionless ordinary differential 
equations.  
where, 02wf Vη= +  (Suction Parameter). 

The dimensionless similar equations, 

( ) ( ) ( ) ( ) ( ) ( ) 0w r mf f f G G Mfη η η θ η φ η η′′ ′+ + + − =                  (11) 

( ) ( ) ( ) ( ) ( ) ( )2 0r c r w r a r aP E f P f P P Rθ η η θ η η β θ η θ η′′ ′ ′ ′′+ + − − =               (12) 

( ) ( ) ( ) ( ) ( ) 0c w c o c rS f S S S Cφ η η φ η θ η φ η′′ ′ ′′+ + − =                  (13) 

Non-dimensional appropriate boundary conditions, 

( ) 1,  1, 1  at 0f η θ φ η= = = =  

( ) 1,  0, 0  at f η θ φ η= = = →∞  

2.3. Mathematical Analysis 
Since the solution is sought for the large suction farther transformation can be made as, 

( ) ( )

2

2 4

, ( ),

and
w w

w w

f f f F

f H f G

ξ η ξ

θ ξ φ ξ

= =

= =
 

Model with small quantity, 

( ) ( ) ( ) ( ) ( ) 0r mF F G H G G MFξ ξ ε ξ ε ξ ξ ε′′′ + + + − =  

( ) ( ) ( ) ( )2
24 24 24

1 0r c r r aH A P E F A P H P A Hξ ξ ξ β ε ξ
ε

′ ′′′ + + − =  

where, ( ) 1
24 1 r aA P R −= −  

( ) ( ) ( ) ( )2 0c c o c rG S G S S H S C Gξ ξ ε ξ ε ξ′′′ ′′+ + − =  

Appropriate boundary conditions, 
2, , at 0F H Gε ε ε η= = = =  

, 0, 0 at 0F H Gε η= = = →  

2.4. Solution 
Now, for the large suction ( )1wf > , ε  will be very small. Therefore following Bestman (1990) [17], F, H and 
G can be expended in terms of the small perturbation quantity ε , 

( ) ( ) ( ) ( )2 3
1 2 3F F F Fξ ε ξ ε ξ ε ξ= + + +                            (14) 

( ) ( ) ( ) ( )2 3
1 2 3H H H Hξ ε ξ ε ξ ε ξ= + + +                           (15) 

( ) ( ) ( ) ( )2 3
1 2 3G G G Gξ ε ξ ε ξ ε ξ= + + +                           (16) 

The first order equations, 
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with the boundary conditions, 
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1 11, 0, at 0F H G ε ξ= = = =  

1 10, 0, 0 atF H G ξ= = = →∞  

The second order equations, 

2 2 1 1 1

2 1 2 24 24 2 24 1

2 2 1

0
2 0

0

r m

r c r r a

c c r

F F G H G G MF
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β
′′ ′+ + + − = 

′′ ′ ′ ′+ + − = 
′′ ′+ − = 

                     (18) 

with the boundary conditions, 

2 2 2 20, 0, 0, 0 at 0F F H G ξ′= = = = =  

2 2 20, 0, 0 atF H G ξ′ = = = →∞  

Also the third order equations, 

3 3 2 2 2
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3 24 2 24 1 3 24 3 24 2

3 3 1 2
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                (19) 

with the boundary conditions, 

3 3 3 30, 0, 0 and 0 at 0F F H G ξ′= = = = =  

3 3 3 30, 0, 0 and 0 at .F F H G ξ′= = = = →∞  

From Equation (17) we get first order solutions, 
24

1 1 11, e and e cr SP AF H G ξξ ε −−= = =  

From Equation (18) we get second order solutions, 

( )24
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From Equation (19) we get third order solutions, 
24
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3 31 23 32
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2 2
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e e e
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24 24 2
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and 
24 2

3 45e e cr SA P
c rG A S C ξξ ε −−= +  

From the Equation (14), (15) and (16) we have series for the solution. Putting the equations of first, second 
and third order solution in the Equations (14), (15) and (16), we get the values of F, H and G. Substituting the 
values of F, H and G to the equations ( )2

wf f F ξ= , ( )2
wf Hθ ξ=  and ( )4

wf Gφ ξ=  we get, 
The fluid velocity equation, 

( ) ( )

( )

24 2 2 3 2
21 31 33 22 23 32

2 2
2 2 2 2

e e
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The fluid temperature equation, 

( )

( ) ( )
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2 2
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222 2
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The fluid concentration equation, 24 2 2
45e e e ec c crS S SA P

c r c rS C A S Cξ ξ ξξφ ε ε ε− − −−= − + +  

3. Results and Discussion 
To discuss the results of the problem, the analytical solutions are obtained by using the perturbation technique. 
In order to analyze the physical situation of the model, we have computed the numerical values of the flow va-
riables for different values of dimensionless normal velocity ( )oV , Grash of number ( )rG , modified Grashof 
number ( )mG , Schmidt number ( )CS , Eckert number ( )cE , Prandtl Number ( )rP . Soret number ( )oS , 
magnetic force parameter (M), Chemical reaction parameter ( )rC , thermal radiation parameter ( )aR , heat ab-
sorption parameter ( )aβ . The fluid velocity, temperature and concentration versus the non-dimensional coor-
dinate variable η  are displayed in Figures 2-12. 

In Figure 2 velocity profiles increase with the increase of heat absorption parameter aβ . In Figure 3, we 
observe that velocity profiles increase with the increase of magnetic force parameter M. In Figure 4, velocity 
profiles decrease with the increase of Prandtl number rP . In Figure 5, we observe that velocity profiles de-
crease with the increase of radiation parameter aR . In Figure 6 temperature profiles decrease with the increase 
of heat absorption parameter aβ . In Figure 7, temperature profiles decrease with the increase of Prandtl num-
ber rP . In Figure 8, we observe that temperature profiles decrease with the increase of radiation parameter aR . 
In Figure 9, concentration profiles decrease with the increase of Schmidt number cS . In Figure 10, we observe 
that concentration profiles increase with the increase of Soret number oS . In Figure 11, concentration profiles 
decrease with the increase of chemical reaction parameter rC . In Figure 12, we observe that concentration pro-
files increase with the increase of radiation parameter aR . The other parameters remain constant for every pro-
file. 
 

 
Figure 2. Velocity profiles for different values of aβ  with 

0.10,mG =  0.20,rG =  0.71,rP =  0 3.80,V =  0.70,cE =  
0.30,cS =  5.00,M =  0.60,oS =  0.30aR =  and 
1.00rC = .                                                    
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Figure 3. Velocity profiles for different values of M  with 0.10,mG =  

0.20,rG =  0.71,rP =  0 3.80,V =  0.70,cE =  0.30,cS =  2.00,aβ =  
0.60,oS =  0.30aR =  and 1.00rC = .                                   

 

 
Figure 4. Velocity profiles for different values of rP  with 0.10,mG =

0.20,rG =  5.00,M =  0 3.80,V =  0.70,cE =  0.30,cS =  2.00,aβ =  
0.60,oS =  0.30aR =  and 1.00rC = .                                   
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Figure 5. Velocity profiles for different values of aR  with 0.10,mG =  

0.20,rG =  5.00,M =  0 3.80,V =  0.70,cE =  0.30,cS =  2.00,aβ =  
0.60,oS =  0.71rP =  and 1.00rC = .                                   

 

 
Figure 6. Temperature profiles for different values of aβ  with 0.10,mG =  

0.20,rG =  5.00,M =  0.30,aR =  0 3.80,V =  0.30,cS =  0.70,cE =  
0.60,oS =  0.71rP =  and 1.00rC = .                                 
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Figure 7. Temperature profiles for different values of rP  with 0.10,mG =  

0.20,rG =  2.00,aβ =  0.30,aR =  0 3.80,V =  0.30,cS =  0.70,cE =  
0.60,oS =  5.00M =  and 1.00rC = .                                  

 

 
Figure 8. Temperature profiles for different values of aR  with 0.10,mG =  

0.20,rG =  2.00,aβ =  0.71,rP =  0 3.80,V =  0.30,cS =  0.70,cE =  
0.60,oS =  5.00M =  and 1.00rC = .                                       
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Figure 9. Concentration profiles for different values of cS  with 0.10,mG =  

0.20,rG =  2.00,aβ =  0.71,rP =  5.00,M =  0.30,aR =  0.70,cE =

0.60,oS =  0 3.80V =  and 1.00rC = .                                  
 

 
Figure 10. Concentration profiles for different values of oS  with 

0.10,mG =  0.20,rG =  2.00,aβ =  0.71,rP =  5.00,M =  0.30,aR =

0.70,cE =  0.30,cS =  0 3.80V =  and 1.00rC = .                              
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Figure 11. Concentration profiles for different values of rC  with 

0.10,mG =  0.20,rG =  2.00,aβ =  0.71,rP =  5.00,M =  0.30,aR =  
0.70,cE =  0.30,cS =  0.60oS =  and 0 3.80V = .                              

 

 
Figure 12. Concentration profiles for different values of aR  with 

0.10,mG =  0.20,rG =  2.00,aβ =  0.71,rP =  5.00,M =  0.60,oS =

0.70,cE =  0.30,cS =  0 3.80V =  and 1.00rC = .                                
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4. Conclusions 
The analytic solutions o for MHD flow of a viscous fluid near a moving infinite plate with thermal radiation, 
heat sink, chemical reaction, Soret is analyzed. The results are presented graphically with various parameters. 
Form the graphical representation, we have the following observations: 
• Velocity and temperature profiles decrease with the increase of heat absorption parameter aβ . 
• Velocity profiles increase with the increase of magnetic force parameter M. 
• Velocity and temperature profiles decrease with the increase of radiation parameter aR  while concentration 

increase near the plate and away from the plate remain unchanged for increase of radiation parameter aR . 
• Concentration profiles increase near the plate and away from the plate remain unchanged with the increase of 

Soret number oS . 
• Concentration profiles decrease near the plate and away from the plate remain unchanged with the increase 

of chemical reaction parameter rC . 
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