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Abstract 
The bilinear generating function for products of two Laguerre 2D polynomials ( )′m n z z,L ,  with 
different arguments is calculated. It corresponds to the formula of Mehler for the generating func-
tion of products of two Hermite polynomials. Furthermore, the generating function for mixed 
products of Laguerre 2D and Hermite 2D polynomials and for products of two Hermite 2D poly-
nomials is calculated. A set of infinite sums over products of two Laguerre 2D polynomials as in-
termediate step to the generating function for products of Laguerre 2D polynomials is evaluated 
but these sums possess also proper importance for calculations with Laguerre polynomials. With 
the technique of ( )SU 1,1  operator disentanglement some operator identities are derived in an 
appendix. They allow calculating convolutions of Gaussian functions combined with polynomials 
in one- and two-dimensional case and are applied to evaluate the discussed generating functions. 

 
Keywords 
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Formula, ( )SU 1,1  Operator Disentanglement, Gaussian Convolutions 

 
 

1. Introduction 
Hermite and Laguerre polynomials play a great role in mathematics and in mathematical physics and can be 
found in many monographs of Special Functions, e.g., [1]-[4]. Special comprehensive representations of poly-
nomials of two and of several variables are given in, e.g. [5] [6]. 

Laguerre 2D polynomials ( ),L ,m n z z′  with two, in general, independent complex variables z and z′  were 
introduced in [7]-[12] by (similar or more general objects with other names and notations were defined in 
[13]-[24]). 
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                     (1.1) 

written by application of an operator to the function ( ), 1f z z′ = . This leads to the following definition (called 
“operational” in comparison to the “Rodrigues”-like) and explicit representation  
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with the inversion (see also formulae (1.5))  
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Some special cases are  
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        (1.4) 

The differentiation of the Laguerre 2D polynomials provides again Laguerre 2D polynomials  

( ) ( ) ( ) ( ), 1, , , 1L , L , , L , L , ,m n m n m n m nz z m z z z z n z z
z z− −
∂ ∂′ ′ ′ ′= =

′∂ ∂
                (1.5) 

and, furthermore, the Laguerre 2D polynomials satisfy the following recurrence relations  

( ) ( ) ( )
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L , L , L , ,
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                       (1.6) 

as was derived in [7]-[9] and as can be easily seen from (1.1) or (1.2). 
The Laguerre 2D polynomials (1.2) are related to the generalized Laguerre (or Laguerre-Sonin)1 polynomials 
( )Ln uν  by  

( ) ( ) ( ) ( ) ( ),L , 1 ! L 1 ! L ,n mm n m n n m n m
m n n mz z n z zz m z zz− − − −′ ′ ′ ′= − = −                  (1.7) 

that explains the given name. In most physical applications the second complex variable z′  is complex conju-
gated to the first variable z that means *z z′ =  but for generality we leave open this specialization and consider 
z and z′  as two independent complex (or sometimes real) variables. 

The operators z
z
∂

−
′∂

 and z
z
∂′ −
∂

 which play a role in (1.1) are commutative that means  

, 0,z z z z z z
z z z z z z
∂ ∂ ∂ ∂ ∂ ∂       ′ ′ ′− − ≡ − − − − − =      ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂       

                (1.8) 

and their powers can be disentangled (all multiplication operators stand in front of the differential operators) that 
using the explicit form of the Laguerre 2D polynomials (1.2) leads to the following operator identity  
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∑∑             (1.9) 

 

 

1N.Ya. “Sonin” is often written in the French form N.J. “Sonine” under which this Russian mathematician of 19-th to 20-th century became 
known in Western Europe. 
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It is applicable to arbitrary functions ( ),f z z′  and provides then functional identities such as (1.1) in appli-
cation to the function ( ), 1f z z′ = . For its derivation we used in addition the reordering relation of differentia-
tion and multiplication operators (1.9) (e.g., [25], Equation (A.6) there)  

{ }

( ) ( )
,

0

! ! ,
! ! !

k ll l j
k k j

l l j
j

k lz z
j k j l jz z

−
−

−
=

∂ ∂
=

− −∂ ∂∑                         (1.10) 

which is well known in quantum optics (transition from antinormal to normal ordering of boson creation and 
annihilation operators) and can be proved by complete induction but relation (1.9) can be also directly proved by 
complete induction. 

The (special) Laguerre 2D polynomials ( ) ( ), ,L , L I; ,m n m nz z z z′ ′≡  are the special case U I=  of the (gener-
al) Laguerre 2D polynomials ( ),L U; ,m n z z′  where U is a general 2D matrix and I denotes the 2D unit matrix 
[10]-[12]. Together with the general Hermite 2D polynomials ( ),H U; ,m n x y , the general Laguerre 2D polyno-
mials ( ),L U; ,m n z z′  form a unified object which can be transformed from one to the other form by a special 
unitary matrix Z  which transforms the real coordinates ( ),x y  to the pair of complex coordinates  
( )*i , iz x y z z x y′≡ + = ≡ − . It seems to be not an overestimation to say that the appearance of the generalized 
Laguerre polynomials ( )Ln uν  in applications most often in the form of ( )*

,L ,m n z z  leads to the conclusion 
that the usual generalized Laguerre polynomials ( )Ln uν  are the radial rudiments of the Laguerre 2D polyno-
mials ( )i i

,L e , em n r rϕ ϕ−  in polar coordinates ( )i * ie , ez r z rϕ ϕ−≡ ≡  with 2u r≡ . Their orthonormalization on 
the positive semi-axis 20 u r≤ ≡ < +∞  with weight proportional to e u−  supports this conclusion. 

The Laguerre 2D polynomials are related to products of Hermite polynomials by [10] (the special case 
m n=  is given in [1] [3] but with an error by an absent factor 22 n  on the right-hand side)  
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and the inversion is  
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where the coefficients are essentially given by the Jacobi polynomials ( ) ( ),Pj uα β  for argument 0u = . Back-
ground of these formulae is the relation [8]-[11]  
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and its inversion  
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and the application of the integral operator 
2 2 2

* 2 2

1exp exp
4z z x y
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− = − +     ∂ ∂ ∂ ∂    

 to them (see also Section 2). 

In special case m n=  the last two formulae make the transition to  
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and to  
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from which by comparison of the different representations follows  
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for Jacobi polynomials with equal upper indices specialized by argument 0u = . The Jacobi polynomials with 
equal upper indices are also called Ultraspherical polynomials ( ) ( ),Pn uα α  and are related to Gegenbauer poly-
nomials ( )Cn uν  by  
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 − + − +  ≡ ≡
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        (1.18) 

Clearly, Formulae (1.13)-(1.16) remain to be true if *z z′→  is not the complex conjugate to z in which case x 
and y become complex numbers. 

Different methods of derivation of generating functions are presented in the monographs [2] [26]. The prob-
lem of determination of the basic generating function for simple Laguerre 2D and Hermite 2D polynomials was 
solved in [9]-[12] [18]-[20]. A more difficult problem is the determination of generating functions for products 
of two Laguerre 2D polynomials or of a Laguerre 2D and a Hermite 2D polynomial. In [12], we derived some 
special generating functions for products of two Laguerre 2D polynomials. The corresponding generating func-
tions with general 2D matrices U  as parameters in these polynomials are fairly complicated [12]. In present 
paper, we derive by an operational approach the generating functions for products of two special Laguerre 2D 
polynomials, for products of two Hermite 2D polynomials and for the mixed case of a product of a Laguerre 2D 
with a Hermite 2D polynomial (also called bilinear generating functions). This corresponds to the formula of 
Mehler (e.g., [1], 10.13 (22) and below in Section 3) which is the bilinear generating function for the product of 
two usual Hermite polynomials. We begin in next Section with a short representation of the analogical 1D case 
of Hermite polynomials and discuss in Section 3 their bilinear generating function and continue in Sections 4-7 
with the corresponding derivations for the Laguerre 2D and Hermite 2D cases. In Section 8 we derive a summa-
tion formula over Laguerre 2D polynomials which can be considered as intermediate step to the mentioned ge-
nerating functions but possesses also its own importance in applications. Sections 9 and 10 are concerned with 
the further illumination of two factorizations of two different bilinear generating functions. 

The operators which play a role in one of the definitions of Hermite and Laguerre (1D and 2D) polynomials 
are Gaussian convolutions and possess a relation to the Lie group ( )1,1SU . Using operator disentanglement for 

( )1,1SU  we may derive operational relations which provide a useful tool for the derivation of the considered 
generating functions. This is presented in Appendix A. 

2. Hermite Polynomials and Their Alternative Definition as a 1D Analogue to  
Laguerre 2D Polynomials 

Hermite polynomials ( )Hn x 2 (e.g., [1]-[4]) can be defined in analogy to Laguerre 2D polynomials (1.1), at 
least, in two well-suited equivalent ways by  
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∂ ∂ = − − = − ∂∂  



                   (2.1) 

 

 

2In Russian literature, Hermite polynomials are often called Chebyshev-Hermite polynomials. 
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that leads to the following alternative definition from which results immediately the explicit representation  
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with the inversion  

( ) ( ) ( ) ( )
2 2

22
0

1 !2 exp H H .
4 ! 2 !

n

n
n n l

l

nx x x
l n lx

 
  

−
=

 ∂
= =  −∂ 

∑                     (2.3) 

The definition (2.2) which is little known (see [4], 5.3, pp. 159/160) and which was occasionally used in older 
time is an alternative one to the well-known Rodrigues-type definition given in second line in (2.1) and it has 
found new attention and its fixed place in literature only in recent time [27]-[33]. It rests here on the operator 
identities ( )0,1, 2,n =    

( ) ( ) ( ) ( )
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∂ ∂   = − − = −   ∂ − ∂   
∑

            (2.4) 

which can be applied to arbitrary functions ( )f x  of a (in general, complex) variable x and is applied in (2.1) to 
the function ( ) 1f x = . Similar considerations were made for the operators in the definition (1.1) of Laguerre 
2D polynomials where we have as background of the two alternatives the identity of the operators in (1.1) lead-
ing to the operator identity (1.9). 

Such alternative definitions of a sequence of polynomials ( ) ( ), 0,1, 2,np x n =   as in (2.2) are possible in 
every case if the generating function possesses a special form and vice versa as follows  

( ) ( ) ( ) ( )
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n n
n

t p x f t p x f ax
n a x

∞

=

∂ = ⇔ =  ∂ 
∑                      (2.5) 

with an arbitrary function ( )f t . The proof is relatively simple and is here omitted. In case of the Hermite po-
lynomials one has ( ) ( )2expf t t= −  with the parameter 2a = . Other examples are binomials, higher-order 
Hermite polynomials (Gould-Hopper polynomials [26] with little applications up to now), Bernoulli polyno-
mials and Euler polynomials the last related to Hyperbolic Secant function. The analogous alternative definition 
of Laguerre 2D polynomials is given in first line of (1.2) in comparison to a more conventional one in second 
line. For some proofs the alternative definitions possess advantages but we will not and cannot state this gener-
ally. 

Generalized Laguerre polynomials ( )Ln uν  form a peculiar case with respect to the generating functions since 
according to (1.7) they are properly rudiments of Laguerre 2D polynomials where they are involved in the form 

( )Lm n
n u− . Indeed, in this combination of indices they possess a known generating function of the form (2.5) (e.g., 

[1]-[4] [26]. Some other kinds of generating functions for ( )Ln uν  with fixed ν  can be also found in cited li-
terature with the possibility of an operational definition as follows ( 1a = −  and ( ) ( )1 mf t t= +  in (2.5))  
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from which follows (compare with (1.2))  
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               (2.7) 
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where 1
u

ν∂ − ∂ 
 for arbitrary real values of ν  is defined by their Taylor series in powers of 

u
∂
∂

. The known  

expansion of ( )Lm n
n u−  in powers of u can be immediately checked from the operational definition. The yet re-

maining classical polynomials are the Jacobi polynomials ( ) ( ),Pn zα β  with their special cases. They do not pos-
sess an operational definition according to the scheme mentioned here for Hermite and Laguerre polynomials. 
However, a more complicated form of an operational definition was found in [34] (Appendix A there) for the 
special case of ultraspherical polynomials ( ) ( ),Pn zα α  and thus also for their equivalent Gegenbauer polynomials 
and their special cases of Legendre and of Chebyshev polynomials. It is unclear up to now whether or not and in 
which form there exists an extension to the general case of Jacobi polynomials ( ) ( ),Pn zα β  with α β≠ . 

Formulae (2.5) are closely related to the so-called umbral calculus [35] in its simplest form and it seems that 
an essential part of this symbolic calculus rests on the duality of the linear functionals of the delta function 
( )xδ  and its derivatives ( ) ( )m xδ  to the monomials nx  according to  

( ) ( ) ( ) ( ) ( ) ( ) ,

1
1 , d

! !

mn
m m m n

m n
xx x x x
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δ δ δ
+∞

−∞

− 
− ≡ = 

 
∫  and to the introduction of a symbolic notation for the cal-

culation with the corresponding algebra which, however, does not bring a great relief in comparison to the direct 
calculation with these functionals. 

3. Generating Function for Products of Two Hermite Polynomials (Mehler Formula) 
Besides the well-known generating function for Hermite polynomials  
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0
H exp 2 ,

!

n

n
n

t x tx t
n

∞

=

= −∑                              (3.1) 

in applications, in particular, in quantum optics of the harmonic oscillator the following bilinear generating 
function for products of two Hermite polynomials with equal indices but different arguments plays an important 
role (formula of Mehler; see, e.g. [1], 10.13 (22))  
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∑
        (3.2) 

We represented here the right-hand side additionally in a sometimes useful factorization. This factorization is 
connected with the following identity (see [36], 4.5.2 (5), p. 641)  
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                (3.3) 

and thus with a coordinate transformation. In the special case 0y =  of (3.2) using  
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1 2 !
H 0 , H 0 , 0,1,2, ,

!

m

m m

m
m

m +

−
= =                     (3.4) 

it provides (see, e.g., [33], Equation (75) presented there, however, with a less usual definition of Hermite poly-
nomials)  

( ) ( ) ( )22

2 220

1 1H exp ,
! 2 11

m m

m
m

txt x
m tt

∞

=

 −    = −   −  −  
∑                       (3.5) 

which is a generating function for even Hermite polynomials and by differentiation with respect to variable x 
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using ( ) ( )1H 2 Hn nx n x
x −
∂

=
∂

  

( ) ( )
( )

( )22 1

2 1 22 30

1
H exp ,

! 2 11

m m

m
m

txt txx
m tt

+∞

+
=

 −    = −   −  −  
∑                    (3.6) 

the corresponding generating functions for odd Hermite polynomials. We mention here that both generating 
functions (3.5) and (3.6) are not contained in the otherwise very comprehensive and impressive work [1] but in-
stead of these are two other ones for even and odd Hermite polynomials which can easily be obtained by sepa-
rating the even and odd part in the most well-known usual generating function for Hermite polynomials (3.1). 
Let us give them since a small mistake is there ( 2  on the right-hand sides in [1] (10.13, (20) and (21)) has to 
be changed to 2)  

( ) ( )
( )( )

( ) ( ) ( )

( ) ( )
( )( )

( ) ( ) ( )

2
2

2
0 0

2 1
2

2 1
0 0

1
2H H exp ch 2 ,

2 ! !
1
2H H exp sh 2 .

2 1 ! !

nn
m

m n
m n

nn
m

m n
m n

t tt x x t tx
m n

t tt x x t tx
m n

∞ ∞

= =

+∞ ∞

+
= =

+ −
= = −

− −
= = −

+

∑ ∑

∑ ∑

              (3.7) 

Correct formulae of this kind one may find in [3] (chap. V, p. 252). 

In the limiting transition 1t → +  setting 1
2

t ε
= −  in (3.2), one obtains for 0ε →  the following com-

pleteness relation for the Hermite polynomials  

( ) ( ) ( ) ( )

( )

2
2 2

00

2 2

1 1H H exp lim exp
2 !

π exp .
2

n nn
n

x y
x y x y xy

n

x y x y

ε εε

δ

∞

→+=

 −
 = + − −
 
 

 +
= − 

 

∑
              (3.8) 

As it is known this indicates a way for the introduction of Hermite functions h ( )n x  as follows  

( ) ( )2

1
4

H1h exp ,
2 2 !π

n
n n

xxx
n

 
≡ − 

 
                            (3.9) 

which are complete and orthonormalized according to  

( ) ( ) ( ) ( ) ( ) ,
0
h h , d h h .n n m n m n

n
x y x y x x xδ δ

∞ +∞

−∞
=

= − =∑ ∫                   (3.10) 

This underlines the great importance of the bilinear generating function (3.2). A proof of (3.2) can be given, 
for example, using an operational formula derived in Appendix A (Equation (A.12) there) or using (3.3) in 
connection with the generating function for generalized Laguerre polynomials that shifts it to the proof of (3.3) 
(the more direct proof of (3.2) in [2] occupies one full page on pp. 197/198). 

4. Generating Functions for Laguerre 2D Polynomials 
In the derivation of generating functions for Laguerre 2D polynomials ( ),L ,m n z z′  it does not play a role 
whether z′  is complex conjugated to z or not. The Laguerre 2D polynomials ( ),L ,m n z z′  possess the follow-
ing symmetry and scaling property  

( ) ( ) ( ), , , ,L , L , , L , L , ,m n
m n n m m n m n

zz z z z z z zκ κ
κ

−′ ′ ′ ′= = 
 

                (4.1) 
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for arbitrary complex κ . Thus the scaling transformation of the variables , zz z zκ
κ
′

′→ →  preserves the La- 

guerre 2D polynomials up to factors m nκ −  which reduces to pure phase factors ( )ie m n χ−  for 1κ =  or 
ie χκ =  with special case πχ =  or 1κ = −  and therefore ( ) ( ) ( ),L , 1 L ,m n

m n z z z z−′ ′− − = − . In case that z′  
is the complex conjugated variable *z z′ =  to z and therefore not independent on z we may only consider the 
transformation i * i *e , ez z z zχ χ−→ →  where the Laguerre 2D polynomials are preserved up to phase factors 

( )ie m n χ− . The scaling transformations can be used to make a certain check of the final results for generating func-
tions. 

The following generating function for Laguerre 2D polynomials is easily to obtain from the alternative defini-
tion of ( ),L ,m n z z′  in (1.2) in the following way  

( )

( ) ( )

2

,
0 0 0 0

2

L , exp
! ! ! !

exp exp exp ,

m n m n
m n

m n
m n m n

s t s tz z z z
m n z z m n

sz tz sz tz st
z z

∞ ∞ ∞ ∞

= = = =

 ∂′ ′= − ′∂ ∂ 
 ∂ ′ ′= − + = + − ′∂ ∂ 

∑∑ ∑∑
             (4.2) 

in particular for ,s z t z′= =  and for ,s z t z′= =   

( ) ( )

( ) ( )

2 2
,

0 0

,
0 0

L , exp ,
! !

L , exp .
! !

m n

m n
m n

m n

m n
m n

z z z z z z zz
m n
z z z z zz
m n

∞ ∞

= =

∞ ∞

= =

′
′ ′ ′= + −

′
′ ′=

∑∑

∑∑
                        (4.3) 

As an intermediate step to the generating (4.2) one may consider the generating function with summation over 
only one of the indices in the special Laguerre 2D polynomials  

( ) ( ) ( ),
0

L , exp ,
!

n
m

m n
n

t z z z t tz
n

∞

=

′ ′= −∑                            (4.4) 

which is to obtain analogously to (4.2) using the first definition of these polynomials in (1.1). Written by the 
usual generalized Laguerre polynomials according to (1.7) this provides  

( ) ( )
( )

( ) ( )
0 0

!L 1 L 1 exp ,
!

nn m
mm n n m

n mm
n n

tzz m t tzz zz zz
t n z zzz

∞ ∞
− −

= =

′     ′ ′ ′− = − = −     
′     

∑ ∑           (4.5) 

which after substitutions 
t t
z

′→ −  and zz u′ →  becomes identical with the known generating function (2.6) 

for usual Laguerre polynomials [1]. 

5. Generating Functions for Products of Laguerre 2D Polynomials 
We now calculate the basic generating function for the product of two special Laguerre 2D polynomials. Using 
the first of the definitions in (1.1) which corresponds to the alternative definition of the Hermite polynomials in 
first line of (2.2), we quickly proceed as follows (remind (4.1))  

( ) ( ) ( ) ( )

( )

( )

( )

2 2

, ,
0 0 0 0

2 2

2

2

L , L , exp
! ! ! !

exp exp

exp exp

exp exp exp

m nm n

m n m n
m n m n

szw twzs t z z w w
m n z z w w m n

szw twz
z z w w

szw twz stzz
z z

www st z z
z z s

∞ ∞ ∞ ∞

= = = =

′ ′ ∂ ∂′ ′ = − − ′ ′∂ ∂ ∂ ∂ 
 ∂ ∂ ′ ′= − − + ′ ′∂ ∂ ∂ ∂ 
 ∂ ′ ′ ′= − + − ′∂ ∂ 

 ∂  ′ ′= − − −   ′∂ ∂   

∑∑ ∑ ∑

,w
t
′  −  

  

    (5.1) 
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where in third step it is used that ( )exp szw twz′ ′+  is an eigenstate of the operator 
2

w w
∂

′∂ ∂
 to eigenvalues 

stzz′ . The remaining step to solve is essentially the convolution ( )
2

exp exp stzz
z z

 ∂ ′− − ′∂ ∂ 
 with succeeding 

displacement ,w wz z z z
s t

′
′ ′→ − → −  in the result of this convolution. We can calculate this convolution via 

two-dimensional Fourier transformation but in Appendix A (Equation (A.22)) we derive an operational formula 
which allows a more direct approach and which is very useful for similar calculations. With the result of this 
convolution we obtain  

( ) ( ) ( ) ( )

( )

, , , ,
0 0 0 0

L , L , L , L ,
! ! ! !

1 exp .
1 1

m n m n

m n n m m n m n
m n m n

s t s tz z w w z z w w
m n m n

szw twz st zz ww
st st

∞ ∞ ∞ ∞

= = = =

′ ′ ′ ′=

′ ′ ′ ′+ − + 
=  

− − 

∑∑ ∑∑
           (5.2) 

This result for the generating function can be factorized in the following form  

( ) ( )( )
( )

( )( )
( )

1 1exp exp
1 1 1 2 1

1 exp ,
1 2 1

s z t w t z s wszw twz st zz ww
st st st st

s z t w t z s w

st st

 ′ ′+ +′ ′ ′ ′+ − +   =   − − + +   
 ′ ′− −
 ⋅ −
 − − 

       (5.3) 

in analogy to the formula of Mehler (3.2) and a fully analogous derivation of this formula by coordinate trans-
formations is possible. In Section 10 we derive such a decomposition of the product of two Laguerre 2D poly-
nomials with the same indices but different arguments which provides a further insight into the factorization in  

(5.2) according to (5.3). If we substitute in (5.2) ,s ts t
w w

→ →
′

 and if we use in the obtained modified gene-

rating function the limiting transition  

( ),

,

L ,
lim 1,m n

m nw w

w w
w w′→∞ →∞

′
=

′
                               (5.4) 

then we find by this limiting procedure from (5.2) the generating function (4.2). 
Expressed by usual generalized Laguerre polynomials, relation (5.2) takes on the following forms  

( ) ( ) ( ) ( ) ( )

( )
0 0 0 0

! L L L L
!

1 exp ,
1 1

n m
m nm n m n m n m n n m m n

n n m n
m n m n

n zs t zw zz ww s t zz ww
m w

szw twz st zz ww
st st

−∞ ∞ ∞ ∞
− − − − −

= = = =

′ ′ ′ ′ ′ ′= − ′ 
′ ′ ′ ′+ − + 

=  
− − 

∑∑ ∑∑
      (5.5) 

where on the left-hand side relations (1.7) were used. 
Similar to the case of Hermite polynomials, we now make the limiting transition 1, 1s t→ →  in the gene-

rating function (5.2) and make for this purpose the specializations of complex conjugation * *,z z w w′ ′= =  of  

the variables. With 1 , 1
2 2

s tε ε
= − = − , we obtain  

( ) ( )( ) ( ) ( )( )

( )

* *
** * * * * *

, , 10 0

* *
* *

1 1 1L , L , exp lim exp
! ! 2

πexp , ,
2

m n m n
m n

z w z w
z z w w zz ww zw wz

m n

zz ww z w z w

ε ε ε

δ

∞ ∞

→+= =

 − −   = + − + −      
 +

= − − 
 

∑∑
 (5.6) 
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where ( ) ( ) ( ) ( )*, i , iz z x y x y x yδ δ δ δ= + − ≡  denotes the two-dimensional delta function in representation by 
a pair of complex conjugated variables. This relation (and also the orthogonality relations) suggest to introduce 
the following Laguerre 2D functions ( )*

,l ,m n z z  by [8]  

( ) ( )**
,*

,

L ,1l , exp ,
2π ! !

m n
m n

z zzzz z
m n

 
≡ − 

 
                         (5.7) 

which are complete and orthonormalized according to  

( ) ( )( ) ( )

( )( ) ( )

** * * *
, ,

0 0

** * *
, , , ,

l , l , , ,

i d d l , l , .
2

m n m n
m n

k l m n k m l n

z z w w z w z w

z z z z z z

δ

δ δ

∞ ∞

= =

= − −

∧ =

∑∑

∫
                     (5.8) 

Herein, *i d d d d
2

z z x y∧ = ∧  is the area element of the complex plane and the integration goes over the  

whole complex plane. Relations (5.7) and (5.8) can be used for the expansion of functions of two variables in 
Laguerre 2D polynomials or Laguerre 2D functions. 

By forming derivatives of (5.2) with respect to the variables, one can derive related formulae. Furthermore, by 
specialization of the variables, we obtain new formulae. For example, due to ( ) ( ), ,L 0,0 1 !n

m n m nn δ= −  (see 
(1.4)) we obtain from (5.2) setting 0w w′= =  and substituting st t→   

( ) ( ) ( ),
0 0

1L , L exp .
! 1 1

n
n

n n n
n n

t tzzz z t zz
n t t

∞ ∞

= =

− ′ ′ ′= = − − − 
∑ ∑                     (5.9) 

This is the well-known generating function for the usual Laguerre polynomials ( ) ( )0L Ln nu u≡ . Using the 
definition (1.2) this can be calculated also by  

( ) ( ) ( ) ( )
2 2

,
0 0

L , exp exp exp ,
! !

n n

n n
n n

t tzz
z z tzz

n z z n z z

∞ ∞

= =

′− −   ∂ ∂′ ′= − = − −   ′ ′∂ ∂ ∂ ∂   
∑ ∑           (5.10) 

that is the convolution of two 2D Gaussian functions (see Appendix A, Formulae (A.22) or (A.26) with corres-
ponding substitutions) which provides the result on the right-hand side of (5.9). 

6. Generating Functions for Products of Two Hermite 2D Polynomials 
Special Hermite 2D polynomials ( ),H ,m n x y  are the special case U I=  of general Hermite 2D polynomials 

( ),H U; ,m n x y  and are products of usual Hermite polynomials according to  
( ) ( ) ( ) ( ), ,H , H I; , H H .m n m n m nx y x y x y≡ =                         (6.1) 

The generating function for products of two special Hermite 2D polynomials defined by (6.1) factorizes  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

, ,
0 0 0 0

, ,
0 0

H , H , H H H H
2 ! ! 2 ! 2 !

H , H , ,
2 ! 2 !

m n m n

m n m n m m n nm n m n
m n m n

m n

m m n nm n
m n

s t s tx y u v x u y v
m n m n

s tx u y v
m n

∞ ∞ ∞ ∞

+
= = = =

∞ ∞

= =

=

=

∑∑ ∑ ∑

∑ ∑
        (6.2) 

and is easily to obtain by using explicitly the Mehler Formula (3.2) with the result  

( ) ( )

( )( )
( ) ( )

, ,
0 0

2 2 2 2 2 2

2 22 2

H , H ,
2 ! !

2 21 exp .
1 11 1

m n

m n m nm n
m n

s t x y u v
m n

sxu s x u tyv t y v

s ts t

∞ ∞

+
= =

 − + − +
 = +
 − −− −  

∑∑
              (6.3) 

In special case 0u v= =  using ( ) ( ) ( ) ( ) ( )2 2 1

1 2 !
H 0 , H 0 0, 0,1,

!

k

k k

k
k

k +

−
= = =   we find from this  
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( ) ( ) ( ) ( )

( )( )
( ) ( )

2 2

2 2
0 0

2 2

2 22 2

1 1
H H

! 2 ! 2

1 exp ,
1 11 1

k lk n

k l
k l

s tx y
k l

sx ty
s ts t

∞ ∞

= =

− −   
   
   

 
 = − −
 − −− −  

∑ ∑
                       (6.4) 

that is the product of two generating functions for even Hermite polynomials of the form (3.5). By differentia-
tions of this formula with respect to variables x or y one finds also the cases for odd Hermite polynomials and 
the mixed case of even and odd Hermite polynomials but due to factorization this belongs already to the primary 
stage of the generating functions (3.5) and (3.6). 

7. Generating Function for Products of Laguerre 2D and Hermite 2D Polynomials  
and for Laguerre 2D Polynomials with Even Indices as Its Special Case 

Sometimes in quantum-optical calculations, one has to evaluate the following double sum of the form of a ge-
nerating function for products of special Laguerre 2D with special Hermite 2D polynomials the last defined by 
(6.1) and can quickly proceed to the following stage  

( ) ( )

( ) ( )

( )( )

, ,
0 0

2 2 2

2 2
0 0

2 2 2

2 2

L , H ,
2 ! !

1exp 2 2
4 2 ! !

1exp exp 2 .
4

m n

m n m nm nm n

m n
m nm n

m nm n

s t z z u v
m n

s t z z u v
z z u v m n

szu tz v
z z u v

∞ ∞

+= =

∞ ∞

+= =

′

  ∂ ∂ ∂  ′= − − +  ′∂ ∂ ∂ ∂   

  ∂ ∂ ∂  ′= − − + +  ′∂ ∂ ∂ ∂   

∑∑

∑∑               (7.1) 

Here we have two possibilities to continue the calculations. Using two times the generating function for Her-
mite polynomials, we obtain from (7.1)  

( ) ( )

( )

, ,
0 0

2 22 2 2
2 2

L , H ,
2 ! !

2 2exp exp exp ,
2 2

m n

m n m nm nm n

s t z z u v
m n

s u t vu v z z
z z s t

∞ ∞

+= =

′

     ∂  ′= + − − − − −         ′∂ ∂        

∑∑
             (7.2) 

and using first the generating function for Laguerre 2D polynomials, we find  

( ) ( )

( )

, ,
0 0

2 2

2 2

L , H ,
2 ! !

1exp exp exp 2 .
4 2 2

m n

m n m nm nm n

s t z z u v
m n

z zzz st u v
u v s t

∞ ∞

+= =

′

       ′∂ ∂   ′= − + − − −         ∂ ∂         

∑∑
              (7.3) 

The remaining problem is to calculate the two-dimensional convolutions in (7.2) or (7.3). Both convolutions 
can be accomplished using auxiliary formulae prepared in Appendix A. The result is  

( ) ( )

( )( ) ( )
( )

, ,
0 0

2 2 2 2 2 2 2 2

2 22 2

L , H ,
2 ! !

2 2 4 21 exp .
2 11

m n

m n m nm nm n

s t z z u v
m n

suz tvz st svz tuz s z t z stuv s t zz u v

s ts t

∞ ∞

+= =

′

 ′ ′ ′ ′+ + + − − − − + +
 = ⋅
 −−  

∑∑
   (7.4) 

The complexity of this generating function finds a simple explanation to which we say some words at the end 
of this Section. 
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In the special case 0z z′= =  using (1.4), we obtain from (7.4) with the substitution st t→ −  the Mehler 

formula (3.2). In the special case 0u v= =  using ( ) ( ) ( ) ( )2 2 1

1 2 !
H 0 ,H 0 0,

!

k

k k

k
k +

−
= =  we find from (7.4)  

( ) ( ) ( )
( )
( )

( )
( )

2 2 2 2 2 2 2 2

2 ,2 2 22 20 0

2 2

1 1 2L , exp
! !2 2 11

1 1exp exp ,
4 1 4 11 1

k l k l

k lk l
k l

s t s z t z s t zzz z
k l s ts t

sz tz sz tz
st stst st

+∞ ∞

+
= =

 − ′ ′+ + ′ = −
 −−  

   ′ ′+ −
   = − −
   − +− +   

∑∑
       (7.5) 

where, in addition, a factorization is given. Using the generating function (3.5) for even Hermite polynomials we 
get from this factorization the identity  

( ) ( ) ( )

( )

22 2

2 ,2 2
0 0 0

2

2
0

1 1 1L , H
! 2 2! !2

1 ii H ,
! 2 2

mk l mk l

k l mk l
k l m

nn

n
n

s t st s tz z z z
m t sk l

st s tz z
n t s

+∞ ∞ ∞

+
= = =

∞

=

    − −
′ ′= +            

    −
′⋅ − −            

∑∑ ∑

∑
          (7.6) 

which we consider from another point of view in Section 9 providing thus some better understanding for it. 
For 0s =  or for 0t =  we obtain from (7.4) the common generating function for Hermite polynomials with 

obvious substitutions. On the other side, the generating function (7.5) for Laguerre 2D polynomials with even 
indices can be more directly obtained from (we substitute here 2 2,s tσ τ→ − → − )  

( )
2

2 2
2 ,2

0 0 0 0

2
2 2

2 2
2

2

1 1L , exp
! 2 ! 22 ! 2 !

exp exp
2 2

exp exp exp
2 2

exp
2

k lk l

k lk l
k l k l

z z z z
z z k lk l

z z
z z

z z
z z z

z z
z

σ τ σ τ

σ τ

σ τ

σ σ

∞ ∞ ∞ ∞

= = = =

 ∂    ′ ′= −     ′∂ ∂     
 ∂  ′= − +   ′∂ ∂   
   ∂ ∂   ′= − −       ′ ′∂ ∂ ∂     

∂
= − +

′∂

∑∑ ∑ ∑

( )

2
2

2

2
2

exp ,
2 2

1exp exp
2 2 11

z
z

zz z
z

σ τ

σ τσ
στστ

 ∂  ′   ′∂   
 ′∂ = −     ′∂ −−   

            (7.7) 

where we used the identity (A.15) in the Appendix A in special case 0n = . Accomplishing the last operation 

of argument displacement of variable z′  by the operator exp z
z

σ ∂ − ′∂ 
 we obtain the generating function  

( ) ( )
2 2

2 ,2
0 0

1 2L , exp ,
2 12 ! ! 1

k l

k lk l
k l

z z zzz z
k l

σ τ σ τ στ
στστ

∞ ∞

+
= =

 ′ ′+ −′ =   −−  
∑∑                 (7.8) 

which with obvious substitutions ( 2 2,s tσ τ→ − → − ) is identical with (7.5). By differentiation of this generat-
ing function with respect to variables z and (or) z′  one obtains generating functions for Laguerre 2D polyno-
mials with odd (or even and odd) indices. 

We mention yet that expressed by the usual generalized Laguerre polynomials according to (1.7) and by ap-
plying the doubling formula for the argument of the Gamma function the left-hand side of (7.5) can be written 

1 ! π
2

  − =  
  
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( ) ( ) ( ) ( )

( ) ( )

2 2
2 2 2

2
2 ,2 2

0 0 0 0

2 2
2

2
2

0 0

1 !1 2L , L
1 2! !2 ! !
2

1 !
2 L ,
1 2! !
2

k l
k lk l k l

k l
k l lk l

k l k l

k l
l k

l k
k

k l

l s ts t zz z zz
k l k

k s t
z zz

l

−+∞ ∞ ∞ ∞
−

+
= = = =

−
∞ ∞

−

= =

 − −   ′ ′= − 
   − 
 

 −   ′  ′= − 
   − 
 

∑∑ ∑∑

∑∑

           (7.9) 

the last by symmetry of the Laguerre 2D polynomials or using (1.7). 
As already mentioned in the Introduction the special Laguerre 2D and Hermite 2D polynomials can be com-

bined in one whole object of polynomials ( ),L U, ,m n z z′  or ( ),H V; ,m n x y , alternatively, with general 2D ma-
trices U  and V  and can be transformed into each other in this form where a special matrix Z  plays a main 
role [8]-[11]. The generating function (7.4) belongs to a special case where expressed by the more general Her-
mite 2D or Laguerre 2D polynomials the polynomials ( ),L I; ,m n z z′  and ( ),L Z; ,m n u v  or ( )1

,H Z ; ,m n z z− ′  and 
( ),H I; ,m n u v  ( I  is unit matrix) are joined in one formula and such cases become complicated written in com-

ponents of the matrices. Therefore formula (7.4) may also play a role as nontrivial special case of more general 
generating functions for arbitrary different matrices U  and V  in the polynomials and we have checked (7.4) 
also numerically. 

8. A Set of Simple Sums over Products of Laguerre 2D Polynomials 
We now consider a set of simple (in the sense of not double!) sums over products of Laguerre 2D polynomials 
with two free indices ( ), 0,1, 2,m n =   as follows  

( ) ( ) ( )

( )

( )

( )

, ,
0

2 2

0

2 2

2

L , L ,
!

exp
!

exp exp

exp

exp exp exp

k

m k k n
k

k
m n

k

m n

m n

t
z z w w

k

twz
z w

z z w w k

twz z w
z z w w

t z w z w
z w

twz t w z t
z w z w

∞

=

∞

=

−
′ ′

′− ∂ ∂ ′= − − ′ ′∂ ∂ ∂ ∂ 
 ∂ ∂ ′ ′= − − − ′ ′∂ ∂ ∂ ∂ 
 ∂ ∂   ′ ′= − − −   ′∂ ∂   

 ∂ ∂  ∂ ′ ′= − + −  ′ ′∂ ∂ ∂ ∂   

∑

∑

( ) ( ) ,exp exp L , .

m n

m n

m n

z w

z wtwz t w z t
z w t t

+


′ 


′ ∂ ∂    ′ ′= − +    ′∂ ∂    

                 (8.1) 

The last two steps of making the argument displacements and using the scaling property (4.1) lead to the fol-
lowing final representations (among other possible ones)  

( ) ( ) ( ) ( ) ( ) ( )

( )( )

( )

, , , ,
0 0

,

,

L , L , L , L ,
! !

exp L ,

exp L , .

k k

m k k n m k n k
k k

m n

m n

n
m n

t t
z z w w z z w w

k k
z tw w tztwz t

t t
wtwz t z tw z
t

∞ ∞

= =

+

− −
′ ′ ′ ′=

′ ′+ + ′= −  
 

′ ′ ′= − + + 
 

∑ ∑

           (8.2) 

Expressed by generalized Laguerre polynomials using (1.7), this relation takes on the form (compare a similar 
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form in [36], (chap. 5.11.5. Equation (2)))  

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

0

0

! L L

1 ! !
L L

!

exp ! L

exp ! L .

k
m n m k n k

k k
k

m n k
k m k n
m nm n

k

n m n m n
n

m n m n m
m

tz w k zz ww
zw

m n twz
zz ww

kz w
z tw w tz

twz n t z tw
t

z tw w tz
twz m t w tz

t

∞
− −

=

+ ∞
− −

=

− −

− −

 ′ ′ ′− ′ 

′− −
′ ′=

′

′ ′+ + 
′= − − +  

 
′ ′+ + 

′ ′ ′= − − +  
 

∑

∑
                 (8.3) 

In the special case ( ) ( ), ,w w z z′ ′=  one finds from (8.2)  

( ) ( ) ( ) ( )( ), , ,
0

1 1L , L , exp L , ,
!

k
m n

m k k n m n
k

t t tz z z z tzz t z z
k t t

∞ +

=

− + + ′ ′ ′ ′= −  
 

∑             (8.4) 

or expressed by the generalized Laguerre polynomials after division of (8.3) by m nz w′   

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

=0

2

2

! L L

1 ! !
L L

!

1
exp ! 1 L

1
exp ! 1 L ,

k
m k n k
k k

k

m n k
k m k n
m nm n

k

n
m n m n

n

m
n m n m

m

tk u u
u

m n tu
u u

ku

tttu n t u
u t

tttu m t u
u t

∞
− −

=

+ ∞
− −

+

− −

− −

 − 
 

− −
=

 +   = − − +      
 +   = − − +      

∑

∑
                      (8.5) 

where we made the substitution u zz′≡ . 
In most representations of orthogonal polynomials, one can only find generating functions for products of ge-

neralized Laguerre polynomials where the upper indices are parameters and are not involved in the summations 
(e.g., [1] (chap. 10.12.(20)) and [2] [26]). Using the limiting relation  

( )
0

1
lim L ,

!

k
k n k k

k
u u

kε
ε

ε
−

→

−  = 
 

                              (8.6) 

and substituting 
ww
ε
′′

′ =  in (8.3), we obtain by limiting procedure 0ε →   

( ) ( ) ( ),
0 0

1 L , L exp 1 ,
!

k k m
m k

m k km
k k

tw tw tw twz z zz zz
k z z zz

∞ ∞
−

= =

−     ′ ′ ′≡ = − +    
    

∑ ∑             (8.7) 

where w′′  disappeared. This is with substitutions the known relation (2.6) which in [1] as mentioned is classi-
fied under generating functions (chap. 10.12, Equation (19)) and which in our representation by special Laguerre 
2D polynomials proves to be one of their basic generating functions with simple summation. 

The sums over products of Laguerre 2D polynomials (8.2) or (8.3) possess proper importance for sum evalua-
tions which sometimes arise when working with these polynomials. They also form a partial result on the way to 
the evaluation of the generating function (5.2) for the product of two Laguerre 2D polynomials. Taking in (8.2)  

the special case m n=  and multiplying it by 
!

ms
m

 and forming then the sum over m we obtain with substitu-

tion t t→ −  and using the well-known generating function for Laguerre polynomials ( ) ( )0L Lm mu u≡   
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( ) ( ) ( ) ( ) ( )( )

( ) ( )( )

, ,
0 0 =0

L , L , exp L
! !

1exp exp .
1 1

m n
m

m n m n m
m n m

z tw w tzs t z z w w twz st
m n t

s z tw w tz
twz

st st

∞ ∞ ∞

= =

′ ′− − 
′ ′ ′= − 

 
′ ′− − 

′=  
− − 

∑∑ ∑
         (8.8) 

Joining herein the two exponential functions we see that the right-hand side of (8.8) is equal to the right-hand 
side of (5.2) as it is necessary and thus we have calculated here this generating function in a second way. 

9. Factorization of Generating Function for Simple Laguerre 2D Polynomials with  
Even Indices 

We illuminate now a cause for the possible factorization in the generating function (7.5) for Laguerre 2D poly-
nomials with even indices. For this purpose we make in (7.5) the substitutions  

( ) ( )

2 2 2

2 2

1 ii , i , , ,
2 2

1 1 1i , i , .
2 2 4

t s s t s tz x y z x y x z z y z z
s t t s t s

s t
z t x y z s x y z z x y

   
′ ′ ′= + = − = + = − −      

   
    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= − = + = +    ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

        (9.1) 

Therefore  

( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( )

2 2 2 2

2 ,2 2 2
0 0 0 0

2 2 2 2

22 2

2 2
0 0 =0

1 11L , exp
4 ! ! 2! !2

1 i i i i
2

11exp
4 ! ! 2

k l k l k lk l

k lk l
k l k l

k l k l

k l k l k l

k l n

s t stz z
k lk l x y

x y x y x y x y

st
k lx y

+ + +∞ ∞ ∞ ∞

+
= = = =

+ + +∞ ∞

= =

 − − ∂ ∂  ′ = − +     ∂ ∂    

⋅ + − + − +

  − ∂ ∂  = − +     ∂ ∂    

∑∑ ∑∑

∑∑ ( ) ( )( ) ( ) ( ) ( )

( )
( ) ( )( ) ( )
( )

( ) ( )

22 ,2 22
2

2 ,222 2
22 2

2 2
0 0 =0

2 2
2 2

2 2
0 0

2

2

2 P 0 i

2 P 01exp 1
4 2 ! !

11exp
4 ! !

1exp
4

nk n l n k l nn
n

k n m km n nm nm nm n

m n k

m
m n m m

m n

x y

st x y
k m n kx y

st x y
m nx y

x

− − + −

− −+∞ ∞ +

= =

∞ ∞
+

= =

  ∂ ∂  = − + −      + −∂ ∂    

  − ∂ ∂
= − +   ∂ ∂  

 ∂
= − 

∂ 

∑

∑∑ ∑

∑∑

( ) ( )
2

2 2
2

1exp exp exp ,
4

stx sty
y

 ∂
− − 

∂ 

        (9.2) 

that can be written  

( ) ( ) ( ) ( )
2 22 2

2 ,2 2 2
0 0 0 0

2 2

1 1 1L , H H
! 2 ! 2! !2

1 1exp exp ,
1 11 1

m nk l k l

k l m nk l
k l m n

s t st stz z x y
m nk l

stx sty
st stst st

+∞ ∞ ∞ ∞

+
= = = =

   −
′ = −      

   
   

= −   − +− +   

∑∑ ∑ ∑
        (9.3)  

where the alternative definition of Hermite polynomials in (2.1) is applied and where an apparently unknown 
sequence of finite sum evaluations  

( ) ( )( ) ( )
( ) ( ) ( )

( ) ( )( )
( )

( ) ( )( ) ( )

( )

2 ,22
2 ,22 2

2
=0 0

2 ! 2 !2 P 0 1 2 P 0
! ! 2 ! 2 ! ! !

2 , 0,1, ; 0,1, ,
! !

k n m knm n m n
m k n kn k

k
k k

m n

k m n k
k m n k m n k m n k

m n
m n

− −+ +
− −

=

+

+ −
=

+ − + −

= = =

∑ ∑

 

        (9.4) 
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is inserted. These sum identities are proved already by the obvious equivalence (7.5) and are easily to check for 
small ( ),m n . A direct independent proof we did not make but probably it is possible by complete induction. If 
we go back to the variables ( ),z z′  according to (9.1) we have the factorization (7.5). 

10. Identities for Products of Two Laguerre 2D Polynomials with Different  
Arguments 

We derive here a decomposition of the generating function for an entangled product of two equal Laguerre 2D 
polynomials with different arguments into a product of two simple generating function for Laguerre 2D poly-
nomials which in its further application leads immediately to the given factorization in the generating function 
(5.2) and provides a certain explanation for it. The considerations are in some sense similar to the considerations 
in the previous Section. 

We now make in (5.2) the following substitutions of variables  
1 1 1 1
4 4 4 4

, , , ,
2 2 2 2

t x y s x y s x y t x yz w z w
s t t s

′ ′ ′ ′+ − + −       ′ ′= = = =       
       

          (10.1) 

with the inversion  
1 1 1 1
4 4 4 4

1 1 1 1
4 4 4 4

, ,
2 2

, ,
2 2

s t t sz w z w
t s s tx x

s t t sz w z w
t s s ty y

       ′ ′+ +       
       ′= =

       ′ ′− −       
       ′= =

                     (10.2) 

from which follows for the operators of differentiation  
1 1
4 4

1 1
4 4

1 1, ,
2 2

1 1, .
2 2

s t
z t x y z s x y

t s
w s x y w t x y

   ∂ ∂ ∂ ∂ ∂ ∂   = + = +      ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂      

   ∂ ∂ ∂ ∂ ∂ ∂   = − = −      ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂      

                  (10.3) 

As a consequence we find in transformed coordinates (see also (5.1)) with application of formula (A.26) in 
the Appendix A for the evaluation of the Gaussian integrals  

( ) ( )

( )( )( ) ( )( )( )

( ) ( )

, ,
0 0

2 2

0 =0

2 2

L , L ,
! !

exp
2 ! 2 !

exp exp exp exp ,

m n

m n n m
m n

m n

m n
m n

s t z z w w
m n

st x y x y st x y x y

x x y y m n

st xx st yy
x x y y

∞ ∞

= =

∞ ∞

=

′ ′=

′ ′ ′ ′+ − − + ∂ ∂
= − − ′ ′∂ ∂ ∂ ∂ 

   ∂ ∂′ ′= − − −   ′ ′∂ ∂ ∂ ∂   

∑∑

∑ ∑          (10.4) 

that using the generating function (5.9) for simple Laguerre 2D polynomials with equal indices can be written  

( ) ( )
( )

( )
( )

( ), , , ,
0 0 0 0

L , L , L , L ,
! ! ! !

1 1exp exp .
1 1 1 1

m n
m n

m n n m m m n n
m n m n

st sts t z z w w x x y y
m n m n

st xx st yy
st st st st

∞ ∞ ∞ ∞

= = = =

−
′ ′ ′ ′=

   ′ ′
= −      + + − −   

∑∑ ∑ ∑
       (10.5) 

If we go back on the right-hand side to the primary variables ( ), , ,z z w w′ ′  according to (10.2) we arrive at 
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the given factorization (5.3). One may look at this as to an alternative derivation of the bilinear generating func-
tion (5.2). 

11. Comparison of the Two Alternative Definitions in the Derivation of the  
Generating Function for Hermite Polynomials 

It is not possible to say generally which of the two alternative definitions of Hermite polynomials in Section 2 
and of Laguerre 2D polynomials in Section 1 are better to work with. This depends on the problem and some-
times also on the taste and the former experience of the user. We demonstrate this in the simplest case of the de-
rivation of the generating function (3.1) for Hermite polynomials. Using definition in the first line of (2.1) we 
calculate  

( ) ( ) ( ) ( )
2 2

2
2 2

0 0

1 1H exp 2 exp exp 2 exp 2 ,
! 4 ! 4

n n
n

n
n n

t tx x tx tx t
n nx x

∞ ∞

= =

   ∂ ∂
= − = − = −   ∂ ∂   

∑ ∑        (11.1) 

and using definition in the second line of (2.1)  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )

2 2 2 2

0 0

22

H exp 1 exp exp exp exp
! !

exp exp .

n n n
n

n n
n n

t tx x x x t x
n n xx

x x t

∞ ∞

= =

∂ ∂ = − − = − − ∂∂  

= − −

∑ ∑
       (11.2) 

In the first case we use that ( )exp 2tx  is eigenfunction of the operator 
2

2

1
4 x
∂
∂

 to the eigenvalue 2t  and in 

the second case that exp t
x
∂ − ∂ 

 is the displacement operator of the argument x of a function ( )f x  to  

( )f x t− . Here both derivations are equally simple. However, in case of the inversion Formula (2.3) and of 
Formula (1.11), for example, the alternative definition (2.2) seems to be more suited. 

The alternative definitions of Hermite (1D and 2D) and Laguerre 2D polynomials extends the arsenal of 
possible approaches to problems of their application and one should have for disposal the new method in the 
same way as the former methods.  

12. Conclusions 
We have derived and discussed generating functions for the product of two special Laguerre 2D or Hermite 2D 
polynomials and for the mixed case of such products. In our derivations, we preferred the first (operational) defini-
tion of the Laguerre 2D polynomials (2) from the two alternative ones given in (1.2) which as it seems to us is  

advantageous for this purpose. This is due to the separation of the same operator 
2

exp
z z

 ∂
− ′∂ ∂ 

 applied to  

m nz z′  for all polynomials ( ),L ,m n z z′  with different indices. The derivations for summations over indices in 
the polynomials ( ),L ,m n z z′  (e.g., in generating functions) can be temporarily shifted in such way to deriva- 

tions for the monomials m nz z′  with final application of the operator 
2

exp
z z

 ∂
− ′∂ ∂ 

 to the intermediate result.  

In Section 11 we demonstrated the differences between both methods in one of the most simple cases which is 
the derivation of the well-known generating function (3.1) for Hermite polynomials. However, our main aim 
was the derivation of new bilinear generating functions. In the bilinear generating functions for Hermite poly-
nomials (3.2) as well as for Laguerre 2D polynomials (5.3) we found interesting factorizations which establish 
connections to more special (linear) generating functions for these polynomials with transformed variables. Due 
to the rudimentary character of the generalized Laguerre (-Sonin) polynomials ( ) ( )L ,n u u zzν ′=  within the set 
of Laguerre 2D polynomials ( ),L ,m n z z′  many formulae for the usual Laguerre polynomials become simpler 
and rigged with more symmetries if expressed by the Laguerre 2D polynomials. 

From the bilinear generating functions or generating functions for products of Laguerre 2D polynomials one 
can derive completeness relations for the corresponding polynomials in the way such as demonstrated. Further-
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more, we derived a simple sum (in the sense of not double sum!) over products of special Laguerre 2D polyno-
mials which can be taken as intermediate step for the derivation of the generating function but this formula pos-
sesses proper importance for other calculations and was already useful in an application in quantum optics of 
phase states. The number of generating functions and of relations for Laguerre 2D and Hermite 2D polynomials 
is relatively large and a main source for suggestion are known generating functions and relations for usual La-
guerre and, in particular, for Hermite polynomials. 

The three generating functions for products of Hermite 2D and Laguerre 2D polynomials (5.2), (6.3) and (7.4) 
can be considered as special cases of generating functions for products of Hermite 2D polynomials  

( ) ( ), ,H U; , H V; ,m n m nx y u v  or Laguerre 2D polynomials ( ) ( ), ,L U; , L V; ,m n m nz z w w′ ′  with arbitrary 2D ma-
trices U  and V  as parameter mentioned in the Introduction. It is clear from the calculated different special 
cases that such generating functions are very complicated. Some simplification can be obtained by special 
choice of the matrix V  related to the matrix U , for example ( )T 1V U−=  where TA  denotes the trans-
posed matrix to A . We began such calculations in [12] but to finish this is a task of future depending also on 
the appearance of problems in applications, for example, in quantum optics and classical optics (e.g., propaga-
tion of Gaussian beams) which require these generating functions. 

We hope that we could convince the reader of some advantages of the use of Laguerre 2D polynomials in 
comparison to usual generalized Laguerre(-Sonin) polynomials as their radial rudiments. Although the usual 
Laguerre (and also Hermite) polynomials are mostly present in readily programmed form in mathematical com-
puter programs it is not difficult to programme in the same way the Laguerre 2D polynomials by their explicit 
Formulae (1.2) as finite simple sums. 

A main region of application of the derived generating functions is quantum optics of two harmonic oscillator 
modes and of quasiprobabilities of oscillator states such as the Wigner function and in classical optics the theory 
of Gauss-Hermite and Gauss-Laguerre beams and we applied some of the here derived relations in papers of 
former time [37]-[39]. 

In the following Appendix A, we develop some basic operator identities which are useful for calculation of 
convolutions of one- and two-dimensional Gaussian functions in combination with polynomials and which were 
used in most of our derivations of the generating functions. The corresponding operators are connected with the 
Lie group ( )1,1SU  (see, e.g., [40]-[43]). 
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Appendix A: Operator Identities Related to One- and Two-Dimensional Gaussian  
Convolutions by Means of ( )1,1SU  Operator Disentanglement 

We sketch in this Appendix the derivation of some mostly novel and useful operational formulae related to 
convolutions of Gaussian functions of one and two variables and use for this purpose the technique of operator 
disentanglement of ( )1,1SU  operators. 

As canonical basis of the abstract Lie algebra to ( ) ( ) ( )1,1 ~ 2, ~ 2,SU SL Sp   and of its complex exten-
sion ( ) ( )2, ~ 2,SL Sp   are usually taken three operators ( )0, ,K K K− +  which obey the following commu-
tation relations (e.g., [40]-[43] and [37])  

[ ] [ ] [ ]0 0 0, 2 , , , , .K K K K K K K K K− + − − + += = − = +                    (A.1) 

As first case, we consider the following realization of the operators ( )0, ,K K K− +  by one-dimensional diffe-
rentiation and multiplication operators  

2
2

02

1 1 1, , .
2 4 2

K K x x K x
x xx− +

∂ ∂ ∂ ≡ ≡ + ≡ ∂ ∂∂  
                    (A.2) 

Using the commutation (r is scalar parameter)  
2 2

2 2 2
2

1 1 2exp exp , , , ,
1! 2!

x x x x x x
r x r x r x x x rr

   ∂ ∂ ∂  ∂  ∂   − = + + + = −        ∂ ∂ ∂ ∂ ∂       


        (A.3) 

we obtain the following relation (s is a second scalar parameter)  
22 2 2

2

0 2

2exp exp exp exp
4 4

2 2exp exp 2 .
2

s x x s x
r r x rx

s s sK K K K
r r r+ − +

      ∂ ∂  − = − −        ∂∂          
   = − − +   
   

             (A.4) 

Now, we can apply the following disentanglement relation for general group elements of  
( ) ( )2, ~ 2,Sp SL   (complexification of ( ) ( ) ( )1,1 ~ 2, ~ 2,SU Sp SL  ) which is the first of the 6 relations 

with different ordering of the factors derived in [37] [43]  

( ) ( ) ( )( )0 0exp i 2 exp exp exp log 2 ,K K K K K Kµξ η ζ λκ κ
κ− + + −

 + − = − − 
 

          (A.5) 

where ( ), , ,κ λ µ ν  are the matrix elements of the two-dimensional fundamental representation of ( )2,Sp   in 
the basis of operators ( )†,A A  (boson annihilation and creation operators ( )†,a a  in simplest quantum-optical  

realization or , x
x
∂ 

 ∂ 
 in present case) forming together with operators ( )0, ,K K K− +  a basis of the Lie alge- 

bra to the inhomogeneous symplectic Lie group ( )2,ISp  . These elements which form an unimodular matrix 
(determinant equal to 1) are explicitly  

( ) ( ) ( )

( ) ( ) ( )
2

sh sh
ch i ,,

, .
, sh sh

, ch i

ε ε
ε η ξκ λ ε ε ε ξζ η

µ ν ε ε
ζ ε η

ε ε

 
−    = ≡ −     + 

 

             (A.6) 

With the specialization 2

2, i ,
2
s s s

r r
ξ η ζ= = = − , we find the following specialization of this unimodular ma-

trix (A.6)  

2

1 ,, 2 , 0,
2, , 1

s s
r
s s

rr

κ λ
ε

µ ν

 +  
 = = 
   − − 
 

                        (A.7) 
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and the disentanglement searched for is  

( )
( ) 02

0 2

2 2exp 2 exp exp .
2 2

Ks r ss s s s rK K K K K
r r r s r r sr− + + −

  +    − + =        + +     
         (A.8) 

Inserting this into (A.4) and going back to realization (A.2), we obtain the following important operator iden-

tity (we use 0
1 12
2 2

K x x x
x x x
∂ ∂ ∂ ≡ + = + ∂ ∂ ∂ 

) 

( )2 2 2 2

2 2exp exp exp exp .
4 4

x
xs r ss x r x r

r r s r s r r sx x

∂
∂+      ∂ ∂  − = −         + + +∂ ∂         

          (A.9) 

If we apply this operator identity to an arbitrary function ( )f x , we can give this relation a form which is of-

ten appropriate for direct application. Using that nx  is an eigenfunction of the operator x
x
∂
∂

 to eigenvalue n, 

we find  

( )exp e ,
nn n nx x nx x x x

x x
γγ∂ ∂   = ⇒ =   ∂ ∂   

                      (A.10) 

from which follows that exp x
x

γ ∂ 
 ∂ 

 is the operator of multiplication of the argument of a function ( )f x  

according to [37]3  

( )
( ) ( ) ( ) ( ) ( ) ( )

0 0

0 0
exp exp e e .

! !

n n
nn

n n

f f
x f x x x x f x

x x n n
γ γγ γ

∞ ∞

= =

∂ ∂   = = =   ∂ ∂   
∑ ∑          (A.11) 

By applying the operator identity (A.9) to an arbitrary function ( )f x  and using (A.11) we obtain  

( ) ( )2 2 2 2

2 2exp exp exp exp .
4 4

s r ss x r x rxf x f
r r s r s r r sx x

+      ∂ ∂  − = −         + + +∂ ∂         
       (A.12) 

with substitution of variable 
rx y x

r s
→ =

+
 and then by introduction of the new parameters  

2

,r rsr s
r s r s

′ ′= =
+ +

 or 
( )

,
s r s

r r s s
r

′ ′ ′+
′ ′= + =

′
 we find from this relation  

( ) ( )
2 2 2

2
2 2 2exp exp exp exp .

4 4
y s r s r s r s r sf y y f y
r r r s ry y r

    ′ ′ ′ ′ ′ ′ ′ ′ ′∂ + ∂ + +   − = −         ′ ′ ′ ′ ′′+∂ ∂         
 (A.13) 

which is a sometimes useful transformation of (A.12). 

Choosing the function ( ) 1
π

f x
r

= , we obtain from (A.12) as special case the following formula  

( )

2 2 2 2

2

2

1 1 1exp exp exp exp
4 π π π

1 exp ,
π

s x x x
r s rx r s r

x
r sr s

       ∂
− ≡ − ∗ −       

∂       
 

= − ++  

          (A.14) 

which as shown may also be written as the convolution of two normalized Gaussian functions and provides as 

 

 

3The result of such and similar derivations (possibly with restriction to real γ ) is also true for (possibly non-analytic) generalized functions 

( )f x  such as the step function ( )xθ  and the delta function and its derivatives ( ) ( )n xδ  and many others since by their definition as li-
near continuous functionals, for example, the Taylor series expansion can be transformed to a sufficiently well-behaved class of basis func-
tions and finally one can go back to the generalized functions. 
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result again a normalized Gaussian function as it is well known (notation “∗” means forming the convolution of 

two functions). The operator 
2

2exp
4
s

x
 ∂
 

∂ 
 applied to an arbitrary function makes the convolution of the norma-

lized Gaussian function 
21 exp

π
x
ss

 
− 
 

 with this arbitrary function that can be proved by Fourier transforma-

tion. Below we find another derivation of this equivalence (see (A.34)). However, the main power of relation 
(A.12) is seen by applying it to more complicated functions. For example, by applying it to the functions 

( ) ( )2 nf x x=  and using the alternative definition of Hermite polynomials in first line of (2.2), we obtain  

( )
( )

( )

2 2 2

2exp exp 2 exp H ,
4

n

n
n

rs r ss x r x rxx
r r s r s r sx rs r s

   − +     ∂    − = −        + + +∂ − +        
     (A.15) 

where due to ( ) ( ) ( )H 1 Hn
n nx x− = −  one has to choose the same but arbitrary sign of the two roots 

( )rs r s− + . The expression on the right-hand side of (A.14) is invariant with respect to the choice of this sign  

but if we shorten the fractions then the correlation of the signs of the now two different roots becomes unclear4. 
In application to the Hermite polynomials ( )Hn x  we find in similar way  

( )

( )( )
( )( )

2 2

2

2

exp exp H
4

exp H ,

n

n

n

s x x
rx

r s rs r sr x rx
r s r s r s r s rs r s

   ∂
−   

∂   

   + − +    = −    + + + + − +    

           (A.16) 

where again one can choose an arbitrary sign of the roots ( )( )r s rs r s+ − +  which has only to be the same 
throughout the whole expression on the right-hand side that hinders us to shorten the formula. 

As second case, we now consider the following realization of the operators ( )0, ,K K K− +  by two-dimensional 
differentiation and multiplication operators  

2

0
1, , .
2

K K z z K zz
z z z z− +
∂ ∂ ∂ ′ ′≡ ≡ + ≡ ′ ′∂ ∂ ∂ ∂ 

                    (A.17) 

Our notation of the two independent (in general, complex) variables ( ),z z′  is due to the fact that in most 
potential applications of the formulae which we derive, we have a pair of complex conjugated variables ( )*,z z  
and we can then easily set *z z′ =  but the results can also be applied if we have instead of this a pair of real va-
riables ( ),x y . From the commutation  

2

exp exp ,zz zz z z
r z z r z r z r
′ ′ ′∂ ∂ ∂      − = − −      ′ ′∂ ∂ ∂ ∂      

                    (A.18) 

follows  
2

0 2

exp exp exp exp

1exp exp 2 .

zz zz z zs s
z z r r z r z r

s sK sK K K
r r r+ − +

  ′ ′ ′∂  ∂ ∂       − = − − −         ′ ′∂ ∂ ∂ ∂        
   = − − +   
   

           (A.19) 

The operator which we have to disentangle corresponds to the special choice 2, i ,s ss
r r

ξ η ζ= = = −  in (A.5) 

and the unimodular matrix (A.6) takes on the following special form  

 

 

4This is the reason why we do not set 
( )rs r s rs

r s r s
− +

= −
+ +

. 
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2

2

1 ,,
, 0.

, , 1

s s
r
s s

rr

κ λ
ε ξζ η

µ ν

 +  
 = ≡ − = 
   − − 
 

                     (A.20) 

 Using the disentanglement relation (A.5), from (A.19) follows the important operational identity  

( )2 2

exp exp exp exp ,
z z

z zs r szz r zz rs
z z r r s r s r z z r s

∂ ∂′+
′∂ ∂+   ′ ′∂ ∂     − = −         ′ ′∂ ∂ + + ∂ ∂ +        

       (A.21) 

Applied to arbitrary functions ( ),f z z′ , we find similar to (A.12)  

( )

( )

2

2

exp exp ,

exp exp , ,

zzs f z z
z z r

s r sr zz rz rzf
r s r s r z z r s r s

  ′∂   ′−   ′∂ ∂   
+ ′ ′∂   = −     ′+ + ∂ ∂ + +    

                (A.22) 

which in special case ( ), 1f z z′ =  possesses some relation to the generating function for usual Laguerre polyno-

mials (see (A.26) below and (5.9) and (5.10)). By transition to new variables ,r rz w z z w z
r s r s

′ ′ ′→ = → =
+ +

 

in (A.22) and changing the parameters to 
2

,r rsr s
r s r s

′ ′= =
+ +

 or 
( )

,
s r s

r r s s
r

′ ′ ′+
′ ′= + =

′
 we obtain  

( )
2

2

2

exp exp ,

exp exp , ,

ww s f w w
r w w

r s r s r s r s r sww f w w
r r s w w r rr

 ′ ∂  ′ ′−   ′ ′∂ ∂   
 ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ ∂ + + +   ′ ′= −     ′ ′ ′ ′ ′ ′′+ ∂ ∂     

            (A.23) 

as some useful transformation of (A.22). 
We mention that the monomials m nz z′  are eigenfunctions of the operator 02K  in (A.17) to the eigenvalues 

1m n+ +  according to  

( )1 ,m n m nz z z z m n z z
z z
∂ ∂ ′ ′ ′+ = + + ′∂ ∂ 

                        (A.24) 

from which follows in application of its exponential to an arbitrary function ( ),f z z′   

( ) ( )exp , e e ,e ,z z f z z f z z
z z

λ λ λλ ∂ ∂  ′ ′ ′+ =  ′∂ ∂  
                    (A.25) 

in analogy to formula (A.11) together with (A.10). This was used in (A.22).  

In special case of function ( ) 1,
π

f z z
r

′ = , we obtain from (A.22) the two-dimensional convolution of two 

(normalized if *z z′ = ) Gaussian functions with parameters r and s  

( )

2 1 1 1exp exp exp exp
π π π

1 exp ,
π

zz zz zzs
z z r r s s r r

zz
r s r s

  ′ ′ ′∂      − = − ∗ −       ′∂ ∂       
′ = − + + 

               (A.26) 

which provides again a normalized Gaussian function with the parameter r s+ . 
The full power of (A.22) is seen if we apply it to the functions ( ), m nf z z z z′ ′=  and if we use the definition 

of Laguerre 2D polynomials given in first line of (1.2) that leads to  
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( )
( ) ( )

2

,

exp exp

exp L , ,

m n

m n

m n

zzs z z
z z r

rs r sr zz rz rz
r s r s r s rs r s rs r s

+

  ′∂   ′−   ′∂ ∂   

   − +′ ′     = − ⋅     + + +  − + − +   

          (A.27) 

Applied to Laguerre 2D polynomials ( ) ( ),, L ,m nf z z z z′ ′= , we find in analogous way  

( )

( )( )
( )( ) ( )( )

2

,

,

exp exp L ,

exp L , .

m n

m n

m n

zzs z z
z z r

r s rs r sr zz rz rz
r s r s r s r s rs r s r s rs r s

+

  ′∂   ′−   ′∂ ∂   

   + − +′ ′     = − ⋅     + + +  + − + + − +   

 (A.28) 

In last two relations one has to choose an arbitrary but the same sign within one formula for the roots 

( )rs r s− +  or ( )( )r s rs r s+ − + , respectively, due to ( ) ( ) ( ), ,L , 1 L ,m n
m n m nz z z z+′ ′− − = −  that means for 

reason that was explained already for the analogous formulae (A.15) and (A.16). 
We mention that an additional displacement of the arguments does not make any difficulties in the derived 

operator relations. For example, according to  

( ) ( )0 0 0 0 0 0exp exp exp exp ,x x x x x f x x x f x x
x x x x
∂ ∂ ∂ ∂       − = − ⇒ − = −       ∂ ∂ ∂ ∂       

       (A.29) 

we can generalize the operator identity (A.9) in the following way  

( )

( ) ( ) ( )0

22
0

2

2 2
0

2

exp exp
4

exp exp ,
4

x x
x

x xs
rx

x x s r sr r
r s r s r r sx

∂
−

∂

 − ∂  −   ∂   

 − + ∂   = −    + + +∂    

                (A.30) 

and in application to an arbitrary function ( ) ( )0 0f x f x x x= + −   

( ) ( ) ( ) ( )2 22 2
0 0 0

2 2exp exp exp exp .
4 4

x x x x s r s rx sxs rf x f
r r s r s r r sx x

   − − +   +∂ ∂     − = −        + + +∂ ∂        
    (A.31) 

Choosing ( ) 1
π

f x
r

=  in (A.31) and making then the limiting transition 0r →  using  

( ) ( )
2

0
00

1lim exp ,
πr

x x
x x

rr
δ

→

 −
 − = −
 
 

                        (A.32) 

one finds the transformation  

( ) ( )22
0

02

1exp exp ,
4 π

x xs x x
sx s

δ
 − ∂  − = −   ∂   

                   (A.33) 

and by multiplication of both sides with an arbitrary function ( )0g x  and by integration over 0x   

( ) ( ) ( )

( )

22
0

0 02

2

1exp d exp
4 π

1 exp ,
π

x xs g x x g x
sx s

x g x
ss

+∞

−∞

 − ∂  = −   ∂   
 

≡ − ∗ 
 

∫
               (A.34) 
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that are two different representations of the convolution of a normalized Gaussian function with an arbitrary 
function ( )g x . A special case is the convolution of two normalized Gaussian functions with the result given in 
(A.26). For 0s ≤  the convolutions have to be considered in the sense of the theory of generalized functions. 

Analogously to (A.29), relation (A.21) can be generalized including two, in general, different complex dis-
placements 0z z z→ −  and 0z z z′ ′ ′→ −  leading to the operator identity  

( )( )

( )( ) ( ) ( ) ( )0 0

2
0 0

2
0 0

exp exp

exp exp ,
z z z z

z z

z z z z
s

z z r

z z z z s r sr r
r s r s r z z r s

∂ ∂′ ′− + −
′∂ ∂

′ ′ − − ∂
−    ′∂ ∂   

′ ′ − − + ∂  = −      ′+ + ∂ ∂ +   

          (A.35) 

with the consequence  

( )( ) ( )

( )( ) ( )

2
0 0

2
0 0 0 0

exp exp ,

exp exp , .

z z z z
s f z z

z z r

z z z z s r s rz sz rz szr f
r s r s r z z r s r s

′ ′ − − ∂ ′−    ′∂ ∂   
′ ′ − − +  ′ ′+ +∂  = −       ′+ + ∂ ∂ + +   

          (A.36) 

By a limiting procedure in analogy to the derivation of (A.34) one obtains from (A.36) for *z z′ =  where *z  
is complex conjugate to z  

( ) ( )( ) ( )

( )

* *2
0 0* * *

0 0 0 0*

*
*

1 iexp , d d exp ,
π 2

1 exp , ,

z z z z
s g z z z z g z z

s sz z

zz g z z
s sπ

 − − ∂  = ∧ −   ∂ ∂   
 

≡ − ∗ 
 

∫
          (A.37) 

which are two different representations of the two-dimensional convolution of a normalized Gaussian function 
with an arbitrary function, in particular  

( ) ( )( )* *2
0 0* *

0 0*

1exp , exp ,
π

z z z z
s z z z z

s sz z
δ

 − − ∂  − − = −   ∂ ∂   
               (A.38) 

with the two-dimensional delta function obtained by the limiting procedure  

( )( ) ( )
* *

0 0 * *
0 00 0

1lim exp , ,
πr

z z z z
z z z z

r r
δ

→

 − −
 − = − −
 
 

                   (A.39) 

in analogy to (A.32). All this can be also obtained by Fourier transformation and its inversion. 

The displacement operation (A.29) with substitutions ,x z
x z
∂ ∂

→ →
∂ ∂

 and with the formal substitution 

0x
z
∂

→
′∂
 can also be applied to evaluate the following expression  

( )

22 2 2 2 2
2 2 2

2 2 2 2 2 2

2 22 2

exp exp exp exp
2 2 2 2

1 2exp .
2 11

z z z z
z z z

z z zz

σ τ σ τ

σ τ σ τ
σ τσ τ

      ∂ ∂  ′ ′− − − = − − −       ′ ′∂ ∂ ∂        
 ′ ′+ + = −
 −−  

     (A.40) 

Necessarily, this agrees with the specialized generating function (7.5). We used this formula for the evalua-
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tion of (7.2) in one of some possible variants of proof. In application of the operator 
2

exp
z z

 ∂
− ′∂ ∂ 

 to an arbi-

trary function ( ),f z z′  we find as generalization of (A.40)  

( )

( ) ( ) ( )

2

,

,
0 0

exp , , 1

0,0
L , ,

! !

m n
m n

m n
m n

s f z z f z s z s
z z z z

f z zs
m n s s

∞ ∞ +

= =

 ∂ ∂ ∂ ′ ′= + +   ′ ′∂ ∂ ∂ ∂  

′ 
= −  

− − 
∑∑

            (A.41) 

where we applied the Taylor series of ( ),f z z′  in powers of z and z′  and the definition (1.2) of the Laguerre 

2D polynomials and where we took into account that the operators z s
z
∂

+
′∂
 and z s

z
∂′ +
∂

 are commuting. 

For example, if we specialize the function to ( )
2 2

2 2, exp
2 2

f z z z zσ τ 
′ ′= − − 

 
 then we find according to (A.40) 

the identity  

( )

2 2 2
2 2

2 2
2 ,2

0 0

2 2 2 2 2 2

2 2 22 2 2

exp exp exp
2 2

1 L ,
! ! 2

1 2exp ,
2 11

k l
k l

k l
k l

s z z
z z

s z z
k l s s

z z s zz
ss

σ τ

σ τ

σ τ σ τ
σ τσ τ

+∞ ∞

= =

     ∂ ′− −     ′∂ ∂     

′  =    − −   
 ′ ′+ − = −
 −−  

∑∑                     (A.42) 

which for 1s = −  is identical with (7.5). 
The derived identities are particularly important in connection with the operational definition of the Hermite 

polynomials in (2.2) and of the Laguerre 2D polynomials in (1.2). It seems to us that the here chosen derivations 
belong to the most simple and perspective ones. 
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