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Abstract 
This paper presents a system representation that can be applied to the description of the interac-
tion between systems connected through common boundaries. The systems consist of partial dif-
ferential equations that are first order with respect to time, but spatially higher order. The repre-
sentation is derived from the instantaneous multisymplectic Hamiltonian formalism; therefore, it 
possesses the physical consistency with respect to energy. In the interconnection, particular pairs 
of control inputs and observing outputs, called port variables, defined on the boundaries are used. 
The port variables are systematically introduced from the representation. 
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1. Introduction 
Energy is one of the most important concepts for describing physical systems. In analytical mechanics, an ener-
gy in the systems can be interpreted as a Hamiltonian. Hamiltonian systems can be characterized by symplectic 
structures [1] derived from the skew symmetry that cotangent bundles possess. Hamiltonian systems and their 
symplectic structures have been widely applied not only in physics, but in engineering, particularly, control 
theory [2] [3]. Specifically, in an electrical circuit, an energy is defined as the time integral of the product of 
currents and voltages. Energy flows between each circuit also balance if there is no dissipative element. Fur-
thermore, the sum of currents balances between inflows and outflows at any node, and the directed sum of vol-

http://www.scirp.org/journal/jamp
http://dx.doi.org/10.4236/jamp.2015.311174
http://dx.doi.org/10.4236/jamp.2015.311174
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


G. Nishida 
 

 
1473 

tages around any closed loop is zero according to Kirchhoff law. Indeed, such properties have been generalized 
to various physical systems in terms of port-Hamiltonian systems [2] originated in bondgraph theory [4]. The 
above particular pairs with the physical dimension of power are called port variables, and the energy balances 
can be regarded as passivity [2]. A system is passive if and only if a finite amount of energy can be extracted 
from the system. In other words, energy changes in interactions can be observed by the port variables, and a 
supplied energy is less than a stored energy if a system is passive. Passivity-based controls via port-Hamiltonian 
system representations have been frequently used in control designs [3]. 

This paper proposes the port-Hamiltonian representation of systems of higher order partial differential equa-
tions defined on a domain with a boundary. The representation can be formally formulated from the viewpoint 
of the multisymplectic formalism [5] [6] under the assumption of first order with respect to time, but possibly 
higher order with respect to spatial variables. The port representation for Hamiltonian systems with boundary 
energy flows was initiated by the distributed port-Hamiltonian system in [7]. The systems satisfy a power bal-
ance defined on the boundary; therefore, it can describe the interaction between the systems connected through 
common boundaries. Thus, passivity-based controls in this formulation can be enhanced as boundary energy 
controls. Various aspects of the distributed port-Hamiltonian systems have been studied, e.g., the implicit repre-
sentation of distributed port-Hamiltonian systems [8], and the relationship between field equations and distri-
buted port-Hamiltonian systems [9]-[11]. The higher order representation of the distributed port-Hamiltonian 
systems has been proposed in, e.g., [12] [13]; however, they are not related with the multisymplectic formalism. 

Thus, we first relate higher order partial differential equations with the implicit Hamiltonian systems [14]. 
Next, we describe the implicit representation as a Dirac structure defined over the multisymplectic manifold in 
analogy with the first order formalizations [15]-[17]. Dirac structures [18] [19] are a unified concept of sym-
plectic and Poisson structures. Then, we derive the Stokes variational differential from the fact that higher order 
derivatives yield variations of boundary port variables through integration by parts and Stokes theorem. Finally, 
we shows that the boundary energy balance and the Stokes-Dirac structure [7] [20] that is an extended Dirac 
structure for distributed port-Hamiltonian systems can be defined in the proposed higher order field port Hamil-
tonian systems with boundary energy flows. 

This paper is organized as follows: In Section 2, we make a brief summary of port-Hamiltonian systems and 
explain the motivation of this study. Section 3 introduces mathematical preliminaries from some references. 
Section 4 presents the following three concepts under the assumption of time-spatial splitting: 1) an implicit 
Hamiltonian representation using the dual structure derived from the multisymplectic instantaneous formalism, 2) 
Stokes variational differential derived from the integration by parts formula, and 3) the implicit higher order 
field port Hamiltonian representation with boundary. Section 5 introduces the formal port representation for 
higher order partial differential equations from the implicit Hamiltonian representation. We call it higher order 
field port Hamiltonian systems with boundary energy flows. Finally, Section 6 illustrates two modeling examples. 

2. Summary of Port-Hamiltonian Representations 
This section explains the concept of port-Hamiltonian systems by means of a simple example of coupled multi- 
physical models, and the motivation of this work. 

2.1. Port Representation for Lumped Parameter Energy Conserving Physical Systems 
Let us consider the following model of the direct current motor consisting of an electrical circuit and an arma-
ture: 

d d, ,
d d

iL Ri u K J B Ni
t t

ωω ω+ = − + =                                  (1) 

where ( ) d di i t q t= =  is the current that is the time derivative of the electric charge ( )q q t= , 
( ) d dt tω ω θ= =  is the velocity of the angle ( )tθ θ= , and u is the input voltage. In (1), the following con-

stants are defined: the inductance L, the resistance R, the back electromotive force constant K, the inertia mo-
ment J, the viscous friction constant B, and the torque constant N. When the dissipative elements and the input 
are null, i.e., 0R B= =  and 0u = , the system (1) is energy conserving, and it can be formulated as the fol-
lowing standard Hamiltonian system: 
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, , , ,t t
q t t

q

p q p
q p pθ

θ

θ
θ

∂ ∂ ∂ ∂
= − = = − =

∂ ∂∂ ∂


  

                             (2) 

where we have defined the Hamiltonian and the momenta as follows: 

2 2
1 2

1 1, ,
2 2

t t
qqp p Lq J q qθθ θ κ θ κ θ= + − = + − +  

                         (3) 

2 1,t t
qp Lq p J q

q θκ θ θ κ
θ

∂ ∂
= = + = = −
∂ ∂









                              (4) 

with 2 1:K κ κ= −  and 1 2:N κ κ= +  for certain 1κ  and 2κ . 
We shall augment the Hamiltonian system (2) as the following port-Hamiltonian system with the dissipations 
Rq−   and Bθ−   and the input u: 

[ ]

[ ]

1 1 1

1 1 1

2 2 2

2 2 2

1 1
, 1 0 ,

1 0 0

1
, 1 0 ,

1 0

p p p
q

q q q

p p p

q q q

Rf e e
u y

f e e

Bf e e
y

f e e
θ

     − −   
= + =        
        


     − −  = =             

                         (5) 

where we have defined the following variables called port variables: 

1 1 1 1 1

2 2 2 2 2

d d, , , ,
d d

d d, , , ,
d d

t
qp q p q

t
q

t
p q p q

t

p qf f e q e
t t qp

p
f f e e q

t t p
θ

θ

κ θ

θ θ κ
θ

 ∂ ∂
= = = = = =

∂∂


∂ ∂ = = = = = = ∂∂











 

 
                        (6) 

and, in particular, i
jf  and i

je  for { },i p q=  and { }1,2j =  are called flows and efforts, respectively. Here, 
we can see that the electrical and mechanical subsystems are coupled by the interconnection of the effort va-
riables: q  and θ . 

Then, the summation consisting of the products of the pairs of the port variables is equivalent to the time de-
rivative of the Hamiltonian, i.e., the total energy change of the system. Indeed, we can directly calculate the fol-
lowing power balance: 

2 2
1 1 1 1 2 2 2 2

d ,
d

p p q q p p q q qf e f e f e f e Rq B uy
t

θ= + + + = − − +

                        (7) 

where we have used the relation 1
q py q e= = . The relation (7) means that the dissipations 2Rq−   and 2Bθ−   

stabilize the system by decreasing the energy, and the product quy  of the input and the output may affects the 
dissipation rate. Furthermore, the Hamiltonian can be controlled if we can find a suitable input satisfying 

( ) ( ) 1
1 0

0
d

t q
t

t t uy t− = ∫    for the desired Hamiltonian ( )+    in the time interval [ ]0 1,t t . A finite amount of 
energy changes in interactions can be precisely observed by the product of an input-output pair if the system is 
passive. Hence, these controls are called passivity-based controls. 

2.2. Distributed Port-Hamiltonian Systems 
In the case of distributed parameter systems, the representation is called a distributed port-Hamiltonian system, 
and has the following formal structure: 

( )
( )

0 1 d ,
d 0 1

p
rp p b

q q b p q

ef e f
f e e e

∂

∂

       −  = =          −         





                   (8) 

called the Stokes-Dirac structure defined on the system domain   with the boundary ∂  (see [7] for details), 
where d is the exterior differential operator, we have defined 
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( ) ( ) ( )

( ) ( ) ( )

, , ,

, ,

p qp p q q b n p

p n p q n q b n q

p q

f f f
t t

e e e

α α
Ω Ω Ω

δ δΩ Ω Ω
δα δα

−

− − −

∂ ∂
= − ∈ = − ∈ ∈ ∂ ∂ ∂


 = ∈ = ∈ ∈ ∂


  

 
  

                   (9) 

for a Hamiltonian functional = ∫H , kΩ  is the space of differential k-forms, iδ δα  is the variational 

derivative with respect to the differential form iα , 1r pq= + , and 1p q n+ = + . Then, the power balance (7) 
is extended to the following relation described by differential forms: 

( )d .
d p p q q p qf e f e e e
t ∂

= ∧ + ∧ = ∧∫ ∫ 

H                             (10) 

The boundary integral term in (10) is generated from the domain integral term by Stokes theorem: 
dω ω

∂
=∫ ∫ 

 for an n-form dω  in the n-dimensional domain  . Hence, the passivity-based controls can be 

enhanced as boundary energy controls by regarding pe  and qe  as a input-output pair, i.e., boundary port va-
riables. 

2.3. Motivation 
As we have seen above, the port-Hamiltonian representations are important for the control of, e.g., nonlinear 
systems, distributed parameter systems, higher order systems and multi-physical systems from which it is diffi-
cult to obtain analytical solutions in a closed form. This paper derives a formal port-Hamiltonian representation 
of a given partial differential equation including higher order derivatives in terms of the multisymplectic for-
malism. 

In this paper, we assume that a given system of partial differential equations is determined by variational 
problems. Such a system must be regarded as an energy conserving physical system [15] through Legendre 
transformations that map Lagrangian systems to Hamiltonian systems. This assumption comes from the fact that 
any system can be decomposed into a variational subsystem that can be determined by variational calculus and a 
non-variational subsystem that cannot be introduced from any Lagrangian on a contractible manifold [21]. For 
example, as we seen in (1), the dissipative terms Rq−   and Bθ−   cannot be derived from any Lagrangian or 
Hamiltonian. On the other hand, Lagrangians of the first subsystem can be explicitly calculated by homotopy 
operators in terms of the exactness of vertical differential forms in variational bi-complex [22] [23]. Hence, we 
consider only the variational subsystems in this study. 

3. Mathematical Preliminary 
Mathematical notations used in this paper basically conform to those of the references [22] [24] [25]. 

3.1. Multi index for Higher Order Derivatives 
Let X be an ( )1m + -dimensional manifold. Let Q be a fiber manifold on X, and consider the r-th order jet bun-
dle rJ Q  over Q. We denote the local coordinates of X, Q, and rJ Q , respectively, by ix , ( ),i ax q , and 
( ),i a

Ix q , where 0 i m≤ ≤ , and 1 a l≤ ≤ . The multi index I describes all variables of the repeated combination 
of ix  that mean higher order derivatives with respect to the variable, e.g., 2

i j
a a i j
x x

q q x x= ∂ ∂ ∂ . We the order 
of I by I , and it is used as 0 I r≤ ≤  that means all derivatives up to the r-th order. Let 0x  be the time 
coordinate for t∈  and let sx  be the spatial coordinates for 1 s m≤ ≤ . In some case, we use the abbrevia-
tion such as 0 0

a a a
t x

q q q= = . 
Example 1. Let 1m = , 1l = , and 2r = . We define the local coordinates of X by ( ) ( )0 1, ,x x t y= , and 

those of Q by ( ) ( )0 1 1, ; , ;x x q t y q= . Then, the local coordinates of the jet bundle 2J Q  are ( )0 1 1, ; Ix x q =
( ), ; , , , , ,t y tt ty yyt y q q q q q q  for all 0 2I≤ ≤ . Note that q is described as a function of t, y; however, each ele-
ment of Iq  is regarded as independent variables on the bundle. By using the summation convention, for exam-
ple, we can interpret such as ( ) ( ) ( )d d dI I t t y yq q q q q q∂ ∂ = ∂ ∂ + ∂ ∂    for 1I = . 
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3.2. Time-Spatial Splitting of State Space 
Variational problems can be formalized as follows. 

Definition 1. Consider the ( )1,0m + -form ( )1,0: d m rx J QΩ += ∈  as a Lagrangian density of a function-

al dx∫ . We define the variational derivative d  of the Lagrangian density as the ( )1,1m + -form 

( )1,1d d d da m r
v Ia

I

x q x J Q
q

Ω +∂
= ∧ ∈
∂


                                (11) 

that determines the stationary condition d 0v ≡  of the variational problem, where 0 I r≤ ≤ , and dv  is the 
vertical differential operator (see Sections B and C). In the following discussions, the variational derivative d  
is lifted on 2 1rJ Q− . 

Let us consider the following control system as a main objective. 
Assumption 1. A given system is defined on a contractible domain   with a boundary ∂ , and it can be 

derived from a Lagrangian density in functional forms including derivatives that are first order with respect to 
the time coordinate and up to ( )1r − -th order with respect to spatial coordinates. 

Under this assumption, the multi index I up to r-th order used for describing r-th order Lagrangians can be 
defined as { },I K Kt= , where the multi index K is of spatial coordinates for 0 1K r≤ ≤ − . 

Example 2. In the case of 2m = , 1l =  and 2r = , let ( ) ( )0 1 2 1, , ; , , ;x x x q t y z q=  be a local coordinates 

of Q on X. Then, by defining { }, ,K y z= ∅  and { } { }, , , , , ,I K Kt y z t yt zt= = ∅ , the local coordinates of 2J Q  

can be described as ( ) ( )0 1 2 1, , ; , , ;I Ix x x q t y z q= . Without Assumption 1, I may include , ,tt yy zz . 

Furthermore, the following second assumption is important when we use the multisymplectic instantaneous 
formalism (see Section E). 

Definition 2. Let us consider the time-spatial split domain = × ⊂ ×Σ    consisting of a time interval 
⊂   and a spatial domain ⊂ Σ . Then, a system defined on   at an instantaneous time t∈  is de-

fined on  . 
Assumption 2. A Lagrangian density ( )1,0m rJ QΩ +∈  restricted to   can be described as 

( ),0d s m rx J QΩ∈


  at a time t∈  in = ×   , where we denote the spatial (horizontal) volume form 
1d d mx x∧ ∧  by d sx . 
Note that, we treat variables including time derivatives, e.g., a

Ktq  in a bundle restricted to the spatial domain 
  in this setting. 

4. Implicit Hamiltonian Representation Induced from Distributions 
In this section, we present a symplectic structure for distributions determined by partial differential equations in 
terms of the implicit Hamiltonian representation [14]. A distribution is a subbundle of a tangent bundle that is 
defined by a system dynamics, external constraints, and internal constraints generated by degenerate Lagran-
gians. On the other hand, a field Hamiltonian system is defined by the covariant Hamiltonian in the multisym-
plectic formalism [6]. However, the covariant Hamiltonian does not correspond to the typical Hamiltonian that 
are constant with respect to time evolution, e.g., for particle systems, but the instantaneous Hamiltonian derived 
from the time-spatial splitting. 

4.1. Distributions 
Definition 3. Consider a system of Pfaff equations { }0 |1a a lω= = ≤ ≤  on an n-dimensional manifold M, 
where aω  for each a is a differential 1-form. Then, the submanifold N of M is called an integral manifold of 
  if 0aξω =i  for any vector ξ  on the tangent space pT N  at each point p N∈ , where 1 a l≤ ≤ . 

Definition 4. Let M be an n-dimensional manifold M. A morphism associating an r-dimensional subspace ∆  
of the tangent space pT M  with each point p M∈  is called an r-th order distribution. The distribution is 
called regular if the dimension r is invariant. 
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The integrability of   can be rephrased by distributions. That is, the r-dimensional distribution ∆  is de-
fined by { }| 0,1p p aT M a lξξ ω∆ = ∈ = ≤ ≤i  for each point p M∈ , where r n l= − . 

4.2. Symplectic Structure Restricted to Distributions 
The relationship between Lagrangian and Hamiltonian systems is given by Legendre transformations (see (65) 
in Section D). For classical field equations, the Legendre transformations (or Lagrangians) are not regular in 
general, and thus, they are not one-to-one. However, the Legendre transformation can reasonably work under the 
following weaker condition. 

Proposition 1. [5] Let 1rP −  be an embedded closed subbundle of 1rZ − . Then, the Legendre transformation 
2 1 1: r rJ Q Zσ − −→  is called almost regular if σ  is a submersion (i.e., Tσ  is surjective) with respect to 

the image 1rP − . In this case, there exists a vector field ξ  on 2 1rJ M−  such that Tσ ξ ν⋅ =  for any vector 
field ν  on 1rP − . 

Proposition 2. [5] The following conditions are equivalent: 
1) ( )Γ Qφ ∈  satisfies the Euler-Lagrange equations, 
2) ( )2 1 2 1Γr rj J Qφ− −∈  satisfies the Cartan equations, 
3) If σ  is almost regular, ( )2 1 1Γr rj Pδ σ φ− −= ∈  satisfies the Hamilton-De Donder equations, 

where Γ  is the space of all sections, and 2 1rj φ−  is the ( )2 1r − -th jet of the section φ . 
Remark 1. Note that 2 1

0
rφ π ρ−=   is not always the extremum of the original variational problem, i.e., Eu-

ler-Lagrange equations even if a certain ( )2 1rJ Qρ −∈Γ  is a Cartan equation, where 2 1 2 1
0 :r rJ Q Qπ − − →  is the 

natural projection. This correspondence is valid only if σ  is regular [5]. Hence, we start from Euler-Lagrange 
equations in this paper. 

Under the assumption of first order Lagrangians with respect to time, the covariant Legendre transformation 
2 1 1: r rJ Q Zσ − −→  in (65) is restricted the following instantaneous Legendre transformation: 

if ,

if 1 ,

Kt
a a

Kt

Kt Kts
a s aa

Kt

p Kt r
q

p D p Kt r
q

∂ = = ∂
 ∂ = − ≤ <
 ∂




                              (12) 

where 0 1K r≤ ≤ −  is the multi index with respect to spatial variables, and 1
m

s iiD D
=

= ∑  is the spatial total 
divergence. The term Kts

s aD p−  in the second equation of (12) is introduced from 0Kttp =  in Kti
i aD p−  of 

(65), because Lagrangian is first order with respect to time. 
From the above preliminaries, we shall relate a distribution Q∆  of Euler-Lagrange equations with a distribu-

tion 1rZ −∆  of Hamiltonian systems on the multisymplectic manifold 1rZ −  through the relations i) → ii) → iii) 
in Proposition 2. Indeed, the following Hamiltonian representation for 1rZ −∆  can be defined. 

Definition 5. Consider the ( )1r − -th multisymplectic manifold 1rZ −  with the local coordinates  
( ); , ,i a Kt

K ax q p p  under Assumption 1. Then, the local coordinates of 1rVZ −  can be written as 

( ); , , , ,i a Kt a Kt
K a K ax q p q p pδ δ , because this results from the addition of the local coordinates of 1rZ −  and the  

coordinates ( ),a Kt
K aq pδ δ  generated by the differential operator δ  with respect to ,a Kt

K aq p , and we have used 

the relations: a a a
K t K Ktq D q qδ = = , Kt Kt

a t ap D pδ = . On the other hand, the local coordinates of * 1rV Z −  are 

( ); , , , ,i a Kt Kt a
K a a Kx q p p q pδ δ− , because it is given by the pairing of * 1d rV Z −− Θ∈  and arbitrary vector 

1rVZξ −∈  that is defined by ( )dξ − Θi  between the vertical tangent and cotangent bundles [1]. Note that there 
is no adjoint variable of p defining an affine structure [5] (p. 214). 

Now, we can consider the following induced symplectic structure induced from distributions. 
Proposition 3. Let 2 1 1: r rJ Q Zσ − −→  be the almost regular Legendre transformation and let Q VQ∆ ⊂  

be a regular distribution on Q that is restricted to  . We restrict the multisymplectic ( )2m + -form Ω  over 
1rZ −  (see Section D) to 1rZ −∆ , i.e., we define a skew symmetric bilinear form by 

1 1r rZ Z− −∆ ∆ ×∆
Ω = Ω . Then, there 
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exists the following subbundle 1 * 1r rVZ V Z− −
∆ ⊂ ⊕  for each 1rz Z −∈  and a fixed p: 

( ) ( ){ ( ) ( )( ) ( )}1 1
1 * 1, | , ( ) , , ,r r

r r
z z z z z z z z z zZ Z

z v V Z V Z v z w z v w w zα α− −
− −

∆ ∆= ∈ × ∈∆ = Ω ∀ ∈∆    (13) 

where we have defined ( )1

12 1 1
0r

r r
QZ

V V VZσ π−

−− −∆ = ∆ ⊂ , Vσ  is the vertical tangent map of σ , and 

( ) 12 1 2 1
0

r r
QV VJ Qπ

−− −∆ ⊂  is the distribution lifted along the vertical tangent map 2 1 2 1
0 :r rV VJ Q VQπ − − →  of 

the canonical projection 2 1 2 1
0 :r rJ Q Qπ − − → . 

Proof. According to Proposition 2, there exists a vector field 2 1rTJ Qξ −∈  for any vector field 1rZ
ν −∈∆ . 

Thus, there exists also 2 1rζ ϖ ξ−= , where 2 1 2 1
2 1 : r r

r TJ Q VJ Qϖ − −
− →  is the natural projection. Hence, the relation 

in (13) is resulted from the nature of the symplectic structure. Indeed, for a given ( )1
1

r
r

z zZ
v z V Z−

−∈∆ ⊂ , there 
always exists the corresponding ( )1,1m + -form * 1r

z zV Zα −∈  that determines a Hamiltonian vector field.   
Let us introduce Dirac structures on vector spaces form the references [2] [18] [19]. 
Definition 6. A Dirac structure on a vector space A is a subspace A A∗⊂ ⊕  such that ⊥=  , where A∗  

is the dual space of A, ⊥  is the orthogonal space of   with respect to the symmetric pairing ,⋅ ⋅  on 
A A∗⊕  such that ( ) ( ), , , , ,v v v vα α α α= +  for ( ) ( )( ), , ,v v A Aα α ∗∈ ⊕ , and ,⋅ ⋅  is the natural 

pairing between A∗  and A. 
Corollary 1. ∆  in (13) is the (almost) Dirac structure. 
Proof. If we fix the coordinate p of 1rZ − , i.e., the covariant Hamiltonian, then Equation (13) is the typical 

form of induced Dirac structures [15].   

5. Distirubted Port-Hamiltonian Systems with Higher Order Boundary Energy 
Flows 

In this section, we derive a formal structure of distributed port-Hamiltonian systems with boundary energy flows 
including higher order derivatives from the previously discussed implicit Hamiltonian representation. The ener-
gy flows passing through boundaries of system domains are used for boundary interconnections, or passivity- 
based boundary controls. 

5.1. Boundary Terms Generated by Integration by Parts 
In higher order variational problems, the zero boundary condition is usually assumed for simplification or some 
other reason. Then, boundary terms generated by Stokes theorem after applying integration by parts are elimi-
nated. Actually, these boundary terms are related with the boundary energy flows. 

Let us recall such a calculation that yields the boundary term in variational calculus. We first define the fol-
lowing notation for simplification. 

Definition 7. From the Legendre transformation σ  in (65), we can derive the following variable: 

: ,I I Ii
a a i aa

I

p p D p
q
∂

= = +
∂



                                    (14) 

where 0 I r≤ ≤ , 0 i m≤ ≤ , iD  is the total differential operator (61), and we have set 0Ii
ap =  for I r= . 

Now, we consider the Lagrangian density functional dx∫ . The variational derivative of the Lagrangian 

density functional can be transformed by the integration by parts formula as follows: 

( )d d d d d d d d ,a Ki a Ki a Ki a
Ki a Ki i a K i a Ka

Ki

q x p q x D p q x D p q x
q
∂

∧ = ∧ = ∧ − ∧
∂∫ ∫ ∫ ∫  

   

             (15) 

where 0 1K r≤ ≤ − . By Stokes theorem [22], for any 0 i m≤ ≤ , the first term in the right side of (15) can be 
transformed into 

( )d d d d ,i
Ki a Ki a

i a K a K x
D p q x p q x

∂
∧ = ∧∫ ∫  i

 
                         (16) 

where iD  is the total divergence that acts as 0
m

ii D
=∑ , and dix

x
∂

i  is the volume ( ),1m -form on ∂ . For the 
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integrands in (15) and (16), consider the operation of differential forms that separate a coefficient from a vertical 
basis. For example, d dKi a

a Kip q x∧  can be decomposed into Ki
ap  and d a

Kiq . This operation is defined as follows. 
Definition 8. For an ( )1,1m + -form ( )1,1 2 1d d d dKi a m r

v a Kix p q x J QΩ + −= ∈ , we define the integration by 
parts operator as the following local expression: 

( )( ) ( ) ( ) 2 11,1 2 1 1,1 2 1

1 11 2 1 1 2 1

d : ; ; , , , ,

; , , , , , ; , , , , ,

jk rm r m r i a Ki
Ki a

j jk r k ri a Ki i a Ki
K i a K a

Ki J Q J Q x q p

x q D p x q p

Ω Ω
−+ − + −

×∂

+ +− − − −

 →  
 

    −    
    



  

 


     


  


            (17) 

where we denoted ( ) ( ) ( )1,1 2 1 1,1 2 1 ,1 2 1m r m r m rJ Q J Q J QΩ Ω Ω+ − + − −

×∂ ∂
= ×

   
, i.e., the style ( ) ( ){ },A B  means  

the set of the transformed local coordinates (A) on   and (B) on ∂ , respectively. Here, untransformed 
coordinates under Ki -th order are omitted in (17), and their numbers can be explicitly calculated by k K= , 
0 1k r≤ ≤ −  and j r k= − . 

Remark 2. For a Lagrangian density ( ),1 2 1d s m rx J QΩ −∈  restricted to the spatial domain   in the time- 
spatial split space, the operation (17) can be also well defined. In this case, the boundary terms generated by 
Stokes theorem with respect to the time derivative ( )tD ⋅  in the total divergence are eliminated, because there 
is no boundary of a point in the time axis. 

The repeated application of the integration by parts operator can yield all variations of boundary terms ap-
peared in variational calculus. 

Proposition 4. For some I, where 1 v I≤ ≤ , the v-th degree integration by parts operators is defined by 

( )( ) ( ) ( ) ( )( )d 1 1 d
v

v I I v I I= − + −                             (18) 

that can be expressed as the coordinate transformation 

0 if ,

if 0 .

Ki
a

K Ki
a i aa

Ki

p Ki r

p D p K r
q

∂

∂ ∂

 = =


∂ = − ≤ < ∂

                                (19) 

Proof. From the direct calculation of ( )( )dv I  , we obtain the following representation on 

( )1,1 2 1m rJ QΩ + −

×∂ 
 that is derived from that on ( )1,1 2 1m rJ QΩ + −


: 

( ) ( ) ( )1 1

0 1
; , ,0, ,0 , ; , , , , , , ,0 .

r r rvI I I ii a I i a I I I I I
J i a J i a i a a i a a

I I I i
x q D p x q D p D p p D p p− − −

= = =

     − − − −            
∑ ∑ ∑     

 



    (20) 

The first bracket of (20) includes the nonzero part of the Euler-Lagrange equation; therefore, this operation is 
equivalent to the variational differential. The last r elements in the second bracket correspond to K

ap∂  in (19) for 
0 K r≤ ≤ . 


 

5.2. Stokes Variational Differential 
The symplectic structure induced from distributions does not have any information on boundary energy flows. 
In this section, we define a variational differential operator with boundary terms generated by integration by 
parts and Stokes theorem, called the Stokes variational differential. The Stokes variational differential can be 
used in the induced symplectic structure for relating a given Lagrangian with port-Hamiltonian representations. 

Proposition 5. For an r-th order Lagrangian density ( )1,0m rJ QΩ +∈  that is first order with respect to 
time and ( )1r − -th order with respect to spatial coordinates, the following variational differential operation 
can be defined: 

( ) ( )( ) ( )1
1,0 * 1

1, 1 : ,r
r r r m r r

rJ Q
r d J Q V Zχ ι Ω−

+ −
− ×∂

= →

  
d                  (21) 
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where 1
* 1 1 * 1:r

r r
J Q

V J J Q V Zχ −
− −→  (given as 1

ZΩ κ −



 ). We call rd  the Stokes variational differential on 

  with ∂ . 
Before the proof of Proposition 5, we should prepare the following bundle maps. We first consider the map 

between 1rVZ −  and * 1rV Z −  over 1rZ − . 
Lemma 1. We can define the following bundle map ZΩ

 : 

( ) ( )
1 * 1: ;

; , , , , ; , , , , .

r r
Z

i a Ki a Ki i a Ki Ki a
K a K a K a a K

Ω VZ V Z

x q p q p p x q p p q pδ δ δ δ

− −→

−



                 (22) 

Proof. This can be proven by the direct calculation with respect to the symplectic form (see Definition 5).   
Lemma 2. By using the Legendre transformation 2 1 1: r rJ Q Zσ − −→ , we can define the following bundle 

map under the first order assumption: 

( ) ( )
1 * 1 1 1: ;

; , , , ; , , , , ,

r r

i a a Kt Kt i a Kt a Kt
K K a a K a K a

V J J Q VZ

x q q p p x q p q p p

κ

δ δ δ δ

− − −→




                  (23) 

where 1 Kt r≤ ≤ , and p is defined by σ .  
Proof. There exists the following bundle map 1rJ Q

κ −  under the assumption: 

( ) ( )
1

* 1 * 1: ;

; , , , ; , , , .

r
r r

J Q

i a Kt a Kt i a a Kt Kt
K a K a K K a a

VV J Q V VJ Q

x q p q p x q q p p

κ

δ δ δ δ

−
− −→



                     (24) 

This can be proven in analogy with the diffeomorphism in the lumped parameter case, i.e., *:Q TT Qκ →  
* ;T TQ  ( ) ( ); , , , ; , , ,x q p q p x q q p pδ δ δ δ  ([16], p. 140, [26]). The inverse map of (24) can be extended as a 

map on the affine bundle (23). Indeed, we have the bundle map between the bundle * 1 1rV J J Q−  and the origi-
nal bundle 1* 1rVJ J Q−  of the tangent affine bundle 1 1 1r rVZ VJ J Q− −≅  . Because the local coordinates of 

1* 1rJ J Q−  are ( ); ,i a Ki
K ax q p , in the case of first order with respect to time, the local coordinates of 1* 1rJ J Q−  

are ( ); ,i a Kt
K ax q p , and those of 1 1rJ J Q−  are ( ); ,i a a

K Ktx q q . Thus, under the assumption, we can regard 
1* 1rVJ J Q−  and * 1 1rV J J Q−  as, respectively, * 1rVV J Q−  and * 1rV VJ Q−  by identifying 1 1rJ J Q−  and 

1rVJ Q− .   
Next, we regard the derivative of Lagrangian density d  as a differential ( )1,1m + -form on 1 1rJ J Q−  in 

the above discussion by using  1 1r rJ Q J J Q− .  
Lemma 3. The standard variational derivative 

( ) ( )2 1 1,0 1,1 2 1d : ;

d d d

r m r m r
v r

a
Ia

I

J Q J Q

x q x
q

ι Ω Ω− + + −→

∂
∧

∂








                       (25) 

can be regarded as the following derivative under the assumption of first order Lagrangians with respect to time: 

( )
( )

1,0 1 1 1 1
1, 1d : ;

d d d d ,

r m r r
v r

K a Kt a
a K a Kt

J J Q V J J Q

x p q p q x

ι Ω + − ∗ −
− →

+ ∧



 


                        (26) 

where we have defined the inclusions  ( ) ( )2 1
2 1 : ; ; ;r r r i a i a

r K KKiJ Q J Q x q x qι −
−  , and 

 ( ) ( )1 1
1, 1 : ; ; ; ,r r r i a i a a

r K K KiJ Q J J Q x q x q qι −
− 

. 

Proof. By  2 1 2 1 1 2 2
1,2 2 : ;r r r

r J Q J J Qι − − −
−  ( ) ( ); ; ,i a i a a

KKi KK KKix q x q q , and  1, 1 1 1 1 2 2
1,2 2 : ;r r r

r J J Q J J Qι − − −
−  

( ) ( ); , ; ,i a a i a a
K Ki KK KKix q q x q q , we can rewrite (25) as 

( ) ( )1, 1 1,0 1 1 1 2 2
1,2 2d : ; d d d d ,r m r r K a Ki a

v r a K a KiJ J Q V J J Q x p q p q xι − + − ∗ −
− Ω → + ∧ 

             (27) 
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where we have used ( )1,1m Y V YΩ + ∗≅ . Moreover, the inclusion 1, 1
1,2 2

r
rι −
−  yields the dual map 

( ) ( )
1, 1 1 2 2 1 1
1,2 2 : ;

; , , , ; , , , .

r r r
r

i a a KKi KKi i a a Ki Ki
KK KK a a K K a a

V V J J Q V J J Q

x q q p p x q q p p

ι

δ δ δ δ

∗ − ∗ − ∗ −
− →



                   (28) 

Under the assumption, we can specify by i t=  in the above equations.   
Proof of Proposition 5: From Lemmas 1-3, we can see that the map rd  is well-defined.   

5.3. Local Expression of Induced Symplectic Structures 
From the previous preparations, we can derive the relationship between the distribution Q∆  and an instantane-
ous Hamiltonian system on 1rZ −  that is described by the induced symplectic structure ∆  using the Stokes 
variational differential rd  . 

Definition 9. Let ( )1,0d m rx J QΩ += ∈  be a Lagrangian density that is first order with respect to time, 

and let Q VQ∆ ⊂  be a regular distribution on Q. Consider the symplectic structure ∆  induced on 1rZ −  in 

(13), and the Stokes variational differential ( )1,0 * 1:r m r rJ Q V ZΩ + −

×∂
→

 
d   on   with ∂  in (21). Let 

( )2 1
1

r
r

J Q
P V VZσ −

−
∆ = ∆ ⊂  be the image of Q∆ , where we have defined ( )2 1

12 1
0r

r
QJ Q

Vπ−

−−∆ = ∆ . Then, we 

define the implicit higher order field Hamiltonian representation on   with ∂  as 

( )1 , ,r
r

Z − ∆∈X d                                 (29) 

where 1rZ
P− ∆∈X . 

Theorem 1. The local expression of the implicit higher order field port Hamiltonian representation on   
with ∂  determined by ( )1 ,r

r
Z − ∆∈X d   is given as follows: 

( ) ( )1 1, , 1 ,

, ,

r r
Ka a a Kt K

t K Kt t K K t a aZ Z

Kt K
a aa a

Kt K

D q q D q D D p p

p p
q q

− −
 ∈∆ = − − ∈∆

 ∂ ∂

= =
∂ ∂



 

 

                     (30) 

where K
ap  is the covariant momentum, and we have defined the null space 

{ }1
1 1| , 0,r

r r
Z

V Z v v P VZα α−
∗ − −

∆∆ = ∈ = ∀ ∈ ⊂ . On the boundary, there is the following ( ),1m -form: 

( ) ( )
1 1 d ,j K jK a

s a s tD p D q
w K

− −

∂
− ⋅


                                  (31) 

where 1 j K≤ ≤ , K is the multi index with respect to spatial coordinates, K  is the multi index generated by  
repeated permutations (see Section B), and we have defined the spatial total divergence 1

m
s iiD D

=
= ∑ . 

Proof. Let ( )1 ; , , , ,r
i a Kt a Kt

K a t K t aZ
x q p D q D p p− =X  be the vector field on 1rVZ − . For a vector field 1rZ −X , we 

consider the following local expression of the symplectic form Ω  

( ) ( )( ), , , , , , , , , , , , , ,i a Kt i a Kt
K a K ax q p u p x q p u p u uα α α α′ ′ ′ ′Ω = −                        (32) 

where 1 1, : r ru VZ V Zα − ∗ −× →   is the natural pairing between 1
1

r
r

Z
u VZ−

−∈ ⊂X  and 1rV Zα ∗ −∈ . On the 

other hand, from the local expression of the Stokes variational differential on   

( ); , , , , ,r i a Kt Kt a
K a a Kx q p p q pδ δ= − d                                    (33) 

we denote the 1-form fields by * : Kt
au pδ= −   and * : a

Kqα δ= . From the equivalent condition between the last 
relation in (13) and (32) 

* *, , , , ,u u u uα α α α′ ′+ = −                                   (34) 

we obtain the condition 
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, , , ,Kt a a Kt
a Kt t K t ap u q D q D p uδ α α− + = −                              (35) 

for any u and α . Then, Equation (35) yields (30), because Kt a
a Ktp q= ∂ ∂  , and Kt a

a Kp qδ = ∂ ∂   that can be 
derived from the Euler-Lagrange equation. Indeed, the pairing with respect to u gives the third relation in (30) as 
follows: 

( )1 ,KKt a Kt a
t a K K t aa a

K K

D p q D D p q
q q

δ δ
   ∂ ∂

− = − − +Φ   
∂ ∂   

 

 
                 (36) 

where Φ  corresponds to the boundary term in (31). The term (31) is obtained from the calculation in (20). 
Here, the total divergence ( )tD ⋅  with respect to time has been eliminated. Consequently, in (30), the first rela-
tion means a given vector field, the second relation is the definition of jet variables, the third relation is the Eu-
ler-Lagrange equation before applying integration by parts, and the fourth relation is the definition of the mo-
mentum.   

The above representation can be converted to the following formal form of port representations [7]. 
Corollary 2. The implicit higher order field port Hamiltonian system defined on   with ∂  can be re-

written as the following port Hamiltonian system: 

( )0 1 ,
0

a aK
p pK
a a

qK qKK

f eD
f eDΤ

    − −=     
        

                            (37) 

where 1 a l≤ ≤ , and we have defined the variables 

( ) ( )( ) ( ) ( )

( ) ( )( )1
, ,

, 1 , , , , ,

, , ,

,

Kta a Kt a a a a K
p p Kt a t qK qK t K a

jK ja a a a
s p s qKK j K j

Kt K
a aa a

Kt K

f e D p q f e D q p

f e D e D e

p p
q q

−−

∂ ∂ ∂∂


 = − =



= − −

 ∂ ∂

= = ∂ ∂

 

 



 

                  (38) 

for 1 j K≤ ≤ . We call ,
a
K jf∂  and ,

a
K je∂  boundary port variables. 

Proof. Form the third and second relations in (30), we can obtain the first and second rows in (37), respec-
tively. The product of the pair of the third relation in (38) that is equivalent to the boundary term in (31), where 
d a

tq  in (31) has been interpreted as an infinitesimal variation of a
tq .   

5.4. Power Balance and Passivity 
This section derives the power balance of the Hamiltonian representation discussed in the previous section, and 
define the formal representation of higher order field port Hamiltonian systems with boundary energy flows. 

In the time-spatial split space, the instantaneous Hamiltonian (70) on   is given by 
1

| | 0
d ,

r
Kt a s
a Kt

K
p q x

−

=

 
= − 

 
∑∫


H                                   (39) 

where 1 j K≤ ≤ . The following relation corresponds to the power balance of distributed port-Hamiltonian 
systems. 

Proposition 6. The system (37) satisfies the power balance 

( ) , ,
1

d d 0.s

K
a a a a s a a s
p p qK qK K j K j x

j
e f e f x e f x∂ ∂ ∂∂ =

 
+ + =  

 
∑∫ ∫ i

 
                       (40) 

Proof. The power balance can be derived from the interior product between the derivative of the instantaneous 
Hamiltonian (39) and arbitrary vector field is zero. Let ( ) ( ), , ,a Kt Kt a a

I a a Kt Ix q p p q x q= −   be the generalized 

energy density of (39) defined on ( )0 1 2 1r r
v Z J MΩ − −⊕ , where 0 I r≤ ≤ , and 1 2 1r rZ J Q− −⊕  is the Whitney 
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bundle with the local coordinates ( ); , ,i a Ki
J ax q p p  for 0 1K r≤ ≤ −  and 0 2 1J r≤ ≤ − . Next, consider the pair-

ing between dv  and the vector field ( ) ( ) ( )1 2 1a a Kt Kt r r
t J J t a aD q q D p p V Z J Mµ − −= ∂ ∂ + ∂ ∂ ∈ ⊕  as follows: 

( )d
d d d d d

d

d d d

d d d

Kt a Kt a a Kt a
v v a Kt a Kt Kt a Ia

I

Kts a a Kt a
s a Kt Kt a Ka

K

Kts a a Kt a
t s a K Kt a Ka

K

Kts Kt a Kt
t s a t a Kt t aa a

K K

p q p q q p q
t q

D p q q p q
q

D D p q q p q
q

D D p D p q D p
q q

µ µ µ

µ

µ

 ∂
= = − = + − 

∂ 
 ∂

= − + − 
∂ 

 ∂
= + − 

∂ 
 ∂ ∂

= + − = − 
∂ ∂ 



i i i

i

i

 
 





 

H

,a
Ktq

 
 
 

                  (41) 

where we have used Kt Kt Kts a
a a s a Ktp p D p q= + = ∂ ∂  , and the time total divergence ( )tD ⋅  is eliminated in the 

same way of the proof of Theorem 1. From the energy conservation d 0vµ =i  , we obtain Kt a
t a KD p q= ∂ ∂  .  

On the other hand, we have 

( ) ( ) ( )

( )

| |
1

=1

, ,
1

d d d

1d 1 d

1 0.

a a
v Kt Ka a

Kt K

K
jK K jKt a a a

t a K K s s s ta a
jK K

K
KtKt a Kt a a a

t a Kt Kt a t s K j K j
j

q q
q q

D p q D q D D D q
w Kq q

D p q D p q D e f

µ µ

µ
− −

∂ ∂
=

 ∂ ∂
= + ∂ ∂ 

  ∂ ∂
= − + − − ⋅   ∂ ∂   

= − − − − =

∑

∑



 

 


 

i i

i           (42) 

By substituting (42) into (41), the integrand of (40) is given as follows: 

( ) , ,
1

d 1 0.
K

Kt Kt a a a a
v Kt a t Kt sa K j K j

jK

D p q q D e f
qµ ∂ ∂

=

∂
− = − + + =

∂ ∑i 


                        (43) 

By applying Stokes theorem to the integral of the third term of the second equation in (43), (40) is given.   
Proposition 7. The system (37) is passive. 
Proof. The Hamiltonian (39) and the power balance (40) correspond to the finite constant and the duality 

product before the time integration, respectively, in the definition of the passivity (see Section A).   
Consequently, we at last reach the final result that means the system (37) is just a higher order representation 

of distributed port-Hamiltonian systems. 
Theorem 2. The system (37) is the Stokes-Dirac structure. 
Proof. We have already proven that the system (37) is a Dirac structure in Proposition 1. On the other hand, 

the power balance (40) corresponds with the main property of distributed port-Hamiltonian systems described 
by the Stokes-Dirac structure, and it can be regarded as the higher order version of the structure [12].   

6. Examples 
This section presents two modeling examples. 

6.1. Timoshenko Beam Equation 
The 1-dimensional Timoshenko beam equation 

( )
( )

0,

0

tt y y

tt yy y

A GAD

I EI GA

ρ

ρ

θ

θ θ θ

 − − =


− − − =

 


                                 (44) 
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is derived from the Lagrangian density functional on ( )2,0 3J QΩ  

( ){ }22 2 21d d ,
2 t t y yx A I GA EI xρ ρε θ θ θ= = + − − −∫ ∫ 

 L                        (45) 

where [ ]0 1,t t t∈  is the time coordinate, y∈  is the spatial coordinate along the longitudinal axis, ∈  is 
the shearing, θ ∈  is the rotation at each point in y, Aρ  is the unit mass, Iρ  is the moment of inertia, EI  
is the elastic stiffness, and GA  is the shearing stiffness. 

Let 2m = , 2l = , and 3r = . From ( ) ( ) ( )( )0 1 1 2, ; , , ; , , ,x x q q t y t y t yθ=   and the maximum of higher or-

der degrees max 2K =  in (44), we derive 1
Kt Ktq D=   for 0 3Kt≤ ≤ . By defining 3J Q  with the local 

coordinate 2
Kt Ktq D θ= , we set d d dx t y= ∧  and [ ]0 1,t t= ×  . 

In (38), from 1k = , 0 1K≤ ≤ , 1j = , and 2a = , we obtain 

( ) ( )( ) ( )( )
( ) ( )( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )

( )

1
1 1 1

1
2 2 2

2 2
2

1 1
1

2 2
2

1 1 1 1 1
1,1 1,1

, 1 , , ,

, 1 , , ,

, , , ,

1, , , ,

1, , , ,

, ,

p p t
t t t t t

p p t
t t t t t

q q t t y

y
qy qy t y t y y

y
qy qy t y t y y

s t

f e D p D A

f e D p D I

f e D p D GA

f e D p D GA
w y

f e D p D EI
w y

f e D q

ρ

ρθ θ θ

θ θ θ

θ

θ θ θ

−
∂ ∂

= − =

= − =

= = −

 
= = − −  
 
 

= = −  
 

= − −











  



  

( )( ) ( )
( ) ( )( ) ( )

1 1 1 1

1 12 2 1 1 2 2 2
1,1 1,1

, ,

, , , ,

s qy t qy

s t s qy t qy

D e e

f e D q D e eθ

−

−−
∂ ∂

















= −

 = − − = −




                      (46) 

where s yD D=  and we have defined 

1 2

2 1 2

, ,

, , .

t t

t t

y y

y y

p p

p p p

ε θ

θ ε θ

∂ ∂
= =
∂ ∂

∂ ∂ ∂
= =
∂ ∂ ∂

 

  

 

  
                              (47) 

Hence, we have 

1 1

2 2

2 2
1 1

2 2

1 11 11,1 1,1

2 22 2
1,1 1,1

0 0 0 0
0 0 0 1

0 0 0 0 ,
0 1 0 0 0
0 0 0 0

, ,

p p
y

p p
y

q q
y

qy qy

yqy qy

Df e
Df e

Df e
f e

Df e

f ef e
f ef e

∂ ∂∂ ∂∂ ∂

∂ ∂∂ ∂∂ ∂

    
    −    
    =
    
             


         = =            

 

 





                              (48) 

where two lines form the first equation in (48) is equivalent to (44), and three lines from the bottom are equali-
ties. Moreover, the system (48) satisfies 

( ) ( )2 2 1 1 2 2 1 1 2 2
1 1 2 2 d d 0,s
p p p p s s

q q qy qy qy qy x
e f e f e f e f e f x e f e f x∂ ∂ ∂ ∂ ∂∂

+ + + + + + =∫ ∫ 
i                 (49) 

where note that Stokes theorem cannot be applied to ( )2 2,q qe f ; therefore the corresponding boundary term has 
not been defined. 
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6.2. Potential Boussinesq Equation 
The 1-dimensional potential Boussinesq equation ([27], p. 237) that expresses shallow water waves 

( )2 21 0
2yytt y yy yyyyyyq D q q+ + =                                       (50) 

is derived from the Lagrangian density functional defined on ( )2,0 7J QΩ  

2 3 21 1 1 d ,
2 6 2yt yy yyyq q q x = + − 

 ∫L                                   (51) 

where [ ]0 1,t t t∈  is the time coordinate, y∈  is the spatial coordinate along the water surface, and q∈  
is the height of the wave. 

Let 2m = , 1l = , and 7r = . We have defined 7J Q  with the local coordinate 1
Kt Ktq D q=  for 

0 7Kt≤ ≤ , d d dx t y= ∧ , and [ ]0 1,t t= ×   by ( ) ( )( )0 1 1, ; , ; ,x x q t y q t y=  and the maximum order 

max 6K =  in (50). 
By substituting 3k = , 0 3K≤ ≤ , 1 3j≤ ≤ , and 1a =  to (38), we get 

( ) ( )( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )( ) ( )

2
1 1 1

1 1 2
1

1 1
1

1 11 1 2 1 1 1 1
2,1 2,1

1
2,2 2

, 1 , , ,

1 1, , , ,
2

1, , , ,

, , , ,

,

p p yt
yt t yt yt t

yy
qyy qyy t yy t yy yy

yyy
qyyy qyyy t yyy t yyy yyy

s t s qyy y t qyy

f e D p q D q q

f e D q p D q q
w yy

f e D q p D q q
w yyy

f e D q D e D q e

f e

−−
∂ ∂

∂ ∂

= − =

   = =       
 

= = −  
 

= − − = −







( ) ( )( ) ( )
( ) ( )( ) ( )
( ) ( )( ) ( )
( ) ( )( ) ( )

2 11 2 2 1 1 1
,2

1 11 1 3 1 1 1 2 1
3,1 3,1

2 11 1 3 2 1 1 1
3,2 3,2

3 11 1 3 3 1 1 2 1
3,3 3,3

, , ,

, , , ,

, , , ,

, , , ,

s t s qyy t y qyy

s t s qyyy y t qyyy

s t s qyyy y t y qyyy

s t s qyyy t y qyyy

D q D e q D e

f e D q D e D q e

f e D q D e D q D e

f e D q D e q D e

−−

−−
∂ ∂

−−
∂ ∂

−−
∂ ∂













= − − =

= − − = −

= − − =

= − − = −














                       (52) 

where s yD D=  and we have defined 

1 1 1, ,yt yy yyy

yt yy yyy

p p p
q q q
∂ ∂ ∂

= = =
∂ ∂ ∂

  

                                   (53) 

Hence, the following system representation is given: 
1 2 3 1

1 2 1

1 3 1

1 1
2,1 2,1

1 1
2,2 2,2

1 11 1
3,1 3,1

1 1
3,2 3,2

1 1
3,3 3,3

0
0 0 ,
0 0

,

p y y p

qyy y qyy

qyyy y qyyy

f D D e
f D e
f D e

f e

f e

f ef e

f e

f e

∂ ∂∂ ∂

∂ ∂∂ ∂

∂ ∂∂ ∂∂ ∂

∂ ∂∂ ∂

∂ ∂∂ ∂

     −
     

=     
     
     

  
  
  
  
  = =  
  
  
  
    

 

 

 

 

 

,






 
 








 

                                  (54) 
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where the first line of the first equation in (54) is equivalent to (50), and two lines from the bottom are equalities. 
Moreover, the system (54) satisfies 

( ) ( ){ }1 1 1 1 1 1
1 1 d d 0.s
p p s s

qyy qyy qyyy qyyy x
e f e f e f x e f x

Τ

∂ ∂ ∂∂
+ + + =∫ ∫ 

i                (55) 

7. Conclusions 
This paper derived the higher order field port Hamiltonian system with boundary energy flows from systems of 
higher order partial differential equations that are determined by variational problems in terms of the multisym-
plectic instantaneous formalism. By defining the symplectic structure induced from distributions and the Stokes 
variational differential including the integration by parts operators, we clarified the implicit Hamiltonian repre-
sentation of the systems of higher order partial differential equations, and its local expression corresponds to the 
distributed port-Hamiltonian system. 

In this paper, we assumed that Lagrangians are first order with respect to time, but possibly higher order with 
respect to spatial variables for simplification. This assumption can be generalized. On the other hand, the formal 
representation including time derivatives up to first order corresponds to the distributed port-Hamiltonian sys-
tems. 
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Appendix 

A. Passivity 
Consider the following pairing between ( )q

eL U  and ( )q
eL U ∗ : 

( ) ( )
0

, : , d
T

Ty u y t u t t= ∫                                   (56) 

for ( )q
eu L U∈  and ( )q

ey L U ∗∈ , where ,  is the duality product, U is a finite dimensional linear space, U ∗  
is its dual space, and we have defined the extended q

eL  space that is the set of all measurable functions in qL  
truncated to a finite time interval. Note that the duality product ( ) ( ),y t u t  corresponds to power. 

Definition 10. Let ( ) ( ): q q
e eG L U L U ∗→ . Then G is passive if there exists a constant H such that 
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( ), , , 0,q
TGu u H u L U T≥ − ∀ ∈ ∀ ≥                          (57) 

where the left-side of (57) is assumed to be well-defined. 
Hence, G is passive if and only if a finite amount of energy can be extracted from the system defined by G. 
Corollary 3. For a point t in the time axis, 

( ) ( ) ( )d, , .
d

qHGu t u t u L U
t

≥ − ∀ ∈                           (58) 

B. Differential Forms on Bundles 

A differential ( ),i j -form gη ψ∧  defined on the r-th order jet bundle rJ Q  are defined by a horizontal 

i-form ( )1d d i i r
hx x J Qψ Ω= ∧ ∧ ∈  and a vertical j-form ( )1

1
d d j

j

aa j r
vI Iq q J Qη Ω= ∧ ∧ ∈ , where 

( )j rJ QΩ  is the space of differential j-forms on rJ Q , ( ),i a
Ig g x q=  is a smooth function defined on rJ Q , 

and ka  and kI  are different combination selected from a and I for 1 k j≤ ≤ . 
Let ( ),i j rJ QΩ  be the space of differential ( ),i j -forms defined on rJ Q . ( ),i j -forms such that n i j= +  

are called n-forms, and their space is denoted by ( )n rJ QΩ . 
The exterior differential operator d d dv h= +  for ( ),i j -forms is defined by the vertical differential operator 

( ) ( ), , 1

,
d : ; di j r i j r a

v Ia
a I I

gJ Q J Q g q
q

Ω Ω η ψ η ψ+ ∂
→ ∧ ∧ ∧

∂∑                    (59) 

and the horizontal differential operator 

( ) ( ), 1,

=1
d : ; d ,

m
i j r i j r k

h k
k

J Q J Q g D g xΩ Ω η ψ η ψ+→ ∧ ∧ ∧∑
                       (60) 

where the total differential operator with respect to ix  is defined by 

1 0

l
a

i Iii a
a I I

D q
x q

∞

= =

∂ ∂
= +
∂ ∂∑∑                                     (61) 

that is equivalent to partial differential, and ( ) ,d d di I i I I iD q D q q= = . Note that ,
i

I i Iq q x= ∂ ∂ , and 

( ) ( )( ) ,Ii I iq w I w Ii q= , where ( )w I  is the weight of the index I [22] [24], and ( )( )1a a
I Iq w I q=  for the index 

I  generated by the repeated permutation of the combination in I. 

C. Euler-Lagrange Equations 
An Euler-Lagrange equation is determined by the stationary condition d d 0x =  of the variational derivative 
d  of a Lagrange density ( ),0d m rx J QΩ= ∈ . If variables on boundaries are zero, the local expression of 
Euler-Lagrange equations is given by the stationary condition of 

( )d d d d 1 d d ,Ia a
v I Ia a

I I

x q x D q x
q q
∂ ∂

= ∧ = − ∧
∂ ∂
 

                        (62) 

where 0d d d mx x x= ∧ ∧  is the ( )1m + -volume form, ID  is the total differential operator iD  with respect 
to all index in I, integration by parts is used in the second equality, and the term ( )0

m
ii D

=
⋅∑  is eliminated by 

Stokes theorem under the assumption of the zero boundary condition. 

D. Multisymplectic Covariant Formalism 
The Hamiltonian representation of lumped parameter systems are determined by the symplectic 2-form 

dω θ= −  on cotangent bundle *T Q , where dp qθ =  is the canonical 1-form. Then, for a given Hamiltonian 
*:H T Q → , Hamiltonian vector field µ  is defined by dHµω =i  ([1], p. 187), where ( ) *,q p T Q∈ , i  is 
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the interior product. 
The (covariant) Hamiltonian representation of field equations are determined by the multisymplectic ( )2m + - 

form dΩ = − Θ  on the multisymplectic manifold 1rZ −  ([5], p. 211), where Θ  is the canonical ( )1m + -form. 

Then, 1rZ −  is defined as the subbundle of ( )1 1m rJ Q+ −∧  over 1rJ Q−  defining ( )1m + -forms 

( ){ }1 1 1 1| 0, , ,r m r rZ z J Q z VJ Qξ ν ν ξ− + − −= ∈∧ = ∀ ∈i i                          (63) 

where the space ( )1 1m rJ QΩ + −  of ( )1m + -forms over 1rJ Q−  is defined by the space of all sections of 

( )1m + -th degree exterior power cotangent ( )1r − -th jet bundle [5], and the vertical tangent bundle V  has 
been defined as a vector subbundle KerT V Tπ⊃ =   determined by the tangent map :T T TXπ →  for a 

bundle : Xπ → . Note that the local coordinates ( ),i ix x  of the tangent bundle TX  when those of the ma-

nifold X are ( )ix , and the local coordinates of TY  are ( ), , ,i a i ax y x y   when those of the bundle :Y Xπ →  

are ( ),i ax y , where those of VY  are ( ), ,i a ax y y . Let ( ); , ,i a Ki
K ax q p p  for 0 1K r≤ ≤ −  be the local coor-

dinates of 1rZ − . Any 1rz Z −∈  in (63) can be locally written as 
1

0
d d d ,i

r
Ki a
a K x

K
z p x p q x

−

∂
=

= + ∧∑ i                             (64) 

where we assume that the multi index Ki  satisfies 1Ki K= + . Then, zΘ =  is defined by using (64). 
On the other hand, the covariant Lagrangian system can be defined as d− Θ  on 2 1rJ Q−  by the Cartan form 

( )1 2 1m rJ QΩ + −Θ ∈ , where σ ∗Θ = Θ  , and 2 1 1: r rJ Q Zσ − −→  is the covariant Legendre transformation on 
1rJ Q−  

1

0

if ,

if 1 ,

0 if 1,

,

K K
a aa

K

K Ki K
a i a aa

K
K
a

r
Ki a
a Ki

K

p c K r
q

p D p c K r
q

c K

p p q
−

∂ = + = ∂
 ∂

= − + ≤ < ∂
 = =

 = −


∑







                       (65) 

where σ ∗
  is the pull-back, and ( );i a

Ix q  are the local coordinates of rJ Q  for 0 I r≤ ≤ . The functions 
Ki
ac  and K

ac  in (65) give arbitrariness in the global expression of Θ ; therefore, this is not used in the local 
expression, i.e., 0Ki K

a ac c= = . 
In the above, the covariant Lagrangian system determined by the variational problem of the r-th order La-

grangian density ( ),0d m rx J QΩ∈  on rJ Q  is defined by the Cartan form ( )1 2 1m rJ QΩ + −Θ ∈  on 2 1rJ Q−  
([5], p. 210). Note that the covariant Hamiltonian p determines the affine structure of 1rZ −  that is the essential 
of the symplectic structure. 

E. Multisymplectic Instantaneous Formalism 
The instantaneous formalism is the covariant representation with time-spatial splitting. The time-spatial splitting 
is equivalent to choosing an infinitesimal supersurface parametrized by time in the configuration space Q. Bun-
dles with time-spatial splitting consist of the Cauchy surface XΣ ⊂  and time-spatial vector fields ζ  on Q. 

Then, ζ  means the direction of the time evolution of the system, and ζ  on Q
Σ

 transversally intersects to 

Q
Σ

 everywhere, where Q
Σ

 means the restricted Q to Σ . 

The instantaneous representation is defined on the space ( )2 1Γ rJ Q−
Σ

 that consists of all sections γ  of 
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2 1rJ Q−  restricted to Σ . For a given global section ( )2 1Γ rJ Qγ −
Σ

∈ , the local coordinates of ( )2 1Γ rJ Q−
Σ

 is 

given as a a
J Jqγ γ=   ([6], p. 379), where a

Jq  is the local coordinates of 2 1rJ Q−  for 0 2 1J r≤ ≤ − . Then, 

the subbundle 2 1rj Q−
Σ  of ( )2 1Γ rJ Q−

Σ
 that can be identified with the tangent bundle 2 1rT Q−

Σ  by choosing 

the direction of the time evolution of ζ , where the local coordinates of 2 1rj Q−
Σ  are obtained from a

Uγ  by 

using the multi index U with respect to time for 0 2 1U r≤ ≤ − . Hence, by restricting the system to 2 1rj Q−
Σ , 

the spatial derivatives in a
Jγ  are eliminated. 

2 1rT Q−
Σ  and ( )* 1rT T Q−

Σ
 are the vector bundle over 1rT Q−

Σ  with 2r  numbers of local coordinates, 

respectively, ( )a
Lγ  for 0 2 1J r≤ ≤ −  and ( ),a K

K aγ π  for 0 1K r≤ ≤ − . On the dual bundle of 2 1rT Q−
Σ , 

i.e., ( )* 1rT T Q−
Σ

, the instantaneous Hamiltonian systems are derived from the canonical form 

1

0
d d ,

r
L a s
a L

L
q xϑ π

−

Σ
Σ =

 
=   

 
∑∫                               (66) 

where the instantaneous momentum 

( ) ( )
1

0
1 ,

r L
KL KLt

a K a
K

w L K D pπ
− −

=

= −∑                           (67) 

is calculated by integration by parts, and the weight 

( ) ( ) ( ), ! ! !w L K L K L K= +                           (68) 

based on the combination have been defined. 
Instantaneous Lagrange systems are determined on 2 1rT Q−

Σ  by *
, ,ϑ σ ϑΣ Σ Σ=   [6, pp. 382], where the in-

stantaneous Legendre transformation 

( )2 1 * 1
, : r rT Q T T Qσ − −
Σ Σ Σ

→                           (69) 

is given by ( ),a a L
U L aγ γ π  for 0 2 1U r≤ ≤ −  and 0 1L r≤ ≤ −  that are multi indexes with respect to time. 

The image in ( )* 1rT T Q−
Σ

 of the bundle map ,σ Σ  is the instantaneous primal constraint set 1rP −
Σ . The in-

stantaneous Hamiltonian 1: rP −
Σ Σ →H  on 1rP −

Σ  is defined as follows ([6], p. 384): 

1

0
d .

r
L a s
a Lt

L
q xπ

−

Σ
Σ =

 
= −  

 
∑∫ H                            (70) 

Because 1rP −
Σ  possesses the (pre-)symplectic structure ωΣ  of ( )* 1rT T Q−

Σ
, instantaneous Hamiltonian 

systems on 1rP −
Σ  are given by evolutional vector fields ν  such that dνωΣ Σ=i H . 
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