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Abstract 
 
Fatigue cracks may appear in horizontal rotating machinery due to periodic stresses imposed to its shaft. The 
investigation of stability behavior of cracked rotors can lead to proper diagnosis of machinery and to prevent 
possible accidents caused by the rotor failure. In this study, the dynamic stability of a rotor with a transverse 
crack is investigated. Models of both open and breathing cracks are developed and then used in the model of 
a cracked Jeffcot (de Laval) rotor. The stability of rotor motion equations represented by differential equa-
tions with periodic coefficients is investigated using Floquet theory. While both crack models show instabil-
ity regions around the first un-damped frequency, sub-harmonic regions are predicted by the breathing crack 
models. Compared to perturbation methods frequently used to determine the stability regions, the transition 
matrix approach used in this study can be applied to complex models of rotors and consequently may help in 
the identification of cracks in rotating machinery. 
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1. Introduction 
 
Rotordynamic systems, such as gas turbine and com-
pressors, are extensively used in industry for many dec-
ades. Even though the stability of rotordynamic systems 
during operation is a major design requirement, their 
extensive use under heavy loadings may lead to occur-
rence of fatigue cracks, which can propagate and gener-
ate serious accidents [1]. Therefore, the investigation of 
vibrational characteristics of the cracked rotors has 
gained significant attention during the last decades [1,2].  

The presence of a crack in a rotor shaft introduces a 
local flexibility that affects its vibration response, and its 
stability [2,3]. The fatigue cracks in the shaft of rotors 
are usually transverse, so the model of a rotordynamic 
system becomes asymmetric (open crack model). In ad-
dition, the crack may open and close as shaft rotates due 
to the rotor weight or unbalance, which leads to periodi-
cally time-varying equations of motion for the system 
(breathing crack model).  

A traditional approach to investigate the stability of 
rotor systems with cracks is to apply perturbation meth-
ods [4] to determine approximations of stability border-

lines. This approach provides intuitive values of sub/ 
super-harmonic resonances of un-damped cracked rotors, 
but its application to complex rotor models is limited. 

In this paper, the stability of a cracked rotor system at 
operating speeds below the first critical speed is investi-
gated. The analysis uses Floquet’s theory [4,5], which 
involves computation of a transition matrix over a time 
period. The stability boundaries are determined by 
checking the stability of systems corresponding to points 
of uniform mesh within the domain of interest. The ap-
proach proposed is illustrated through a numeric example 
of a simple Jeffcott (de Laval) rotor model and two crack 
models (open and breathing). Even though the current 
approach is more computational expensive than the per-
turbation method, the advantage is that it can be applied 
to any rotor or structure which has one or multiple 
cracks. 
 
2. Equation of Motions 
 
Rotor systems usually consist of many disks attached to a 
shaft that are constrained by bearings, dampers, seals etc. 
to a small lateral motion. For simplicity, a horizontal 
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Jeffcott rotor with a disk of mass m mounted at mid-span 
of a massless elastic shaft is considered in this study. The 
coordinates x, y and ξ, η represent the stationary and ro-
tating axes (Figure 1). The eccentricity of the mass cen-
ter of the disc from the geometric centre of the disc is e. 
The rotational speed and the damping coefficient are Ω 
and c, respectively. 

Since the local flexibility induced by the transverse 
crack generates equations of motion with periodic stiff-
ness coefficients in the fixed reference frame, the equa-
tions of motion of Jeffcott rotor are expressed in a rotat-
ing frame as follows:  
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where k , k  are direct stiffnesses along ξ, η direc-
tions, and k , k  are cross-coupled stiffnesses. The 
formulas for these stiffness coefficients for a cracked 
rotor are derived using the theory developed in [6] by 
Dimarogonas and Paipetis in the following section. 
 
3. Determination of Stiffness Coefficients of 

Cracked Rotor 
 
This study considers a general case with a shaft with 
radius R and a transverse crack of depth a (see Figure 2). 
In the cross-section of crack, the shaft is loaded with 
axial force P1, shear forces P2 and P3, bending moments 
P4 and P5, and torsion moment P6. The transverse crack 
induces additional strain energy Uc calculated based on 
the stain energy density function J: 
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The stain energy density function J is calculated based 
on the theory of fracture mechanics and has the follow-
ing form [7]: 
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where E is the modulus of elasticity, ν is the Poisson 
ratio (0.3 for steel), Kij are the crack stress intensity fac-
tors for the fracture modes ( I, II, IIIi  ), and Pj are the 
loads.  

The additional displacement ui induced by the crack 
can be calculated using Castigliano’s theorem as follows 
[5]: 

 

Figure 1. Rotor with a transverse crack. 
 

 

Figure 2. A cracked shaft element in general loading. 
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The local flexibility coefficient cij due to the crack per 
unit depth along all directions are: 
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Assuming a transversal crack located at the middle of 
the shaft next to the disk, the additional deflections due 
to the crack along the  and  directions,   and  , 
are estimated applying Equation (2): 
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For a completely open crack the area integration is: 

    
  2 22

2 0
d d d

a R a a R R w

a R a
A

A w
   

 
        (7) 



C. D. UNTAROIU  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                 ENG 

721

If the influence of the axial force and torsion moment 
are neglected, since it is known their influence on the 
additional transversal deflections is low, the stain energy 
density function has the following form: 
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The stress intensity factors [7] from the above expres-
sion are: 
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Here    6 1 7 6k      is a shape coefficient for  

circular cross section, 2 2h R w   and: 
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The total deflections  and  are obtained by summing 

the initial deflections (without crack) and the additional 
deflections induced by the crack calculated by replacing 
expressions (8)-(11) into Equations (6). 
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2P  and 3P  are obtained from the system of equations 
(11) as follows: 
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However: 
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Thus, the stiffness coefficients are obtained from 
Equations (13) and (14): 
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In the case of a completely open crack due to symme-
try 23 0f  , so the stiffness coefficients are: 
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Introducing the following parameters: 
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The homogeneous systems of equations in the case of 
an open crack are:  
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where 
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During the shaft rotation, the axial loads in the section 
of the crack may change continuously due to the rotor 
self-weight and unbalance. When the cracked section is 
under compressive load the shaft behaves as if has no 
crack, and when it is under traction load the crack opens. 
Due to these fluctuations, the crack is said to be breathing 
and in the equations of motion appear time-dependent 
coefficients. 

The stiffness coefficients were calculated by Jun et al. 
[8] using a complex method in which a partially 
open/close crack is assumed. However, the stiffness co-
efficients showed an almost similar variation like “clas-
sic” model, which assumes that the sign of ξ indicates full 
crack opening and closing. For simplicity, in this study, 
the “classic” model is employed, so the stiffness matrix 
for a breathing crack model has the following form: 
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4. Stability Analysis Using the Floquet 

Theory 
 
To apply Floquet theory, the second-order equations of 
motion (Equation (18)) is reduced to a first-order differ-
ential system [9]: 
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Based on Floquet theory [5], the solution of Equation 
(23) has the following form: 

      kp t
kY t B t C e            (24) 

where   Y t  and  kp t
kC e  are 4 × 1 column matrices, 

and  B t    is a 4 × 4 square matrix with period 

2πT   . Replacing 0,t T into the Equation (24) 

      0 0 kY B C             (25) 

          0 ,

1,2

k kp T p T
k kY T B T C e B C e

k

       


   (26) 

Thus, the solution of Equation (24) can be expressed 
as: 
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where  Q t    is the fundamental matrix of system (23) 
and has following property   40Q I   . 

 kiY t    is a solution of system (23) with following 
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Introducing t T  in Equation (27) result: 
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The square matrix  Q t    is called the “transition 
matrix” or the “monodromy matrix”. From Equations 
(25)-(28) one can obtain 

       
   1

1 21 2

11

0 0

0 p T

Q T B C B C

B C e

      
 




    (29) 

where the column vector   0
i

B  is the i-th column of 
matrix  0B   . Since kC  are independent: 
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matrix. 
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The system (22) is unstable if there is an eigenvalue 
which has the real part 0k   (or 1k  ), otherwise 
the system is stable. For a certain system, the columns of 
transition matrix can be obtained using a numerical inte-
gration method and then its eigenvalues are derived to 
check the stability of the system. 
 
5. A Numerical Example 
 
A Jeffcott rotor with a disk (m = 50 kg) fastened to the 
middle of a shaft with the length l = 1.27 m and the ra-
dius r = 50.8 mm is used to illustrate the stability ap-
proach presented in this study. Both open and breathing 
crack models are used to simulate a transverse crack in 
the mid-shaft. It is known that the stability depends on: 
the crack depth a, the rotational speed Ω, and external 
damping c. Therefore, a plane defined by the dimen-
sionless crack depth a R  axis and the dimensionless 
rotational speed 0  was uniformly meshed (where 
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0  is the first critical speed of the un-cracked rotor). 
The stability of each point of the mesh was checked us-
ing a program developed in MatLab code. In this code, 
the transition matrix is calculated using a Runge-Kutta 
integration method, and then its eigenvalues are derived 
to check the stability of the cracked rotor. In the case of 
an unstable point, the point was marked with a dot on the 
figure, so the dotted zones represent the instability re-
gions for a cracked rotor. To see the effect of external 
damping on the stability of cracked rotor, in addition to 
undamped case (Figure 3), two damped cases (γ = 0.015, 
0.03) are investigated as well (Figures 4 and 5). 

Obviously, substantial differences between the two 
crack models are observed. The rotor with an open crack 
model behaves like an asymmetric rotor [10,11]. The 
system has an instability region around 0 1   (Fig-
ure 3(a)) between the natural frequencies measured 
along the directions of principal axes. As can be seen, the 
instability of the system increases significantly when the 
crack depth increases. When external damping is added 
to the system (Figure 4(a)) and then increased (Figure 
5(a)), the instability region disappears at low crack depth 
and is slightly reduced at high crack depths.  
The model of a rotor with a breathing crack predicts  

 

 
(a)                                                                 (b) 

Figure 3. Stability of the cracked rotor: un-damped case (γ = 0) (a) open crack (b) breathing crack. 
 

 
(a)                                                           (b) 

Figure 4. Stability of the cracked rotor: damped case (γ = 0.015) (a) open crack (b) breathing crack. 
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(a)                                                           (b) 

Figure 5. Stability of the cracked rotor: damped case (γ = 0.03) (a) open crack (b) breathing crack. 
 
more complex instability regions (Figure 3(b)). In the 
case of an un-damped cracked model, large number of 
instability regions starts from the regions corresponding 
to small crack depths and then expands into the regions 
corresponding to larger crack depths. Compared to the 
open crack un-damped model, instability regions can be 
observed even for the regions corresponding to small 
rotating speeds and relatively large crack depths. As can 
be observed, adding external damping to the system im-
proves considerably the stability of the rotor (Figure 4(b)). 
In addition to the instability region around 0 1   
which seems slightly reduced than that of open crack 
model, several sub-harmonic instability regions (Figure  

4(b)) are observed around 0

2 2
, ,
4 3

   [12]. As  

external damping increases, sub-harmonic instability re- 
gions disappear and the harmonic and the first sub-har-
monic instability regions move toward the regions cor-
responding to larger crack depths (Figure 5(b)). In addi-
tion to the harmonic and sub-harmonic instability regions, 
it should be mention that the cracked rotors have also a 
super-harmonic instability region (around 0 2  ) 
[12], which for simplicity has not been analyzed in this 
study. 

Compared to the perturbation methods [4] usually em-
ployed to determine the instability regions of a cracked 
rotor (e.g. straightforward expansion, Lindstedt-Poicare 
method, the method of multiple scales, etc.), the transi-
tion matrix approach used in study avoids any simplifi-
cation in the equations of motion of the cracked rotor. 
Therefore, the transition method can be applied not only 
on simplified rotor models (e.g. Jeffcot model) as per-

turbation methods, but also in complex rotor models. The 
main disadvantage of current method is the high compu-
tational cost, because it requires the verification of rotor 
stability for each crack depth and rotational speed. 
However, the continuous increase of computational 
speed recommends it for rotor modeled by sophisticated 
computational methods (e.g. finite element method 
[13,14]). Finally, the stability diagrams developed with 
the cracked rotor model and pattern recognition tech-
niques [15] could be used in monitoring the condition of 
industrial rotors [16].  
 
6. Conclusions 
 
In this study, the transition matrix approach was suc-
cessfully applied in calculation of stability regions of a 
cracked rotor. The additional stiffness introduced by a 
transversal crack was calculated using two models: open 
crack and breathing crack. In addition to the instability 
region around the critical frequency predicted by the 
open crack model, several sub-harmonic instability re-
gions were predicted by the breathing crack model. 
Adding an external damping showed a significant reduc-
tion of instability regions for both crack models. Com-
pared to the perturbation methods, the transition matrix 
approach used in study does not require any simplifica-
tion of the equation of motion and may be applied in the 
future for complex rotor models. 
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