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Abstract 
We investigate the existence of Ion-Acoustic solitary/shock waves in a five component cometary 
plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen 
ions, hot electrons and cold electrons. The KPB equation is derived for the system; its solution is 
plotted for different kappa values, as well as for the temperature ratios of ions. It is found that the 
amplitude of solitary structure increases with increasing kappa values and negatively charged 
oxygen ion densities. As the temperature of the positively charged oxygen ions increases, the am-
plitude of solitary wave also increases. We have also studied the dependence of coefficients of the 
KPB equation on physical parameters relevant to comet Halley. 
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1. Introduction 
Nonlinear wave structures arise due to the interplay of nonlinearity, dispersion and dissipation. They are one of 
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the most beautiful and astonishing manifestations of nature. Solitons, shock waves, double-layers, etc. are some 
nonlinear phenomena observed in space, astrophysical and laboratory plasmas. 

In the past few decades nonlinearity of ion acoustic waves, which is an important wave in a plasma, has been 
studied extensively. The first nonlinear analysis of the ion acoustic wave was done by Sagdeev [1]; its first ex-
perimental observation was by Ikezi et al. [2]. The observations by Viking and Freja spacecrafts have identified 
solitary structure in the magnetosphere as density depressions. 

When a medium has both dispersion and dissipation, the propagation characteristics of small-amplitude per-
turbations can be adequately described by the Korteweg-deVries-Burgers equation (KdVB) in a one-dimen- 
sional and by the Kadomtsev-Petviashvilli-Burgers (KPB) equation in a two-dimensional geometry. The dissip-
ative Burger term in both the nonlinear KdVB and KPB equations arises from the kinematic viscosity of the 
plasma constituents [3]-[5]. When the wave breaking due to nonlinearity is balanced by the combined effect of 
dispersion and dissipation, a monotonic or oscillatory dispersive shock wave is generated in a plasma [6]. 

Many powerful methods have been established and developed to study these nonlinear equations by using the 
standard reductive perturbation method, but the one-dimensional form of the expression cannot explain the 
complete picture of all solitary waves formed in nature. In 1970, Kadomtsev and Petviashvilli [7] proposed a 
multi-dimensional dispersive wave equation to study the stability of one soliton solution of the KdV equation 
under the influence of weak transverse perturbations. This KP equation is a partial differential equation which 
describes the nonlinear wave motion in more than one dimension and since then the KP equation has been used 
considerably in describing the nonlinear dynamics of plasmas. Thus, for example, the propagation of nonlinear 
ion acoustic waves and shocks were studied in dusty plasma [8] and the electron-positron-ion (e-p-i) plasma 
[9]-[14]. The nonlinear propagation of ion acoustic waves in a magnetised plasma has been studied using the 
Sagdeev potential method and computer simulation where the electrons were described by a kappa distribution 
[15] [16]. This was further complemented by studies on the linear and nonlinear propagation of electron acoustic 
waves in a two temperature electron plasma where again the hot electron component was described by a kappa 
distribution [17] [18]. These studies were further extended to a multi-ion, collisionless plasma composed of two 
distinct kappa described electrons, Maxwellian positrons and stationary negatively charged heavy ions [19]. 
With the realization of the growing importance of pair ion plasmas, various aspects of shocks and solitons in 
these plasmas were also studied [20]-[22]. 

Plasmas observed in different space environments deviate significantly from the well known Maxwellian dis-
tribution due to the presence of high energy particles in the tail of the distribution. Using solar wind data Vasy-
liunas first predicted a non-Maxwellian distribution [23]; this distribution, which subsequently came to be 
known as the “kappa distribution”, has been found in many magnetospheric and astrophysical environments. 

It is well known that a cometary plasma is composed of hydrogen ions, electrons, and new born heavier ions 
with relative densities depending on their distances from the nucleus. Initially, the positively charged oxygen ion 
was considered as the main heavier ion [24] [25]. But the discovery of negatively charged oxygen ions [26] 
enables one to treat the plasma environment around the comet as a pair-ion plasma (O+, O−) with other ions 
(both lighter and heavier) constituting the other components of the plasma. As regards electrons, many cometary 
atmospheres have more than one component. For instance, the electron distribution in the tail of comet Giacobini- 
Ziner was observed to have three components: a cold component, a mid component and a hot component—the 
mid component was interpreted as having a sizeable contribution from the photo-electrons generated by the io-
nisation of cometary neutrals [27]. Also, in a study of comets with high total gas production rates, the observed 
double peak structure was interpreted as due to the effective degradation of soft x-rays and the consequent pro-
duction of energetic photo-electrons [28]. We thus divide the cometary electrons into a primary, hot component 
and a secondary, colder photo-electron component. 

Thus a cometary plasma is a true multi-ion plasma consisting of both lighter and heavier ions and electrons 
with different temperatures. We thus model our plasma as consisting of a pair-ion plasma of oxygen ions, lighter 
hydrogen ions and two components of electrons with different temperatures. And for reasons given above, the 
lighter hydrogen ions and electrons are modeled by kappa distributions. 

Giotto observations of comet Halley found a very complex structure of multiple sub-shocks or interplanetary 
structures. However, unambiguous observations were provided by Vega-1 which found bow shock crossings for 
both inward and outward journeys ([29] and references there in). And also as discussed by Coates [29], heavy 
ions seriously affect shock structures due to mass loading of the solar wind and pick up ion driven instabilities. 
And these heavy ions can be both positively and negatively charged as discussed above. Also in a recent study, 
Voelzke and Izaguirre analysed 886 images of comet Halley to understand the morphological features of the tail 
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of the comet [30]. Forty one solitary structures were clearly identified. 
We therefore study ion acoustic solitary/shock structures in a plasma of the above composition. The Kadomt-

sev-Petviashvilli-Burgers (KPB) equation is derived using the reductive perturbation technique. For typical val-
ues observed at comet Halley, we find that the solitary wave structure transforms to a shock like structure with a 
decrease of spectral index kappa and negatively charged oxygen ion densities. The amplitude of the solitary 
wave also increases with increasing temperature of positively charged oxygen ions. We have also studied the 
dependence of coefficients of KPB equation on physical parameters relevant to comet Halley. 

2. Basic Equations 
We consider the existence of Ion-Acoustic solitary/shock waves in a five component plasma for reasons given 
above. The plasma consists of positively and negatively charged oxygen ions, kappa described hydrogen ions, 
hot electrons of solar origin and colder electrons of cometary origin. At equilibrium the charge neutrality condi-
tion can be written as, 

0 0 1 10 0 2 20ce se Hn n Z n n Z n+ + = +  

where 0cen , 0sen  represent the equilibrium densities of cometary electrons and solar electrons respectively 
where as 10n , 20n , 0Hn  are the equilibrium densities of negatively charged oxygen (O−) ions, positively 
charged oxygen (O+) ions and hydrogen ions respectively. Z1 and Z2 represent the charge numbers of O− and O+ 
ions respectively. 

The kappa distribution of species ‘s’ is given by, 

( )

1 2

0 1
3 2

s

s
s s

B s s

e
n n

k T

κ
ϕ

κ

− +
 

= + 
−  

                                 (1) 

In (1), s = H for hydrogen, se=  for solar electrons and ce=  for cometary photo-electrons. sn  denotes 
the density (with the subscript “0” denoting the equilibrium value), se  the charge, sT  the temperature and 

sκ  the spectral index for the species “s”. Bk  is the Boltzmann’s constant and ϕ , the potential. 
The dynamics of heavier ions can be described by the following hydrodynamic equations: 
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where jv  and jm , respectively, denote the fluid velocity and mass of j-species of ions (j = O−, O+). In (3) the  

adiabatic equation of state for ions, is 
0
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 where 0 0j j B jP n k T= , 5
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γ =  for three dimensional  

geometry of the system and jµ  is the ion kinematic viscosity. 
The Poisson’s equation is given by 

( )2
2 2 1 14π H ce see n Z n Z n n nϕ∇ = − + − − −                                (4) 

We normalize (2) to (4) using the parameters of O− ions according to, 
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Thus, (2) to (4) can be rewritten as, 
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1ρ  and 2ρ  now represent the normalized kinematic viscosities of the pair ions. 
The normalized Poisson’s equation after substitution of (1) is, 
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3. Derivation of Kadomstev-Petviashvilli-Burgers (KPB) Equation 
We use the reductive perturbation method to derive the KPB equation from (5) to (9) by introducing the trans-
formations [31] 

( )1 2 x tξ ε λ= − , yη ε= , zς ε= , 3 2tτ ε= , 1 2
0j jρ ε ρ=  

where ε is a smallness parameter and λ is the wave phase speed. 
For applying the reductive perturbation technique the various parameters are expanded as, 

( ) ( )1 22
1,2 1,2 1,21N N Nε ε= + + +                                   (10) 
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( ) ( )1 22φ εφ ε φ= + +                                    (13) 

We substitute (10) to (13) in (5) to (9) and equate the coefficients of different powers of ε. From the coeffi-
cients of order 3 2ε  we get the first order terms as, 
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In addition, the linear dispersion relation is 
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Equating the coefficients of 5 2ε  in (5) and (6), we get 
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and equating the coefficient of order 5 2ε  in (7) and (8) gives, 
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Finally, equating the coefficients of ε2 from Poisson’s Equation (9) gives, 
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Substituting the values from (14) to (18) into (19) to (23) and eliminating the second order terms, we obtain 
the KPB equation as 

1 1 3 1 2 1 2 1 2 1
1

3 2 2 2 0A B C Dφ φ φ φ φ φφ
ξ τ ξ ξ ξ η ς
   ∂ ∂ ∂ ∂ ∂ ∂ ∂

− + − + + =  ∂ ∂ ∂ ∂ ∂ ∂ ∂   
                     (24) 

Here the coefficients A and B represent the nonlinearity and dispersion respectively; while C and D are respec-
tively due to the kinematic viscosities and transverse perturbations. These coefficients are given by 
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As a check on our results we note that they reduce to that in Dev et al. [31] when the additional ion and elec-
tron components are removed. 

4. Discussion 
Equation (24) is the KPB equation in a five component plasma consisting of a pair of heavier, oxygen ions, 
lighter hydrogen ions and two components of electrons at different temperatures. When the density of the second 
component of electrons is set equal to zero, (24) can be used to study the effect of a third ion component on ion 
acoustic shocks in a pair ion plasma. Our results can thus be considered as extensions of the results of the studies 
on ion-acoustic shocks in pair-ion plasmas [20]-[22]. Similarly, by an appropriate choice of masses, our studies 
can be made to complement the studies on ion-acoustic shock waves in e-p-i plasmas [9]-[14] [18]. 

5. Solution of KPB Equation 
In order to find the solution of (24) we use the transformations 

( )l m n Uχ ξ η ς τ= + + −  and ( ) ( )1 , , ,φ ξ η ς τ ψ χ=  

where l, m and n are the direction cosines along the x, y and z axes. 
When the partial differential equation of a system is formed by the combined effect of dispersion and dissipa-

tion, the most convenient and efficient method to solve it is “the tanh method” [32] [33]. Using the tanh method, 
we arrive at the solution for (24), as 

( ) ( )
2 2

1 2
2

2 4tanh sechDl Ul D Cl Bl
A AAl

φ χ χ+ −
= + +                              (25) 
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6. Results 
Though our Equation (24) is applicable to any plasma we are interested, in this paper, on parameters relevant to 
comet Halley. The observed value of the density of hydrogen ions was 34.95 cmHn −= ; their temperature was 

48 10 KHT = × . The temperature of the solar (or hot) electrons was 52 10 KseT = ×  [34]. The temperature of 
the second component of the photo-electron was set at 42 10 KceT = × . Negatively charged oxygen ions with an 
energy~1eV and densities ≤ 1 cm−3 was unambiguously identified by Chaizy et al. [26]. We thus set the densi-
ties of positively charged oxygen ions at 3

20 0.5 cmn −=  and that of negatively charged oxygen ions at 
3

10 0.05 cmn −=  [26] [34]. 
Figure 1 is a plot of the solution of the KPB equation (25) and depicts the variation of the potential 1φ  ver-

sus χ ; the parameters for the figure are 2λ = , 10U = , 3
10 0.05 cmn −= , 3

20 0.5 cmn −= , 34.95 cmHn −= , 
42 10 KceT = × , 52 10 KseT = × , 4

1 2 1.16 10 KT T= = × , 1 2 1Z Z= = , 0.3l = . Curve (a) (blue colour) is for the 
spectral index 2κ = , curve (b) (green colour) is for 3κ =  and curve (c) (red colour) is for 4κ = . We find 
that as the spectral index kappa decreases the solitary wave transforms to a shock like structure. This result is in 
agreement with the result of Pakzad [10] who studied IA shock waves in a e-p-i plasma. 

Figure 2 is again a plot of the potential 1φ  versus χ  as a function of the negative ion densities 10n ; the 
other parameters are the same as in Figure 1. In this case we keep the spectral index kappa as ce seκ κ= =  

3Hκ = . Curve (a) (blue colour) is for 3
10 0.03 cmn −= , curve (b) (green) is for 3

10 0.05 cmn −=  and curve (c) 
(red) is for 3

10 0.07 cmn −= . We find that the solitary wave transforms into a shock like structure as the densi-
ties of negative oxygen ions decrease. Other results obtained were that the soliton amplitude decreases with de-
creasing 2σ  and is almost independent of the positively charged oxygen ion densities. 

Figure 3 is a plot of the nonlinearity A versus ceµ : the parameters for the figure are 3
10 0.05 cmn −= , 

3
20 0.5 cmn −= , 42 10 KceT = × , 52 10 KseT = × , 1.8λ = , 1 2 1Z Z= = , 4

1 2 1.16 10 KT T= = × . Curve (a) 
(blue colour) is for the spectral index 3κ = , curve (b) (green colour) for 4κ =  and curve (c) for 5κ =  
 

 
Figure 1. ϕ1 vs χ as a function of kappa indices.             

 

 
Figure 2. ϕ1 vs χ as a function of O− ion density.             
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(red). We find that the nonlinearity parameters decreases with increasing κ . 
The dependence of the same parameter on negatively charged oxygen ion densities is studied next. Figure 4 

thus depicts the variation of A versus ceµ  for three values of the negatively charged oxygen density. Curve (a) 
is for 3

10 0.07 cmn −=  (blue), curve (b) is for 3
10 0.08 cmn −=  (green) and curve(c) is for 3

10 0.09 cmn −=  
(red). The other parameters for the figure are: 4ce se Hκ κ κ= = = , 3

20 0.3 cmn −= , 1.8λ = , 1 2 1Z Z= = , 
4

1 1.16 10 KT = × , 4
2 3.48 10 KT = × , 52 10 KseT = ×  and 42 10 KceT = × . We find that the nonlinearity A is 

very sensitive to the variation of 10n  and increases with increasing negatively charged oxygen ion densities. 
The variation of A with ceµ  as a function of O+ density is similar; however the variation is not as sensitive. 

The variation of the dispersive term B is depicted next. Figure 5 is thus a plot of B versus ceµ  as a function 
of κ ; the other parameters are 3

10 0.05 cmn −= , 3
20 0.5 cmn −= , 1.8λ = , 1 2 1Z Z= = , 4

2 3.48 10 KT = × . 
Curve (a) (blue) is for 2κ = , curve (b) (green) is for 4κ =  and curve (c) is for 6κ =  (red). We find that the 
dispersive term B increases with increasing κ . The behaviour of the dissipation term C with ceµ  as a function 
of κ  is similar to the behaviour of B, and hence opposite to that of the nonlinear term A. 

Figure 6 is also a plot of B versus ceµ  as a function of 20n ; the parameters for the figure are ce seκ κ= =  
5Hκ = , 3

10 0.02 cmn −= , 1 2 1Z Z= = , 1.8λ = , 4
1 1.16 10 KT = × , 4

2 3.48 10 KT = × , 52 10 KseT = × , 
42 10 KceT = × . Curve (a) (blue) is for 3

20 0.5 cmn −= , curve (b) (green) is for 3
20 0.7 cmn −=  and curve (c) is 

for 3
20 0.9 cmn −=  (red). The dispersive term B decreases with increasing 20n . 

Figure 7, is also a plot of B versus ceµ  as a function of 10n . Curve (a) is for a density 3
10 0.07 cmn −=  

curve (b) is for 3
10 0.08 cmn −=  and curve (c) is for 3

10 0.09 cmn −= ; the other parameters are the same as in 
Figure 4. We find that the dispersive term B decreases with increasing negatively charged oxygen ion densities. 

Figure 8 and Figure 9 depict the variation of dissipative coefficient C as a function of kappa indices and ne-
gatively charged oxygen ion densities respectively. The parameters for Figure 8 are the same as that of Figure 5. 
Curve (a) is for 2κ = , curve (b) is for 4κ =  and curve (c) is for 6κ = ; we see C decreases as κ  decreases. 
Finally Figure 9 depicts the variation of C with ceµ  as a function of 10n , the other parameters are same as in 
 

 
μce 

Figure 3. A vs μce as function of kappa indices.             
 

 
μce 

Figure 4. A vs μce as function of n10.                         
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μce 

Figure 5. B vs μce as function of kappa indices.             
 

 
μce 

Figure 6. B vs μce as function of n20.                         
 

 
Figure 7. B vs μce as function of n10.                         

 
Figure 4. Curve (a) is for 3

10 0.07 cmn −= , curve (b) is for 3
10 0.08 cmn −=  and curve (c) is for 3

10 0.09 cmn −= . 
We find that C decreases with increasing negatively charged oxygen ion densities. It is clear that variation of C 
resembles that of the dispersive coefficient B. 

Thus the behaviour of the nonlinear term A is opposite to the behaviour of the dispersion term B and the dis-
sipative term C. When the wave breaking due to nonlinearity is balanced by the combined effect of dispersion 
and dissipation, a monotonic or oscillatory dispersive shock wave is generated in a plasma [6]. 

7. Conclusion 
We have, in this paper, studied ion acoustic solitary waves/shock waves in a five component plasma of posi-
tively and negatively charged oxygen ions, lighter hydrogen ions and hot and cold electrons by deriving the KPB 
equation. The lighter ion and the two electron components are described by kappa distributions. The solution 
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Figure 8. C vs μce as function of kappa indices.               
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Figure 9. C vs μce as function of n10.                      
 
of the KPB equation shows that decreasing spectral indices transform the solitary wave into a shock like struc-
ture. A reduction in the solitary wave amplitude is seen with a decreasing negatively charged oxygen ion densi-
ties and positively charged oxygen ion temperatures. These results can be expected to contribute to an under-
standing of shocks in comets as we have two heavy ion components and heavy ions were surmised to affect 
shocks in cometary plasmas [29]. 
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