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Abstract 
The recently introduced Galilei invariant model of the nucleon as a system of three point particles, 
whose dynamics is governed by Schrödinger equation, is applied for nucleon structure investiga-
tion. The obtained charge, magnetism, mass and point particles density distributions of the proton 
and neutron are in satisfactory agreement with known information about nucleon structure. The 
model predicts the third Zemach momentum of proton larger than the one obtained in dipole ap-
proximation and larger than following from electron-proton data analysis. 
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1. Introduction 
The only source of experimental information about nucleon’s charge and magnetism distributions are corres-
ponding elastic form factors. However, the step from known at some set of values of momentum transfer form 
factor to corresponding density is not easy. The density distribution is completely determined if form factor is 
known for all values of momentum transfer q2. At large values of q2 it is extremely difficult to obtain form factor, 
hence phenomenological approach for density distribution with a number of free parameters, reproducing meas-
ured values of form factors, is a common praxis. However, even more or less precisely defined density distribu-
tion is not the best tool for nucleon structure investigation. Obviously, it is enough for simple multiplicative op-
erators expectation values calculation, but in more complex cases, when for observables description operators 
are needed, whose place is between bra and ket functions, the density distribution carries crude information 
about nucleon. The first among these are currents operators, like magnetic momenta. Microscopic model of the 
nucleon is necessary for calculation of expectation values of these operators. 

One of the alternatives for solution of this problem is simple, it is based on Hamiltonian dynamics, model [1], 
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considering the proton and neutron as different systems of three point particles (PP) in correspondence with the 
Standard Model recommendations—proton as the system of two up (uPP) and one down (dPP) particle, while 
neutron—as a system of one uPP and two dPP particles. These particles should not be identified with the quarks 
of the Standard Model because only their spins ( 2 ), charges ( 2 3e+  and 3e− ) and baryon numbers (1/3) 
match the respective quarks quantum numbers. Both PP of our model are different, thus isospin quantum num-
ber is not necessary. Therefore, the color quantum number, which is used in the Standard Model to antisym-
metrize the wave function, is also unnecessary. In our model antisymmetry is ensured with a smaller number of 
wave-function’s degrees of freedom. As usual, the baryon number is necessary to prevent the possibility of sys-
tem excitation when one or two PP escape to continuous spectrum. The character of PPs, composing the nucleon, 
allows to define the magnetic momenta of structureless particles in Dirac’s way. The interactions of different 
pairs of PP (uu, ud and dd) contain the Coulomb and spring (three-dimensional harmonic oscillator) potentials, 
having four free parameters. Thus, together with PP masses the model Hamiltonian has six parameters. It is 
shown that these parameters can be chosen so that the masses, magnetic momenta and charge distribution radii 
of the proton and neutron could be predicted with experimental, present in Particle Data Group 2014 report [2], 
precision. The model application for form factors and radii calculation gives results satisfactory agreeing with 
experimental information [3]. This paper is devoted for developed model application for nucleon’s charge, 
magnetism, mass and point particles densities distributions and for Zemach momenta of proton investigation. 

The value of the third Zemach momentum of the proton is key figure for current puzzle regarding the proton 
radius, determined from the muon and electron Lamb shifts in hydrogen, resolution [4]-[7]. The proton charge 
radius, recommended by CODATA compilation [2], is 

( )0.8775 51 fm.                                          (1) 

However, a very precise measurement of the Lamb-shift in muonic hydrogen [8] has shown that proton 
charge radius equals (see Ref. [9]): 

( )0.84087 39 fm.                                        (2) 

Therefore, the remarkable difference between proton charge radii of electronic and muonic hydrogen exists. 
The origin of this result is unknown yet. As pointed out in [5], the discrepancy between these results can be ex-
plained if the third Zemach momentum of the proton equals 

( )
( )3 3

2
36.6 69 fm .r =                                  (3) 

This value is more than 13 times larger than the result, obtained applying electron-proton scattering data [6]: 

( )
( )3 3

2
= 2.71 13 fm .r                                   (4) 

Similar value has been obtained in recent paper, Ref. [7]: 

( )
( )3 3

2
2.889 8 fm .r =                                    (5) 

Thus, the results of our model, giving possibility for Zemach momenta calculation applying original defini-
tion with charge and magnetic form factors convolution can provide some new information about this problem. 

2. The Galilei Invariant Density Operator 
By definition, the elastic form factor of nucleon is density operator’s Fourier image: 

( ) ( ) ( ), ; exp d .AA iσσ = ⋅∫F q z q z zρ                                (6) 

Here pσ =  denotes the proton, nσ =  stands for the neutron, while 

( ) ( )
3

1
A Ak k

k
σ σ δ

=

= −∑z d z zρ                                   (7) 

is density operator in the nucleon’s center-of-mass reference frame. The 0 ,k kz = −r ξ  where 
3

0
1

k k
k

mσ σν
=

= ∑ rξ                                     (8) 
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is center-of-mass radius vector. 1 22m mσ σ σν = +  due to 3 2m mσ σ= . Operators and vectors here and below are 
marked by boldfaced letters. The corresponding lower-case letters mark operators’ mean values and radial coor-
dinates of the vectors. 

Akσd  are -thk  particle ( 1, 2,3k = ) characteristics. For charge density ( )A E≡  they equal the PP charge, 
for magnetization density ( )A M≡ —the PP magnetic momentum operator kσµ , defined in [1], while for mass 
distribution density ( )A P≡ —the mass of the PP’s kmσ . For PP density distribution ( )A R=  they equal 1/3, 
i.e. the baryon number of PP. The values of 2Aσd  and 3Aσd  coincide due to indistinguishability of these PP 
that is why we will use only one of them in the following expressions. 

The inverse of (6) defines the density operator in terms of form factor operator: 

( )
( )

( ) ( )3

1 , ; exp d .
2π

A A iσ σ= − ⋅  ∫z F q q z qρ                        (9) 

A few modifications of present definitions are useful. The electric and magnetic form factors of nucleon are 
defined as functions, independent of angles of momentum transfer q, hence in last equation integration by angles 

qΩ  due to relation 

( )( ) ( )0exp d 4πqi j qz⋅ Ω =∫ q z                                 (10) 

gives the following result: 

( ) ( ) ( ) 2
02 0

1 , ; d .
2πA z A q j qz q qσ σ

∞
= ∫ Fρ                             (11) 

Therefore, the form factor, independent of angles produces the spherically symmetrical charge and magnetism 
of nucleon distributions. 

The next is introduction of dimensionless form factors defined as 

( ) ( ) ( ), ; , ; , ;0 .A q A q Aσ σ σ=G F F                               (12) 

so that ( ), ;A qσG  value in zero equals one. From form factor definition it follows that 

( ) 1 2, ;0 2 .A AA σ σσ = +F d d                                   (13) 

The only problem of this definition is the electric form factor of the neutron ( ), ;0n EF , which equals zero. 
In order for ( )2, ;n E qG  to be dimensionless it is modified dividing by the elementary charge e. 

Introduction of dimensionless operators 

( ), ;0 .Ak Ak Aσ σ σ=f d F                                   (14) 

in density definition is also useful. This modifies final expression of form factor operator, applied in a given be-
low text, to the following form: 

( ) ( ) ( ) 2
00

, ; 4π , ; d ,A q A z j qz z zσ σ
∞

= ∫G w                          (15) 

where 

( ) ( )
3

2
1

1, ; .Ak k
k

A z z z
z σσ δ

=

= −∑w f                            (16) 

The density presentation in terms of dimensionless form factor 

( ) ( ) ( ) 2
02 0

1, ; , ; d
2π

A z A q j qz q qσ σ
∞

= ∫w G                        (17) 

can be obtained applying spherical Bessel functions orthogonality relation 

( ) ( ) ( )2
20

π 1d .
2l lj qz j qz q q z z

z
δ

∞
′ ′= −∫                            (18) 

The well-known for different evaluations the so called dipole form factor is 
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( ) ( )
22

0; 1 ,G D q q q
−

 = +                                    (19) 

where 1
0 4.27 fmq −=  (this corresponds the 0 0 0.71 GeV cQ q= = ). The density distribution in dipole ap-

proximation, normalized as 

( ) 2
0

; d 1,w D z z z
∞

=∫                                      (20) 

is 

( ) 0
3
0; e .

2
q zq

w D z −=                                       (21) 

This density distribution produces following momenta: 

( ) ( )2
20
0

2 !
; d ,

2
m m m

z w D z z z
q

∞ + +
= =∫                                 (22) 

hence root mean square radius of nucleon in this approximation equals 0.811 fm.  

3. Density Distributions 
The density at given z equals the expectation value of operator (16). However, this operator is overcrowded by 
variables because the coordinates of point particles in reference system which origin is situated in center of mass 
of nucleon satisfies condition 

3

1
,k k

k
mσ

=

=∑ z 0                                      (23) 

hence only two of them are independent. These two linear combinations have to be chosen equal to the intrinsic 
Jacobi variables, present in wave function expression. The operator (16) written in these variables is: 

( )2 2 1 1
1 1 2 1 2 1 2

2 1 1, ; .
2 2A A

m m m
z A z z z zσ σ σ

σ σ
σ σ σ

σ δ ξ δ δ
ν ν ν

     
= − + − − + − +                

w f f ξ ξ ξ ξ   (24) 

The integration gives 

( ) ( ) ( ) ( )1 1 2 2, ; , ; 2 ,A Aw A z A z f I z f I zσ σ σ σσ σ= = +w                       (25) 

where mean values of operators A Afσ α σ α= f , obtained applying the model wave functions, are present in 
Table 1. 

The calculation of expectation value of the first part of this operator is straightforward and can be performed 
without any problems. 

( ) ( ) ( )
3 211

1 01 12 .
y

I z u y z
z

σσ
σ σ=                                    (26) 

Here 1 22y mσ σ σν= . The ( ) ( )1
01u xσ  is radial wave function, defined in [1], corresponding the Jacobi coordi-

nate 1ξ . The second member of expansion is more complex but can be significantly simplified due to indis- 
 
Table 1. Expectation values of operators, present in density definition, Equation (25). The parameter of model 

= = 0.9502362135.u dm mγ                                                                                        

A 1pAf  22 pAf  1nAf  22 nAf  

,  Charge densityE  −1/3 4/3 2/3 −2/3 

,  Magnetism densityM  7γ/(45 + 7γ) 45/(45 + 7γ) 28/(28 + 45γ) 45γ/(28 + 45γ) 

,  Mass densityP  1/(1 + 2γ) 2γ/(1 + 2γ) γ/(2 + γ) 2/(2 + γ) 

,  Point particles densityR  1/3 2/3 1/3 2/3 
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tinguishability of the second and the third PP. The wave function of nucleon is antisymmetric in respect of these 
particles permutation, sum of the second and the third delta functions of (24) is symmetrical, hence mean values 
of both deltas coincide, i.e., 

1 1
1 2 1 2

1 1 ,
2 2

m m
z zσ σ

σ σ

δ δ
ν ν

   
− − = − +      

   
ξ ξ ξ ξ                          (27) 

thus 

( )
2

2 21
2 1 22

1 1 .
4

m
I z z

z
σ

σ
σ

δ ξ ξ
ν

   = − +    

                          (28) 

The expectation value of this delta-function calculation requires Dirac delta argument modification, applying 
the following expression: 

( )( ) ( )
( )

= ,j

j j

x x
f x

f x

δ
δ

−

′
∑                                 (29) 

where jx  are roots of equation ( ) 0.f x =  This modifies the argument of delta in a way necessary for integral 
calculation. After this transformation the delta function, present in (28), equals 

( )2 2
2

2 2 ,z y
y σ
σ

δ ξ −                                    (30) 

where 
2

2 21
2 1 .

m
y z σ
σ

σ

ξ
ν

 
= −  

 
                                  (31) 

Thus, the second integral takes the form: 

( ) ( ) ( )
( ) ( )

1

22
2 01 21

2 01 1 10
2

22 d .
z m u y

I z u
z y

σ σ

σ
σν σ

σ
σ

ξ ξ= ∫                        (32) 

By definition, both integrals are normalized 

( ) 2
0

d 1I z z zσα
∞

=∫                                       (33) 

and due to the obvious condition 

1 22 1,A Af fσ σ+ =                                       (34) 

the normalization is valid also for charge and magnetism densities of the proton and magnetism density of neu-
tron. As mentioned above, the only exception is charge density of neutron. In this case 

1 22 0.A Af fσ σ+ =                                       (35) 

The radial density distributions, defined as 

( ) ( )2, ; , ; ,g A z z A zσ σ= w                                 (36) 

hence normalized in following way: 

( ) , ,0
, ; d 1 ,n A Eg A z z σσ δ δ

∞
= −∫                                 (37) 

are present in Figures 1-4. 

4. Zemach Momenta 
The Zemach momenta [10] are defined as: 
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Figure 1. The proton’s radial charge density distribution.       

 

 
Figure 2. The proton’s radial magnetism density distribution.   

 

( )

( ) ( ) ( )1 1 2 2 1 22
, ; , ; d d .

em kkr w p E w p M= −∫∫ r r r r r r                           (38) 

Here ( )1, ;w p E r  is charge density distribution, while ( )2, ;w p M r  is magnetism density distribution of 
proton, 1, 2k =  and 3. The alternative definition, applying convoluted density, is 

( )
( )22

, ; d ,k kr w p EM r= ∫∫ r r                                  (39) 

where 

( ) ( ) ( )2 , ; , ; , ; d .w p EM w p E w p M= −∫r s r s s                              (40) 
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Figure 3. The neutron’s radial charge density distribution.     

 

 
Figure 4. The neutron’s radial magnetism density distribution.    

 
There is an interesting possibility to express these densities in terms of corresponding elastic form factors, and 

obtain the following convoluted density presentation 

( )
( )

( ) ( ) ( )
2 3

1, ; , ; , ; e d .
2π

iw p EM G p E q G p M q − ⋅= ∫ q rr q                       (41) 

Zemach momenta evaluations with coinciding both density distributions, equal the dipole or charge density 
distribution are the best known. In dipole approximation the convoluted density can be present as 

( )
( )

( ) ( )2
2 3

1, ; ; e d .
2π

iw p D r G D q − ⋅= ∫ q r q                              (42) 

This density again is spherically symmetrical, i.e. independent of angles of r, hence normalized in following 
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way: 

( ) 2
20

, ; d 1.w p D r r r
∞

=∫                                   (43) 

It equals 

( ) ( ) ( )
( )

03 2
00

2 6
0

4 ! 2e
, ; .

! 2 !3 2

jq r

j

j q rq
w p D r

j j

−

=

−
=

−× ∑                          (44) 

Therefore, the Zemach momenta in dipole approximation are defined by the following expression: 

( )

( ) ( ) ( )
( )

2dipole

62 00

4 ! 2 !1 2 .
! 2 !3 2

k j
k

j

j k j
r

j jq =

− + +
=

−× ∑                        (45) 

The numerical values of first three Zemach momenta ( )1,2,3k =  in this approximation together with values, 
obtained applying our model, are present in Table 2. 

5. Conclusions 
The obtained density distributions demonstrate good enough comparison with known information about nucleon 
structure. The proton has a negatively charged dPP situated near the center of mass and cloud of positive charge, 
created by uPPs, and neutron shows an opposite picture. As mentioned in [1] and follows from the present con-
sideration, the distributions of electric and magnetic charges within the nucleon are significantly different and 
neutron appears as a more compact structure than the proton. Obtained mass and point particles distribution 
densities ( ), ; ,g p P z  ( ), ; ,g p R z  ( ), ;g n P z  and ( ), ;g n R z  are not present due to trivial dependence on 
radial variable. They look like the corresponding magnetism density distributions with slightly different maxi-
mum positions and slight shape modifications. 

As mentioned earlier, the form factors are the source of information about nucleon density distributions. Dif-
ferent parametrizations of form factors produce different density distributions and radii of nucleon. However, 
the basic for these modifications is dipole form factor, predicting exponential density dependence, Equation (21). 
This prediction and our result for proton charge density are presented in Figure 5. 

The difference is obvious. However, the charge form factors of proton, obtained in dipole approximation, 
Equation (19); the charge form factor, given by the best fit to experimental data [11]; and corresponding form 
factor, obtained applying our model, are not so different in region of small momentum transfer values, as it fol-
lows from Figure 6. 

Obviously, the reason of significant difference of proton’s charge distributions is caused by elastic form factor 
dependence at larger values of momentum transfer. The dipole form factor is smooth function of momentum 
transfer, taking positive values at any momentum transfer. The model form factor dependence is significantly 
different. Our form factor possesses the nodes, producing diffraction minima of cross section at larger values of 
momentum transfer, characteristic for form factor of quantum system with complex intrinsic structure. 

The theoretical value of the Lamb shift in the pµ  atom in meV units for energy and fm units for the radii 
reads [5]: 

( )
2 3

2
209.9779 5.2262 0.00913 .thL r r= − +                    (46) 

 
Table 2. Zemach momenta of the proton in dipole approximation 

( )

( )( )2

dipolekr  and obtained applying our model with charge 

densities convolution 
( )

( )( )2

eekr  and charge and magnetic densities convolution according the original definition 
( )

( )( )2

emkr .  

k ( )

( )

2

dipolekr  
( )

( )

2

eekr  
( )

( )

2

emkr  

1, fm 1.025 0.0678 0.588 

2, fm2 1.316 0.370 1.090 

3, fm3 2.203 3.575 3.250 
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Figure 5. The proton’s charge density distribution w(p, E; z) 
(solid line) and density distribution corresponding the dipole 
form factor, Equation (21) (dashed line).                         

 

 
Figure 6. The electric form factor for the proton (solid line). 
The best fit of corresponding form factor from Ref. [11] 
(dashed line) and the standard dipole form factor, Equation 
(19) (dotted line) are shown for comparison.                    

 
The experimental value equals [9]: 

( )206.2949 32 meV.exL =                                (47) 

At proton charge radius, equal (2) the Zemach radius, necessary for exL  reproduction is 
( )

3

2
1.2667r =  

fm3. Taking the CODATA charge radius (1) one needs significantly larger value of Zemach momentum, equal 
(3). Our model predicts the third Zemach momentum of proton larger than obtained in dipole approximation and 
larger than following from electron-proton data analysis, but significantly smaller than necessary for CODATA 
value. In dipole form factor approximation 206.5590 meV.thL =  Our result is 205.9834 meV.thL =   

Therefore, the obtained precision of nucleon description allows to conclude that the calculations of other cha-
racteristics of the proton and neutron with model wave function may give some interesting and rather reliable 
results investigating the modifications of nucleon structure when it is present in an atomic nucleus. 
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