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Abstract 
Discovering complex and incomplete periodic patterns in the logs of events is a complicated and 
time consuming task. This work shows that it is possible to discover complex and incomplete pe-
riodic patterns through finding simple patterns first and through logical derivations of complex 
and incomplete patterns later on. The paper defines a syntax and semantics of a class of periodic 
patterns that frequently occur in the logs of events. A system of derivation rules proposed in the 
paper can be used to transform a set of periodic patterns into a logically equivalent set of patterns. 
The rules are used in the algorithms that derive complex and incomplete periodic patterns. A 
prototype implementation of the algorithms that discover complex and incomplete periodic pat-
terns in the logs of events is presented. 
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1. Introduction 
It is well known that precise estimation of the future workloads can be used to eliminate many performance re-
lated problems in database systems [1]. When the future operations on a database are known to a database ad-
ministrator then it is possible to apply database performance tuning techniques such as indexing, clustering, par-
titioning of data containers, caching, relocation of data containers to faster persistent storage devices, materiali-
zation of the results of expected computations and the others. It is also well known that workload characteristics 
periodically change due to the repetitive nature of the real world processes implemented by in the database sys-
tems. Therefore, information about the workloads recorded in the past can be analyzed in order to anticipate the 
workloads in the future. The characteristics of database workloads can be quite easily collected at run-time and it 
can be saved in a form of log, audit trail, processing traces, etc. Unfortunately detection of the periodic changes in 
the workloads is a difficult problem due to the large amounts of collected data and due to a high level and non-
deterministic nature of the periodically repeated processes [2]. A single process may consist of hundreds of 
events and it may overlap in time with many other processes. Additionally, periodicity of the processes may be 
incomplete due to the random events as well as due to the slight differences in length of the adjacent periods. 
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A problem of finding periodic patterns in the recorded workloads can be solved in a different way from the 
computationally intensive generation of candidate patterns and their subsequent verification in the logs of events. 
An important property of periodically repeated processes says that no matter how long and how complex a 
process is, all its elementary operations are also processed periodically. It leads to an idea where discovery of 
complex and incomplete periodic patterns can be done through discovery of periodic patterns of individual op-
erations and later on through composition of simple patterns into the complex and incomplete ones. Discovery 
of simple and complete periodic patterns based on one operation or event can be done in a relatively simple way 
after partitioning historical data into the subsets that record activities of only one operation or event. The out-
comes are the elementary and complete periodic patterns. Then, such homogeneous and complete patterns are 
“stitched” into the homogeneous and incomplete patterns with certain predefined maximum number of cycles 
missing. In the next stage, the sets of homogeneous and incomplete periodic patterns are union and all pairs of 
patterns that satisfy the predefined composition constraints such as minimal length, maximal carrier length are 
created and composed into complex and incomplete periodic patterns. The procedure is repeated until no new 
pairs can be found. 

To implement a method described above we need a system of derivation rules that transforms the sets of pe-
riodic patterns into the logically equivalent sets of patterns and that allows for synthesis of longer patterns and 
composition of more complicated patterns. The main objective of this paper is to propose a system of derivation 
rules for complex and incomplete periodic patterns and to show how such system can be used in the algorithms 
and in a simple prototype implementation that discovers the incomplete periodic patterns from the logs of event. 

The paper is organized in the following way. The next section reviews the previous research works related to 
discovering periodic patterns in historical information. Section 3 defines the concepts of multisets, time units 
and it shows how a log of events is transformed into a workload trace. Section 4 defines the syntax and seman-
tics of complete and incomplete periodic patterns. A system of derivation rules for incomplete periodic patterns 
of is proposed in Section 5. Section 6 presents the algorithms that apply the system of derivation rules to find 
complex and incomplete periodic patterns. Section 7 describes a prototype implementation of the algorithms. 
Finally, Section 8 concludes the paper. 

2. Previous Work 
The works on frequent episodes [3] and its extensions on mining complex episodes [4] inspired the works on 
cyclic patterns. A starting point to many research studies on discovering cyclic patterns is a work [5] that defines 
the principle concepts of cycle pruning, cycle skipping, cycle elimination heuristics. Discovering periodic pat-
terns in event logs appears to be quite similar to periodicity mining in time series [6] where the long sequences 
of elementary data items partitioned into a number of ranges and associated with the timestamps are analyzed to 
find the cyclic trends. The latest works on discovering periodic patterns address the concepts of full periodicity, 
partial periodicity, perfect and imperfect periodicity [7] and the most recently asynchronous periodicity [8] and 
[9]. A class of periodic patterns considered in this paper is a variation of periodic patterns earlier investigated in 
[10] and [11]. 

3. Workload Trace 
Let 𝑒𝑒 be a unique identifier of an event, for example identifier of query processing plan in a database system, or 
an identifier of flight booking routine in a flight reservation system, etc. A log of events is a sequence of pairs 

1 1: , , :n ne t e t< > … < >  where each ie  is a unique identifier of an event, it  is a timestamp when the 
processing of an event ie  has started, and 1 nt t≤…≤ .A definition of a workload trace is based on a concept of 
multiset [12]. A multiset M is a pair ,S f< >  where S is a finite set and :f S N +→  is a function such that 

( )Σs S f s∈ < ∞  called as a cardinality and denoted by M . Let ,M S f′ ′=< >  be a multiset on S, then we say 
that M ′  is a submultiset of M and we denote it by M M′ ⊆  if ( ) ( )f x f x′ ≤  for all x S∈ . In the rest of this 
paper we shall denote a multiset { }1, , ,me e f< … >  where ( )i if e k=  for 1, ,i m= …  as ( )1

1 , , .mkk
me e…  We 

shall denote an empty multiset , f< ∅ >  as ∅  and we shall abbreviate a single element multiset ( )ke  as 
ke . 
At a data preparation stage a log of events is transformed into a workload trace in the following way. A pe-

riod of time ,start endt t< >  over which a log of events is recorded is divided into a sequence U of n disjoint time 
units , 1, ,i it i nτ< > = …  where it  is a timestamp when a time unit starts and iτ  is a length of the unit. All 
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time units satisfy the following properties: 1
startt t≤  and 1i i it tτ ++ ≤  and n n

endt tτ+ ≤ . Let n be the total 
number of time units in U and let [ ]U i  denotes the i-th time unit in U where i changes from 1 to n. A workload 
trace of an event e is a sequence eW  of n multisets of events such that [ ] ( )ik

eW i e=  or [ ]eW i = ∅  for 
1, ,i n= …  and 1ik ≥  equal to the total number of times processing of an event e started in the i-th time unit 
[ ]U i . Let E be a set of all events whose occurrences are recorded in a log ( )L E  over time units U and saved  

in a reduced event table. A workload trace of a log ( )L E  is denoted by LW  and [ ] [ ]e EL i e iW W∈=  , 

1, ,i U∀ = …  i.e. it is a multiset union over the respective time units of workload traces of all events included 
in 𝐸𝐸. 

4. Periodic Patterns 
In this work we consider periodic patterns that belong to a wider class of CRP periodic patterns defined as a 
triple , ,C R P< >  whose individual components have the following meanings. 
 A carrier C defines a structure of periodically repeated events, computations, queries, etc. 
 A range R determines a time scope of periodic repetitions of a carrier measured in time units, for example 

from one time unit to another or starting in a given time unit and continuing over several cycles. 
 A periodicity P determines location of the next cycle of periodic pattern, for example after a given number 

of time units from the latest cycle with possible delay by one or more time units. 
In the previous works, for example in [10], a carrier C is a nonempty, finite sequence of multisets of syntax 

trees of relational algebra expressions implementing SQL statements, a range R is a pair of the ordinal numbers 
of time units, and a periodicity P is a total number of time units between two adjacent cycles. In [11] a carrier C 
is defined as a multiset ke  of an event e, R is defined as a pair of numbers :f t  that determine the first and 
the last repetition of a carrier and P is defined as a pair of numbers :n x  that determine the minimal and max-
imum distance between any two adjacent repetitions of a carrier. 

In this work we consider a subclass of CRP periodic patterns defined as a triple , : , :C f t p g< >  whose in-
dividual components have the following meanings. 
 A carrier C is a nonempty sequence of at least one nonempty multisets of events. 
 A range :f t  is a pair of natural numbers where f determines a location of the first cycle and t is the total 

number of cycles in the pattern. 
 A periodicity is a pair of natural numbers :p g  where p determines a period of a cycle, i.e. a distance be-

tween every two adjacent cycles and g determines the longest gap between the adjacent cycles, i.e. the 
maximum total number of adjacent cycles that can be missing from the pattern. 

 The values of :f t  and :p g  must satisfy the conditions 1f ≥  and 1t ≥  and 0p ≥  and 0g ≥  and 
t g≥  and ( )1 * 1f t p C U+ − + − ≤  and if 1t =  then 0p =  and 0g =  or 1g = . 

 If 0g =  then a periodic pattern is called as a complete periodic pattern otherwise if 0g ≠  it is called as 
an incomplete periodic pattern. 

 It is possible, that g t= , i.e. the largest total number of missing cycles is equal to the total number of cycles 
in the pattern. Such a “ghost” periodic pattern can be interpreted as information about planned periodical 
processing of events, which actually has never been implemented and such that it is still possible in the fu-
ture. 

The following sequence of definitions leads to validation of periodic pattern in a workload trace. Let C be a 
sequence of multisets where C n≤ . A trace of carrier C spanning over n multisets and starting at a time unit f 
where 1f C n+ − ≤  is denoted by ( ), ,tr C f n  and it is defined as sequence of 1f −  empty multisets fol-
lowed by a sequence of multisets C and followed by ( )1n f C− + −  empty multisets. For example, 

( )2
1 2 ,3,5trace e e  is a sequence of multisets 2

1 2e e∅∅ ∅ . 
A trace of a complete periodic pattern , : , : 0C f t p< >  over n time units where ( )1 * 1f t p C n+ − + − ≤  

is denoted by ( ), : , : 0 ,TRC C f t p n< >  and it is defined as a multiset union of traces ( )( ), 1 * ,tr C f i p n+ −  

for {1, , }i t∀ ∈ … , i.e. { }1, ,( , : , : 0 , ) ( , ( 1)* , )i tTRC C f t p n tr C f i p n∈ …< > = + − . In the other words, a trace of  

a complete periodic pattern is a union of traces of its carrier over n multisets such that each trace starts at the 
time units ( ), , , 1 *f f p f t p+ … + − . For example, a trace of periodic pattern 2

1 2 , 2 : 2,1: 0e e< >  over 5 time 
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units is the following union of sequences of multisets ( )2 2 2 2
1 2 1 2 1 1 2 2,e e e e e e e e∅ ∅∅ ∅∅ ∅∅ =∅ ∅ . In a special 

case when a value of 1t = , i.e. when a pattern consists of only one cycle, the values of parameters p and g must 
be equal to 0 for example, a trace of periodic pattern 2

1 2 , 2 :1,0 : 0e e< >  over 5 time units is equal to 
2

1 2e e∅ ∅∅ . In another case when the values of parameters p and g are equal to 0 and a value of parameter 
1t > , a trace of periodic pattern 2

1 2 , 2 : 2,0 : 0e e< >  over 5 time units is equal to 2 4
1 2e e∅ ∅∅ . 

A trace of an incomplete periodic pattern , : , :C f t p g< >  over n time units where ( )1 * 1f t p C n+ − + − ≤  

is denoted by ( , : , : , )TRI C f t p g n< >  and it is defined as a multiset union of traces ( )( ), 1 * ,tr C f i p n+ −  

for some of {1, , }i t∈ …  and { }1, ,j t∈ …  such that the traces  

( )( ) ( )( ) ( )( ), 1 * 1, , , 1 * 1, , , , 1 * ,tr C f j p n tr C f j p n tr C f j p g n+ − + + − + … + − +  are missing from the mul-
tiset union. 

An incomplete periodic pattern , : , :C f t p g< >  is valid in a workload histogram LW  recorded over n 
time units if ( , : , : , )[ ] _ [ ]TRI C f t p g n i W L i< > ⊆  for {1, , }i t∀ ∈ … . Of course a complete periodic pattern is 
valid in a workload histogram LW  recorded over n time units if ( )[ ] [ ], : , : 0 , LTRC C f t p n i W i< > ⊆  for 

{1, , }i t∀ ∈ … . In the other words a periodic pattern is valid in a workload trace that spans over n time units if 
some of the elements of its trace over n time units are included in the respective elements of a workload LW  
and it never happens that the elements of its trace that are not included in a workload form a contiguous se-
quence longer than g elements, i.e. the gaps in the cycles are no longer that g. 

For example, a periodic pattern 2
1 2 , 2 : 2,1: 0e e< >  is valid in a workload trace ( )3 2 2 2

1 1 1 2 2,e e e e e ∅  because 
every element of its trace ( )2 2

1 1 2 2,e e e e∅ ∅  is included in the respective element of the workload trace. The pe-
riodic pattern is not valid in a workload trace ( )3 2 2

1 1 1 2 2,e e e e e ∅  because an element ( )2
1 2,e e  of its trace is not 

included in ( )2
1 2,e e . However, an incomplete periodic pattern 2

1 2 , 2 : 2,1:1e e< >  is valid in a workload trace 
( )3 2 2

1 1 1 2 2,e e e e e ∅  because a sequence of at most one contiguous elements of its trace is not included in the 
workload.  

5. Derivation Rules 
A system of derivation rules presented below allows for creation of new periodic patterns valid in a workload 
trace LW  that spans over n time units from a set of periodic patterns already valid in LW .  

5.1. Discovery Rule 

Let C be a multiset of events such that [ ]LC W f⊆  for {1, , }f n∈ … . Then, a periodic pattern  
, :1,0 : 0C f< >  is valid in LW . A discovery rule creates a single cycle periodic pattern valid in LW  from any 

non-empty submultiset of an element in a workload trace. 

5.2. Incompleteness Rule 
If a periodic pattern , : , :C f t p g< >  is valid in a workload LW  then a periodic pattern , : , :C f t p g ′< >  
such that t g g′≥ ≥  is valid in LW . An incompleteness rule increases the maximum size of gaps acceptable 
for a periodic pattern. 

5.3. Normalization Rule 
If a periodic pattern , : , :C f t p g< >  is valid in a workload LW  then a periodic pattern , : , :C f t p g′ ′< >  
such that C′  is obtained from C through elimination of all i leading empty multisets and all trailing empty mul-
tisets and such that f f i′ = +  is valid in LW . Normalization rule allows for elimination of leading and/or 
trailing empty multisets from a carrier of a periodic pattern. 

5.4. Split Rule 
If a periodic pattern , : , :C f t p g< >  is valid in a workload LW  then the following three cases are possible. 
 If 2t =  then the periodic patterns , :1,0 :1C f< >  and , :1,0 :1C f p< + >  are valid in a workload trace 

𝑊𝑊𝐿𝐿. 
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 If 2t >  and then the periodic patterns , :1,0 :1C f< >  and , : 1, :C f p t p g< + − >  are valid in a work-
load trace LW  or the periodic patterns , : 1, :C f t p g< − >  and ( ), 1 * :1,0 :1C f t p< + − >  are valid in a 
workload trace LW . 

 If 3t >  and *splitf f i p= +  for 3 1i t≤ ≤ −  then the periodic patterns , : 1, :C f i p g< − >  and  
, : 1, :splitC f t i p g< − + >  are valid in a workload trace LW . 

The first case of a split rule divides a pattern that consists of two cycles into two single cycle patterns. The 
second case “cuts of” a single cycle periodic pattern from either left or right side of a pattern that consist of more 
than two cycles. Finally, the last case splits a periodic pattern that has more than three cycles into two patterns 
with more than one cycle. 

5.5. Synthesis Rule 

If the periodic patterns , : , :i i i iC f t p g< >  and , : , :j j j jC f t p g< >  are valid in a workload trace LW  and 

i jf f<  then the following four cases are possible. 
 If 1i jt t= =  and i jf f<  then a periodic pattern , : 2, :i j i i jC f f f g g< − + >  is valid in a workload trace 

LW . 
 If 1it =  and 1jt ≠  and j i jf f p− =  then a periodic pattern , : 1, :i j j i jC f t p g g< + + >  is valid in a 

workload trace LW . 
 If 1jt =  and 1it ≠  and *j i i if f t p= +  then a periodic pattern , : 1, :i i i i jC f t p g g< + + >  is valid in a 

workload trace LW . 
 If 1jt ≠  and 1it ≠  and i jp p=  and *j i i if f t p= +  then a periodic pattern , : , :i i j i i jC f t t p g g< + + >  

is valid in a workload trace LW . 
In the first case of a synthesis rule merges two single cycle pattern into one pattern. In the next two cases a 

single cycle pattern is added at the left/right end of another pattern. The last case concatenates two patterns such 
that both of them consist of more than one cycle. 

5.6. Decomposition Rule 
If a periodic pattern , : , :C f t p g< >  is valid in a workload trace LW  then a periodic pattern , : , :C f t p g′< >  
where a carrier C′  is obtained by elimination of any multiset from any element of a carrier C is valid in LW . 
For example, if a periodic pattern 2

1 2 , 2 : 5,1:1e e< >  is valid in LW  then a periodic pattern 2 , 2 : 5,1:1e< ∅ >  
obtained through the elimination 1e  from the first element and 2e  from the second element of a carrier 2

1 2e e  
is valid in LW . Then, a normalization rule can be used to eliminate a leading empty multiset from a carrier to 
get 2 ,3 : 5,1:1e< > . 

5.7. Composition Rule 

If the periodic patterns , : , :i i iC f t p g< >  and , : , :j j jC f t p g< >  are valid in a workload trace LW  and 

i jf f≤  then a periodic pattern , : , :k i i jC f t p g g< + >  where  

( ) ( ),1, , ,k i j i j j j i j i jC tr C f f C tr C f f f f C= − + − − +  is valid in LW . For example, if the periodic patterns 
2

1 2 ,1: 3, 4 :1e e< >  and 1, 4 : 3,4 :1e< >  are valid in a workload trace LW  then a periodic pattern  
2

1 2 1,1: 3, 4 : 2e e e< ∅ >  is valid in LW . 

6. Discovering Periodic Patterns 
A process of discovering periodic patterns in the workload traces is implemented through systematic application 
of the derivation rules. In each step the rules transform a set of periodic patterns into an equivalent set of pat-
terns. The objectives of the transformations are to find the periodic patterns that have complex carriers, that are 
long, that have short periods, and that have smallest length of gaps allowed.  

We say that a periodic pattern , : , :C f t p g< >  is homogeneous when its carrier C is a sequence of multisets 
that contains occurrences of only one and always the same event. The concept of homogenous periodic pattern 
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given above is generalization of [13]. In the first stage we discover and we transform only homogenous periodic 
patterns. In the second step the sets of homogeneous periodic patterns are combined into complex and incom-
plete patterns. 

The process is controlled by the values of parameters maxp  that determines the maximal length of any peri-
odic pattern discovered, maxg  that determines the longest gap allowed for a periodic patterns, mint , that deter-
mines the shortest periodic patterns allowed, and maxc  that determines the longest possible length of carrier for 
any periodic patterns found. 

6.1. Discovering Homogeneous Periodic Patterns 
A process of finding homogeneous periodic patterns consist of four steps in which the derivation rules are ap-
plied to a workload LW  partitioned into n workloads 1( ), , ( )L L nW e W e… . Each, ( )L iW e  contains only occur-
rences of an event ie  for 1, ,i n= …  extracted from LW . We repeat the following steps for each ( )L iW e . 

Step 1 
We start from the application of discovery rule to ( )iL eW  to create the single cycle and complete periodic 

patterns like , :1,0 : 0ie f< > . 
Step 2 
For each max1, ,p p= …  we use a synthesis rule to find the longest complete periodic patterns consistent with 

a form , : , : 0ie f t p< > . Then, for all patterns that have the same values of parameters f and t we apply a com-
position rule to create the patterns like , : , : 0k

ie f t p< > . 
Step 3 
The split and composition rules are used to transform the patterns like , : , : 0k

ie f t p< >  and such that  
mint t<  into single cycle pattern , :1,0 : 0C f< >  where a carrier C is equal to is a sequence of k

ie  sepa-
rated with 1p −  empty sets and repeated 1t −  times and ended with k

ie . A synthesis rule is applied to as-
semble the single cycle complete periodic patterns into multicycle complete patterns. For example, the patterns 

,1: 2,2;0e< > , ,6 : 2, 2;0e< > , ,9 : 2, 2 : 0e< >  are first grouped into ,1;1,0 : 0e e< ∅ > , ,6 :1,0 : 0e e< ∅ > , 
and ,9 :1,0 : 0e e< ∅ >  and later on are synthesized into ,1: 3,5 : 0e e< ∅ > . 

Step 4 
Finally, we apply a synthesis rule to the periodic patterns created so far in order to create longer and incom-

plete patterns with the length of gaps limited by a value of parameter maxg . The rule is iteratively applied for 
max1, ,g g= …  the pairs of periodic patterns that have the same carrier. A pair of periodic patterns that can be 

synthesized into a longer and incomplete one is replaced with the results of synthesis rule. At the end of this 
process we obtain n sets of homogenous and incomplete periodic patterns 1, , nH H…  one set per each one of n 
events 1, , ne e…  recorded in a workload trace LW . 

Complexity of the algorithm depends on the length n of a workload trace LW , on the maximum period size 
maxp  and on the total number h of homogeneous patterns discovered in the first three steps. The complexity of 

the first there steps is ( )max *O p n  the complexity of Step 4 is ( )2O h . 

6.2. Discovering Complex Periodic Patterns 
A process of finding complex periodic patterns initially applies a composition rule to the sets of homogeneous 
and incomplete patterns obtained in the previous steps. Then, a composition rule is applied to the results of 
compositions until no new complex and incomplete patterns can be derived. The process is limited by a thre-
shold value maxc  that determines the longest possible carrier of periodic pattern obtained from application of a 
composition rule, by a threshold value. The process is also limited by the maximal allowed length of “gaps” 

maxg  and the minimal length of the results of composition mint . The following two steps are repeated until no 
more new periodic patterns can be created with a composition rule. 

Step 1 
The sets 1, , nH H…  of homogenous and incomplete periodic patterns are assembled into 1G .nH H= …   
Step 2 
Next, we find in G all pairs of periodic patterns , : , :i i i iC f t p g< >  and , : , :j j j jC f t p g< >  such that 

i jf f<=  and ( ) maxmax ,i i j j if C f C f c+ + − ≤  and ( ) minmin ,i jt t t≥  and maxi jg g g+ ≤ . Then if i jt t≠  
we apply a split rule to adjust the length of the patterns. A new pattern obtained from a split is appended to G. 
Additionally each periodic pattern must be a member of at most one pair. If a periodic pattern is involved in 



J. R. Getta, M. Zimniak 
 

 
14 

more than one pair then we pick a pair that maximizes the length of the patterns obtained from the future com-
position. It may happen that it is impossible to find any pair of periodic patterns that satisfy the conditions listed 
above. Then, we end the process of creating complex and incomplete periodic patterns. 

Step 3 
For each pair of periodic patterns , : , :i i iC f t p g< >  and , : , :j j jC f t p g< >  found in the previous step we 

apply a composition rule to create a new periodic pattern. Then, we replace the composed patterns in G with the 
result of composition. When all pairs are processed we return to Step 2. 

The complexity of the algorithm is equal to ( )2*O k h  where h is the total number of patterns included in an 
input set G and k is the total number of patterns obtained from split in Step 2 of the algorithm. 

7. Prototype Implementation 
The algorithms described in the previous section are implemented in an environment of a commercial relational 
database management system. We save an audit trail from processing of a sequence of SQL statements against a 
sample TPC-H benchmark database. Then, we apply EXPLAIN PLAN statement to transform each SQL state-
ment into an expression of extended relational algebra. The computations of individual relational algebra opera-
tions are considered as individual events in a log. Suchlog of events together with the times tamps is transformed 
into a workload trace where the individual operations are grouped within predefined time units. A synthetic 
workload generator is used to implement periodic processing of sequences of SQL statements. A number of ca-
sually processed SQL statements are incorporated into the workload to evaluate an impact of randomly processed 
statements on discovery of periodic patterns. All software is implemented in SQL embedded into a host language 
of a database management system used.  

Application of a synthetic workload generator allows for precise estimation of the quality of results obtained 
from the algorithms through the comparison of pre-programmed iterative processing of SQL statements with the 
periodic patterns obtained from the algorithms. The algorithms are applied several times to the same log of events 
partitioned each time into the time units of different size. In all cases when a period of iterative processing of SQL 
statement is a multiplicity of the length of time units the algorithms return almost perfect results and are able to 
precisely detect the expected patterns. In the cases when a period of iteratively processed sequence of SQL 
statements was not consistent with the length of time units the algorithm return a larger number of shorter and 
simpler periodic patterns than expected, however the results were still within the acceptable quality range. Quality 
of the results also strongly depends on a careful choice of the parameters that restrict carrier length, period length 
etc. Selection of too large or too small configuration parameters contributes to identification of accidental patterns 
not planned within a synthetic workload. 

8. Summary and Future Work 
This work describes a new approach to discovery of complex and incomplete periodic patterns in the logs of 
events. The method is based on an idea that it is possible to create complex and incomplete periodic patterns 
through systematic discovery, transformation, and composition of the simpler patterns. The new approach re-
quires a system of derivation rules for transformation of periodic patterns into the equivalent ones. Such system 
of rules is defined in the paper. We show how the rules can be applied in the algorithms that process a workload 
trace obtained from a log of events into initially simple and homogeneous patterns and later on into complex and 
incomplete ones. A prototype implementation of the algorithms is used to discover the periodic patterns among 
the events equivalent to the computations of individual extended relational algebra operations implementing 
SQL statements processed by a relational database system.  

A number of interesting research problems remain to be solved. An important problem is an appropriate 
choice of time units used to partition a log of events into multisets of events in a workload trace due an observa-
tion that quality of the discovered patterns depends on the length of time units. The next interesting problem in-
cludes investigations on the other system of derivation rules that may lead to more efficient implementations. An 
interesting task is more efficient and more general implementation of the algorithms that can be used to discover 
periodic patterns in many other domains. Finally, a class of periodic patterns considered in the paper can be ex-
tended on the patterns with more sophisticated specification of period parameter allowing for slight variations 
from cycle to cycle. 
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