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Abstract 
The paper presents a new algorithm of elastic stress predictor in non linear stochastic finite ele-
ment method using the Generalized Polynomial Chaos. The statistical moments of strains calcu-
lated based on the displacement Polynomial Chaos expansion. To descretise the stochastic process 
of material the Karhunen-Loeve Expansion was used and it is presented. Using the strains and the 
material Karhunen-Loeve Expansion the stress components are calculated. A numerical example 
of shallow foundation was carried out and the results of stress and strain of the new algorithm 
were compared with those raised from Monte Carlo method which is treated as the exact solution. 
A great accuracy was presented. 
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1. Introduction 
The analysis and design in structural and geotechnical engineering problems requires the calculation of stress 
and strain which is generally a difficult task because of the uncertainty and spatial variability of the materials’ 
properties. Various forms of uncertainties arise which depend on the nature of geological formation or construc-
tion method, the site investigation, the type and the accuracy of design calculations etc. In recent years there has 
been considerable interest amongst engineers and researchers in the issues related to quantification of uncertain-
ty as it affects safety, design as well as the cost of projects [1]-[4].  

A number of approaches using statistical concepts have been proposed in engineering in the past 25 years or 
so. These include the Stochastic Finite Element Method (SFEM) [5]-[7], and the Random Finite Element Me-
thod (RFEM) [8]-[12]. The RFEM involves generating a random field of soil or structure properties with con-
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trolled mean, standard deviation and spatial correlation length, which is then mapped onto a finite element mesh. 
However the number of works on the stochastic stress and strain calculation and their statistical moments are li-
mited. An essential paper on the field is presented by Ghosh & Farhat [13] where the constitutive relation of 
stress and strain calculated by different approaches. 

In this paper we present SFEM [14]-[18] using the method of Generalized Polynomial Chaos (GPC) [19]. To 
descretise the stochastic process of material the Karhunen-Loeve Expansion was used and it is presented. The 
constitutive relation of stress and strain calculated using the Generalized Polynomial Chaos and verified against 
Monte Carlo simulation which is treated as the exact solution based on a series of computational experiment. In 
order to solve an elastoplastic problem the invariants of stress are also needed. In the current work the stochastic 
stress invariants are given also. 

A numerical example of shallow foundation is given in the last part of the paper. The results of the two me-
thods of stress and strains calculation are compared and presented. 

2. Probability Density Definition 
Considering an arbitrary body and a the sample space ( )Ω, ,  where   is the σ-algebra and is considered 
to contain all the information that is available,   is the probability measure and the spatial domain of the body is 

3D ⊂  . Assuming that the parameters of the body ( )( ),v x ωξ  for x D∈  and ω∈Ω  dependent on a finite  
number M of random variables [ ]1 2, , , : M

Mξ ξ ξ= Ω→ Γ ⊂ ξ  and 1 1 MΓ = Γ ×Γ × ×Γ . To compute the  
statistical moments of the results we perform a change of variable ( ):k ky ξ ω=  and [ ]1 2 ,, , My y y=y 

 [20]. 
If ρ is the joint density and random variables are independent and iρ  denote the density of iξ  then: 

( ) ( ) ( ) ( )1 1 2 2 M My y yρ ρ ρ ρ=y 
                                   (1) 

The expected value of a quantity of the problem is given by the following norm:  

( )( ) ( ) ( )( )2 2 2
2

, , d dL L D L DD
x xω

Ω Ω
⋅ = ⋅ = ⋅ < ∞∫ ∫                              (2) 

3. Computation of Strains 
The author has presented a stochastic finite element procedure to solve boundary problems using polynomial 
chaos [15]-[18]. The outcome displacement of the problem is given by the polynomial chaos expansion as: 

( ) ( ) ( )1, Q
kku x y u x yκψ

=
= ∑                                            (3) 

where the order Q and the formula ψ  of Polynomial Chaos are given in Appendix A. 
In order to propagate the uncertainties from input parameters to the results for an elastoplastic problem throw 

the constitutive equation the strains must be calculated first. 
In an elastostatic problem of homogeneous isotropic body one of the field equations that must be satisfied at all 

interior points of the body is the Strain-Displacement relations: 

( ) ( ) ( )( ), ,

1, , , , 1, 2,3
2ij i j j iu u i jε = + =x y x y x y                                (4) 

Using the displacement polynomial chaos expansion the Equation (4) leads to:  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0, ,

, ,
0 0 0

1,
2

1,
2

Q Q
k k

ij i j
k kj i

Q Q Q
k k k

ij i j j i ij
k k k

u u

u u

κ κ

κ κ κ

ε ψ ψ

ε ψ ψ ε ψ

= =

= = =

    
 = +        

 
⇒ = + = 

 

∑ ∑

∑ ∑ ∑

x y x y x y

x y x y x y y

                     (5) 

4. Integration Algorithm 
Solving for each increment the boundary problem the strain Polynomial Chaos Expansion can be calculated as 
before. At each increment n + 1 they are also known the stress from the previous state nσ  the plastic strain 
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,p n
kldε . The basic steps in computing the new state of stress are as follows: 

The mean value of elastic predictor and of the trial stress are given: 
1 1 ,n n n p n

ij ijkl kl f kld C d p dσ ε ε+ += −                                (6) 

, 1 1tr n n n
ij ij ijdσ σ σ+ += +                                   (7) 

The 4th-order stochastic elasticity tensor of elastic module is given by the equation: 

( ) ( ) ( )*, , , , , 1, 2,3ijkl ijklC E C i j k l= =x y x x                                (8) 

( )*
ijklC x : is expressed in terms of (deterministic) Poisson’s ratio as 

( ) ( ) ( ) ( )* 1
1 2 1ijkl ij kl ik jl ll jk

vC
v v
δ δ δ δ δ δ= + +

+ +
x                         (9) 

Based on that the stochastic process of Young modulus over the spatial domain with a known mean value 
( )E x  and covariance matrix ( )1 2,Cov x x  assuming lognormal distribution the Karhunen-Loeve expansion has 

been used which is the most efficient method for the discretization of a random field. Thus: 

( ) ( ) ( )( ), exp QE E yκ κ κκ λ ϕ= +∑x y x x                              (10) 

where: 
κλ : is the eigenvalues of the covariance function;  
( )κϕ x : is the eigenfunctions of the covariance function ( )1 2, .Cov x x    

5. Constitutive Equations for Plain Strain Condition 
Assuming one dimension and 3rd order polynomial chaos and plain strain conditions:  

( ) ( )( ) ( )

11 11

22 22

12 12

1 0
1exp 1 0

1 1 2
0 0 1 2

lnE lnE

v v
mu v v

v v
v v

σ ε
σ σ ε
σ ε

−    
    = + −    + −     −    

y                (11) 

Considering as kµ , kσ  and k
k

k

v
σ
µ

=  the mean value the standard deviation and the coefficient of variation  

of Elasticity modulus , the mean values and the variance of the lognormal distribution are equal to: 

( )
( )

2 2

2

ln 1

1ln
2

lnk k

lnk k lnk

vσ

µ µ σ

 = +



= −


                                  (12) 

Using the Chaos polynomial expansion the stochastic equation of each component of stress is given: 

( )
( )( ) ( ) ( ) ( ) ( ) ( )

( )
( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( )( )

( ) ( )

( )
( )

11 11 22
1 1

22 11 22
1 1

12 12
1

3

exp
1

1 1 2

exp
1

1 1 2

exp 1 2
1 1 2

exp
1 1 2

Q Q
k klnE lnE

k k
k k

Q Q
k klnE lnE

k k
k k

Q
klnE lnE

k
k

lnE lnE

k

mu
v v

v v

mu
v v

v v

mu v
v v v

mu v
v v

σ
σ ε ψ ε ψ

σ
σ ε ψ ε ψ

σ
σ ε ψ

σ
σ

= =

= =

=

+  
= − + + −  

+  
= + − + −  

+  −
=  + −  

+  =  + − 

∑ ∑

∑ ∑

∑

y
y y

y
y y

y
y

y ( ) ( ) ( ) ( )11 22
1 1

Q Q
k k

k k
k

ε ψ ε ψ
= =











  

+  
  

∑ ∑y y

                  (13) 

The expected value after some algebra gives: 
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( )( ) ( )

( )( ) ( )

11 11

22 22

12 12

deterministic stochastic

11

22

12

1 0 e
e 1 0 e

1 1 2
0 0 1 2 e

1 0 0
e 1 0

1 1 2
0 0 1 2

lnE

lnE
lnE

lnE

lnE

mu

mu

v v
v v

v v
v v

v
v v

v v
v v

σ

σ

σ

σ ε
σ ε
σ ε

σ
σ
σ

 −  
    = −     + −     −     

− 
 ⇒ = −  + −

  − 

⋅



⋅
⋅





y

y

y

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11
0

22
0

12
0

e d

e d

e d

lnE

lnE

lnE

Q
k

k
k

Q
k

k
Q

k

k

k
k

y y

y y

y y

σ

σ

σ

ε ρ ψ

ε ρ ψ

ε ρ ψ

Γ
=

Γ
=

Γ
=

 
 
 
 
 
    
 
  

∫∑

∑ ∫

∑ ∫

y

y

y

y

y

y

        (14) 

The variance of stress: 

( ) [ ]( )22
11 11 11Var E Eσ σ σ = −                                         (15) 

where: 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

[ ]( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

2
11 11 22

1 1

2
11 22

1
1

1
1

e e 1
1 1 2

e 1 e d e d
1 1 2

lnE lnE

lnE
lnE lnE

mu Q Q

k k

mu Q Q

k k

E E v y v y
v v

E v y y y v y y y
v v

σ
κ κ

κ κ

κ κσ σ
κ κ

σ ε ψ ε ψ

σ ε ρ ψ ε ρ ψ

= =

Γ Γ
= =

     = − +   + −    
   

= − +   + −    

∑ ∑

∑ ∑∫ ∫

y

y y

    (16) 

Similarly for the other components. 
Expected value of 2I : 

[ ] [ ] [ ] 2
2 11 22 22 33 33 11 12[ ]E I E E E Eσ σ σ σ σ σ σ= + + −                           (17) 

Based on the stochastic Equation (13) of ijσ  components the expected value of the invariant 2I  is given as 
following: 

[ ] ( )
( )( ) ( ) ( ) ( ) ( ) ( )

( )
( )( ) ( ) ( ) ( ) ( ) ( ) ( )

11 22 11 22
1 1

11 22
1 1

exp
1

1 1 2

exp
1

1 1 2

Q Q
k klnE lnE

k k
k k

Q Q
k klnE lnE

k k
k k

mu
E E v v

v v

mu
v v

v v

σ
σ σ ε ψ ε ψ

σ
ε ψ ε ψ

= =

= =

 +  
= − +   + −   

 +  
× + −    + −    

∑ ∑

∑ ∑

y
y y

y
y y

               (18) 

[ ] ( )
( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( ) ( ) ( ) ( )

22 33 11 22
1 1

11 22
1 1

exp
1

1 1 2

exp
1 1 2

Q Q
k klnE lnE

k k
k k

Q Q
k klnE lnE

k k
k k

mu
E E v v

v v

mu v
v v

σ
σ σ ε ψ ε ψ

σ
ε ψ ε ψ

= =

= =

 +  
= + −   + −   

 +   × +      + −     

∑ ∑

∑ ∑

y
y y

y
y y

               (19) 

[ ] ( )
( )

( ) ( ) ( ) ( )

( )
( )( ) ( ) ( ) ( ) ( ) ( )

( )
( )( )

( ) ( )

33 11 11 22
1 1

11 22
1 1

2
12 12

1

exp
1 1 2

exp
1

1 1 2

exp 1 2
1 1 2

Q Q
k klnE lnE

k k
k k

Q Q
k klnE lnE

k k
k k

Q
klnE lnE

k
k

mu vE E
v v

mu
v v

v v

mu vE E
v v v

σ
σ σ ε ψ ε ψ

σ
ε ψ ε ψ

σ
σ ε ψ

= =

= =

=

 +   = +     + −    
 +  

× − +    + −    

+  
−

= + − 

∑ ∑

∑ ∑

∑

y
y y

y
y y

y
y

( )
( )( )

( ) ( )12
1

exp 1 2
1 1 2

Q
klnE lnE

k
k

mu v
v v v

σ
ε ψ

=

    +  −
×          + −       

∑
y

y

   (20) 
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Variance value of 2I : 
Using again the stochastic Equation (13) of ijσ  components the variance of 2I : 

[ ] [ ] [ ] [ ] 2
2 11 22 22 33 33 11 12Var I Var Var Var Varσ σ σ σ σ σ σ= + + −                             (21) 

where: 

[ ] ( ) [ ]( )
[ ] ( ) [ ]( )
[ ] ( ) [ ]( )

22
11 22 11 22 11 22

22
22 33 22 33 22 33

22
11 33 11 33 11 33

Var E E

Var E E

Var E E

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

 = − 
 = − 
 = − 

                             (22) 

As an example the variance of 11 22σ σ  is given: 

( ) ( )
( )( ) ( ) ( ) ( ) ( ) ( )

( )
( )( ) ( ) ( ) ( ) ( ) ( ) ( )

[ ]( ) ( )
( )( ) ( )

2
11 22 11 22

1 1

2

11 22
1 1

2
11 22

1

exp
1

1 1 2

exp
1

1 1 2

exp
1

1 1 2

Q Q
k klnE lnE

k k
k k

Q Q
k klnE lnE

k k
k k

Q
lnE lnE

k

mu
E E v v

v v

mu
v v

v v

mu
E E v

v v

σ
σ σ ε ψ ε ψ

σ
ε ψ ε ψ

σ
σ σ ε

= =

= =

=

 +    = − +      + −   
 +   × + −    + − 

=

  

+
−

+ −

∑ ∑

∑ ∑

∑

y
y y

y
y y

y ( ) ( ) ( ) ( )

( )
( )( ) ( ) ( ) ( ) ( ) ( ) ( )

11 22
1

2

11 22
1 1

exp
1

1 1 2

Q
k k

k k
k

Q Q
k klnE lnE

k k
k k

v

mu
v y v

v v

ψ ε ψ

σ
ε ψ ε ψ

=

= =











    
 +        


  +  

 × + −     + −     

∑

∑ ∑

y y

y
y

             (23) 

The expected value of 3I : 

[ ] [ ] 2
3 11 22 33 33 12E I E Eσ σ σ σ σ= −                                      (24) 

The variance value of 3I : 

[ ] [ ] 2
3 11 22 33 33 12Var I Var Varσ σ σ σ σ= −                                   (25) 

The analysis are carried out similar as the invariant of 2I . 

6. Numerical Example 
A shallow foundation problem for various values of variation’s coefficient ev  is solved taken to account the 
randomness of the ground. To estimate the statistical moments of the soil deformation the numerical algorithm 
of SFEM using the Generalized Polynomial Chaos as described in the previous paragraphs is applied. In [16] the 
author compared the displacement results to those obtained by the closed form solution. 

The geometry of the finite elements used for the simulation of the problem presented in Figure 1. The input 
data of the problem is the random field modulus with a constant average value equal to 100 Mpa and a fixed  

Poisson ratio equal to 0.25. Calculations have been made for ten different coefficients E
e

E

v σ
µ

=  of the elastic  

modulus with a minimum value of 0.1 and then with step 0.1 to a maximum value equal to 1. For SFEM one 
dimensional Hermite GPC with order 5 [19] were used. In the Figures B1-B10 (Appendix B), the strains and 
stress components, and the stress tensor invariants are presented as resulted by the Chaos Polynomial expansion 
(Appendix A) and compared with those raised by the Monte Carlo Method. The convergence of the outcomes 
decreases as the number of Monte Carlo simulations increases.  

7. Conclusions 
To propagate the uncertainties of input parameters to constitutive relations of strain and stress where arises due  



D. Stefanos 
 

 
227 

 
Figure 1. Finite element mesh.                                                                  

 
to spatial variability of mechanical parameters in engineering problems, a new algorithm of Stochastic Finite 
Element Method has been presented.  

An algorithm of Stochastic Finite Element using Polynomial Chaos has been developed and the elastic predictor 
of stress in a non linear problem is calculated. 

A numerical example of shallow foundation was carried out and the results of stress and strain of the new al-
gorithm were compared with those raised from Monte Carlo method which is treated as the exact solution. A 
great accuracy was presented.  

The main advantage in using the proposed methodology is that a large number of realizations which have to be 
made for (Random Finite Element Method) avoided, thus making the procedure viable for realistic practical 
problems. 
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Apendix A 
Galerkin Approximation and Generalized Polynomial of Chaos  
In order to solve the problem we have to create the new space ( )( )2 1

0,pL DΓ Η . For that reason the subspace 
( )2k

pS L⊂ Γ  is considered as [20]. 

{ }1 2, , ,kS span κψ ψ ψ=                                  (A.1) 

Assuming that the k
iS  represents a space of univariate orthonormal polynomial of variable iy ι⊂ Γ ⊂   with 

order k or lower and:  

( ){ }, 0,1, 2, , , 1, ,
i

k i
i a i iS span P y a k i M= = =                             (A.2) 

The tensor product of the M k
iS  subspace results the space of the Generalized Polynomial Chaos: 

1 2
k

MS S S S= ⊗ ⊗ ⊗
                                     (A.3) 

And using (A2) 

( ){ }1 : 0,1, , , 1, , ,
i

Mk i
a i iiS span P y a k i M a k

=
= = = ≤∏                    (A.4) 

where 1
M

iia a
=

= ∑  
And  

( ) ( )!dim
! !

k M k
Q S

M k
+

= =                                    (A.5) 

Xiu & Karniadakis [19] show the application of the method for different kind of orthonormal polynomials and 
in the current paper the Hermite polynomial was used with the following characteristics: 

0 1, 0, 0iP P i= = >  

( ) ( ) ( )dm n m n n mnP P P P ρ γ δ
Γ

= =∫ y y y y                                   (A.6) 

where: 
2

n nPγ = : are the normalization factors, mnδ  is the Kronecker delta; 

( ) 21 e
2π

y

ρ
−

=y : is the density function and ( ) 2 2d1 e e
d

.
y yn

n
n nP

y
−

= −   

For a 3rd order of one dimension of uncertainty the Hermite Polynomial Chaos is given by: 

( ) ( ) ( ) ( ) ( ) ( ) 2
0 0 1 1 2 21, , 1y P y y P y y y P y yψ ψ ψ= = = = = = −                 (A.7) 
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Apendix B 
Results of Numerical Example 

 

Figure B1. Expected value of stress tensor complements.                         
 

 

Figure B2. Standard deviation of stress tensor complements.                         
 

 

Figure B3. Expected value of strain tensor complements.                         
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Figure B4. Standard deviation of strain tensor complements.                         
 

 

Figure B5. Expected value of stress tensor invariant I1.                         
 

 

Figure B6. Standard deviation of stress tensor invariant I1.                                                 
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Figure B7. Expected value of stress tensor invariant I2.                                                 
 

 

Figure B8. Standard deviation of stress tensor invariant I2.                                                 
 

 

Figure B9. Expected value of stress tensor invariant I3.                                         
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Figure B10. Standard deviation of stress tensor invariant I3.                                   
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