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Abstract 
In the present study, finite element dynamic analysis or time history analysis of two-span beams 
subjected to asynchronous multi-support motions is carried out by using the moving support fi-
nite element. The elemental equation of the element is based on total displacements and is de-
rived under the concept of the quasi-static displacement decomposition. The use of moving sup-
port element shows that the element is very simple and convenient to represent continuous beam 
moving, deforming and vibrating simultaneously due to support motions. The comparison be-
tween the numerical results and analytical solutions indicates that the FE result agrees with the 
analytical solution. 
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1. Introduction 
Long and slender structures are often excited dynamically through support motions rather than by applied ex-
ternal loadings, e.g., piers, chimneys, towers [1], long bridges [2]-[9] and oil pipeline subjected to ground mo-
tions. These structures in turn are responding to support motion inputs. Due to the special feature of the excita-
tion, the effective inertial loadings are applied on structures. The structures can be represented as Euler-Ber- 
noulli beam subjected to multi-support motions if the foundation or ground soil is assumed to be rigid. Moreover, 
extended structures such as the Golden Gate Bridge and oil piping experience different ground motion at each 
support during an earthquake because the arrival time of seismic wave at each support is different. The vibration 
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of the aforementioned structures is characterized as the problem of flexural vibration of beams with time-de- 
pendent boundary conditions. Mindlin and Goodman [10] developed the quasi-static decomposition method and 
applied it to obtain a solution of the problem. With this method, many researchers have investigated the struc-
tural response subjected to multiple support excitations by employing various techniques such as time history 
analysis, response spectrum method of analysis, frequency domain spectral analysis, etc. [11]. 

According to the quasi-static decomposition method, the transverse displacement of the beam subjected to 
support motions is composed of the quasi-static part and dynamic part. Statically determinate beams subjected to 
ground motions at supports are accompanied only by quasi-static displacement of rigid-body motion. Kim and 
Jhung [12] presented beam elements for statically determinate beams excited by support motions and showed 
the FE results agree with analytical solutions. However, statically indeterminate beams subjected to non-syn- 
chronous support motions are involved with not only the quasi-static displacement of rigid-body motion but also 
the quasi-static displacement of forced deformation. For the dynamic analysis of such beams, Kim [13] devel-
oped moving support element that can describe both static forced deformation and dynamic displacement. The 
author illustrated a single span fixed-hinged beam subjected to asynchronous support motions to show the ele-
ment’s performance. In this paper, two-span beams subjected to asynchronous multi-support motions are illu-
strated to show that the moving support element produces accurate dynamic responses even for the continuous 
beams. Since it is hardly possible to find the literature that compares numerical solutions with analytic ones, the 
numerical results including bending moment and shear force are compared with analytic solutions to show the 
high accuracy of the numerical results. 

2. Multi-Span Beam Subjected to Support Motions 
2.1. Rayleigh-Damped Euler-Bernoulli Beam 
For a beam in flexure shown in Figure 1(a), the transverse displacement at any point x and time t is denoted by 
( ),y x t  and the transverse force per unit length by ( ),f x t . The system parameters are the mass per unit length 
( )m x  and the flexural rigidity ( )EI x , where E is Young’s modulus of elasticity and ( )I x  is the cross-sec- 

tional area moment of inertia about an axis normal to x and y and passing through the center of the cross-sec- 
tional area. Figure 1(b) shows the free-body diagram corresponding to a beam element of length dx , where 
( ),V x t  denotes the shearing force and ( ),M x t  the bending moment. According to simple beam theory, they 

are expressed as follows: 
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The motion of a Rayleigh-damped Euler-Bernoulli beam with uniform cross-section is described by the fol-
lowing partial differential equation. 
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                     (a)                                           (b) 

Figure 1. (a) Bending of a beam; (b) Fee-body diagram of a beam element of length dx .                         
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where a superimposed dot denotes a time derivative, L denotes length of the beam, and α  and β  are coeffi-
cients of the Rayleigh damping 

2.2. Continuous Beam Subjected to Support Motions 
For simplicity, we consider the dynamic response of two-span Rayleigh-damped Euler-Bernoulli beams sub-
jected to multi-support excitation, which are shown in Figure 2, and assume that the external load ( ),f x t  in 
Equation (3) is zero and that no other external loads are applied. The support motions of the beam are: 

( ) ( )10
,

x
y x t a t

=
=                                          (4) 

( ) ( )
1

2,
x D

y x t a t
=

=                                         (5) 

( ) ( )3,
x L

y x t a t
=

=                                         (6) 

where ( )ia t  ( 1, 2i =  and 3) are prescribed support displacements. Assume that the initial conditions are: 

( ) ( )00
,

t
y x t y x

=
=  and ( ) ( )00

,
t

y x t y x
=
=                             (7) 

3. Moving Support Element 
3.1. F.E. Equation Based on the Total Displacements 
The moving support elemental equation is given, from [13], by 
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In Equations (9) and (10), the double prime denotes a twice spatial differentiation with respect to the element 
coordinates x̂  depicted in Figure 3 and the shape functions are: 

[ ] ( ) ( ) ( ) ( )1 2 3 4ˆ ˆ ˆ ˆN N x N x N x N x=                            (11) 

 

 
Figure 2. A two-span beam subjected to support motions, 
where ( ) 1, 2, 3ia t i =  denote the support motions or the dis-
placement time histories.                                
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Figure 3. Typical beam element (e) subjected to concentrated 
nodal forces ( ( )ˆ e

if  and ( )ˆ e
jf ) and moments ( ( )ˆ e

im  and ( )ˆ e
jm ).   
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where l is element length. In Equation (8), ( ){ }ey , ( ){ }ey  and ( ){ }ey  are displacement, velocity and accelera-
tion vector of element (e), respectively and they are: 
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where iy  and iθ  are transverse displacement and angular displacement at node i, respectively. The vectors 
( ){ }e
sy , ( ){ }e

sy  and ( ){ }e
sy  are quasi-static displacement, velocity and acceleration vector of element (e), respec-

tively and they are: 

( ){ }
si

sie
s

sj

sj

y

y
y
θ

θ

 
 
 =  
 
  

, ( ){ }
si

sie
s

sj

sj

y

y
y
θ

θ

 
 
 =  
 
  











, ( ){ }
si

sie
s

sj

sj

y

y
y
θ

θ

 
 
 =  
 
  











.                    (14) 

where siy  and siθ  are quasi-static transverse displacement and angular displacement at node i, respectively.  
( ){ } ( ) ( ) ( ) ( ){ }Tˆ ˆ ˆˆ ˆe e e e e

i i j jf f m f m=  is a local force vector of element (e). 

Note that the underlined terms in right hand side of Equation (8) are peculiar to the moving support element 
and they contain the quasi-static displacement and velocity. The static components can be obtained exactly by 
static FE analysis, which will be considered in the next section. 

3.2. Static FE Analysis for Quasi-Static Displacements 
According the quasi-static decomposition method, the solution can be decomposed into two parts: 

( ) ( ) ( ), , ,sy x t y x t w x t= +                                (15) 

where sy  denotes the quasi-static displacement, and ( ),w x t  is the dynamic contribution due to the inertial 
and damping effect. Using Equation (15), the total angular displacement ( ) ( ), ,x t y x t xθ = ∂ ∂  is expressed as 



Y.-W. Kim, S. Y. Lee 
 

 
116 

follows: 

( ) ( ) ( ), , ,sx t x t x tθ θ φ= +                                (16) 

where ( ),s x tθ  is quasi-static angular displacement and ( ),x tφ  is dynamic angular displacement. The qua-
si-static displacement ( ),sy x t  must satisfy 

( )4

4

,
0sy x t

EI
x

∂
=

∂
                                     (17) 

and Equation (17) is subjected to the support conditions in Equations (4)-(6). 
Let skY  and skΘ  ( )1,2,3k =  be quasi-static displacements and quasi-static angular displacements at the 

k-th support as shown in Figure 4, i.e. 
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The variables in Equations (18) and (19) will be called ‘quasi-static support variables’ or simply ‘support va-
riables’ in this paper. The unknown support variables are determined by using the conventional static finite ele-
ment method. The finite element equation is given by 
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For the hinged beam in Figure 2, the support variables are given by 

( )1 1sY a t= , ( )2 2sY a t= , ( )3 3sY a t=                                (21) 

and the external moments at supports are 

1 0sM = , 2 0sM = , 3 0sM = .                                 (22) 

Using Equations (21) and (22), we obtain 
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where ( )1,2,3; 1,2,3k
siA i k= =  are constants and they depends only on the span lengths. Note that the support 

variables for other beams can be determined by static FE method in the similar manner. 
Using the support variables in Equations (21), (22) and (23), we obtain the distribution of the static displace-

ment ( ),sy x t  and ( ) ( ), ,s sx t y x t xθ = ∂ ∂ : 
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where 1η  and 2η  are span coordinates and they are 1 xη =  and 2 1x Dη = −  as shown in Figure 4. Note  



Y.-W. Kim, S. Y. Lee 
 

 
117 

 

Figure 4. 1 2 3 1 2, , , ,s s s s sY Y Y Θ Θ  and 3sΘ  are support va-

riables and 1 2 3 1 2, , , ,s s s s sF F F M M  and 3sM  are external 
forces and moments applied at supports.                         

 

  
(a)                                                        (b) 

 
(c) 

Figure 5. The beams in (a) and (b) are subjected to the seismic acceleration time histories when the earthquake traveling 
wave propagates longitudinally from the left support to the right ones at constant speed and the time delay between neigh-
boring supports is 0.1 s. The seismic acceleration time history applied on the support 1 is shown in (c).                         
 
that the displacements ( ),sy x t  and ( ),s x tθ  are exact ones. It is noteworthy that the quasi-static linear motion 
( ( ),sy x t , ( ),sy x t  and ( ),sy x t ) and the quasi-static angular motion ( ( ),s x tθ , ( ),s x tθ  and ( ),s x tθ ) at 
every time step can be determined exactly by static finite element analysis. Then using Equations (24) and (25), 
the vectors in Equation (14) are determined easily. 

4. Numerical Tests 
The two beams in Figure 5(a) and Figure 5(b) will be tested and the comparison between finite element outputs 
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and analytical solutions will be made to check the validity of the moving support element for dynamic responses 
of the beams due to support motions. 

The input data are as follows: D1 = D2 = 60 m, EI = 2.45 × 109 N⋅m2, and m = 2400 kg/m; α = 0.0844 s−1 and 
β = 0.0141 s for the beam in Figure 5(a); α = 0.1281 s−1 and β = 0.0094 s for the beam in Figure 5(b). The ini-
tial displacement and velocity are assumed zero. Forty beam elements of the same length are used for F.E. dis-
cretization. To simulate asynchronous support excitation that induces a forced deformation, it is assumed that 
the seismic acceleration in Figure 5(c) is applied on the left support (i.e., support 1) at t = 0.0 s and that the 
earthquake traveling wave propagates longitudinally from the left support to the right ones at constant speed. 
Assume that the time delay between supports is 0.1 s. For the integration of the finite element equation of mo-
tion, the Newmark integration scheme is employed and the time interval is 1/1000 s. 

The analytic series solutions for displacement, slope, acceleration, moment and shear force are obtained by 
eigenfunction expansion method with 10 modes. The numerical results such as displacement, velocity and acce-
leration at x = 30 m are compared with their analytical solutions in Figure 6 and Figure 7. The FE solutions of 
displacement, slope, bending moment and shear force along the beams at some instants are also compared with 
their analytic solutions in Figure 8 and Figure 9. They show that the numerical results agree with analytical 
responses. 

5. Conclusion 
FE dynamic analysis or time history analysis on the two-span Rayleigh-damped Bernoulli-Euler beams sub-
jected to asynchronous support motions is carried out by using the moving support element. And the corres-
ponding analytical solutions are obtained by using eigenfunction expansion method with 10 modes. The numer-
ical results such as displacement, velocity, acceleration, slope, bending moment and shear force are compared 
 

  
(a) 

  
(b)                                                        (c) 

Figure 6. The motions of the beam in Figure 5(a). (a) Displacement at x = 30 m; (b) Velocity at x = 30 m; (c) Acceleration 
at x = 30 m.                                                                                                 
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(a) 

      
(b)                                                        (c) 

Figure 7. The motions of the beam in Figure 5(b). (a) Displacement at x = 30 m; (b) Velocity at x = 30 m; (c) Acceleration 
at x = 30 m.                                                                                                 
 

        
(a)                                                        (b) 

         
(c)                                                        (d) 

Figure 8. Reponses of the beam in Figure 5(a) along the beam at t = 10.18 sec. (a) Displacement along the beam; (b) Mo-
ment along the beam; (c) Slope along the beam; (d) Shear force along the beam.                                               
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(a)                                                        (b) 

    
(c)                                                        (d) 

Figure 9. Reponses of the beam in Figure 5(b) along the beam at t = 12.34 sec. (a) Displacement along the beam; (b) Mo-
ment along the beam; (c) Slope along the beam; (d) Shear force along the beam.                                     
 
with the analytical ones to show that the moving support element describes moving, deforming and vibrating of 
multi-span beams subjected to support motions accurately. The numerical results agree with analytical solutions 
well. 

References 
[1] Abdel-Ghaffar, A.M. and Rood, J.D. (1982) Simplified Earthquake Analysis of Suspension Bridge Towers. Journal of 

the Engineering Mechanics Division, ASCE, 108, EM2, 291-308. 
[2] Harichandran, R. and Wang, W.J. (1990) Response of Indeterminate Two-Span Beam to Spatially Varying Seismic 

Excitation. Earthquake Engineering and Structural Dynamics, 19, 173-187. http://dx.doi.org/10.1002/eqe.4290190203 
[3] Chen, J.T., Hong, H.-K., Yeh, C.S. and Chyuan, S.W. (1996) Integral Representations and Regularizations for a Di-

vergent Series Solution of a Beam Subjected to Support Motions. Earthquake Engineering and Structural Dynamics, 
25, 909-925. http://dx.doi.org/10.1002/(SICI)1096-9845(199609)25:9<909::AID-EQE591>3.0.CO;2-M 

[4] Yau, J.D. and Frýba, L. (2007) Response of Suspended Beams Due to Moving Loads and Vertical Seismic Ground Ex-
citations. Engineering Structures, 29, 3255-3262. http://dx.doi.org/10.1016/j.engstruct.2007.10.001 

[5] Frýba, L. and Yau, J.-D. (2009) Suspended Bridges Subjected to Moving Loads and Support Motions Due to Earth-
quake. Journal of Sound and Vibration, 319, 218-227. http://dx.doi.org/10.1016/j.jsv.2008.05.012 

[6] Liu, M.-F., Chang, T.-P. and Zeng, D.-Y. (2011) The Interactive Vibration in a Suspension Bridge System under Mov-
ing Vehicle Loads and Vertical Seismic Excitations. Applied Mathematical Modelling, 35, 398-411.  
http://dx.doi.org/10.1016/j.apm.2010.07.005 

[7] Yau, J.D. (2009) Dynamic Response Analysis of Suspended Beams Subjected to Moving Vehicles and Multiple Sup-
port Excitations. Journal of Sound and Vibration, 325, 907-922. http://dx.doi.org/10.1016/j.jsv.2009.04.013 

[8] Lin, J.H., Zhang, Y.H., Li, Q.S. and Williams, F.W. (2004) Seismic Spatial Effects for Long-Span Bridges, Using the 
Pseudo Excitation Method. Engineering Structures, 26, 1207-1216. http://dx.doi.org/10.1016/j.engstruct.2004.03.019 

[9] Zhang, Y.H., Li, Q.S., Lin, J.H. and Williams, F.W. (2009) Random Vibration Analysis of Long-Span Structures Sub-
jected to Spatially Varying Ground Motions. Soil Dynamics and Earthquake Engineering, 29, 620-629. 

http://dx.doi.org/10.1002/eqe.4290190203
http://dx.doi.org/10.1002/(SICI)1096-9845(199609)25:9%3C909::AID-EQE591%3E3.0.CO;2-M
http://dx.doi.org/10.1016/j.engstruct.2007.10.001
http://dx.doi.org/10.1016/j.jsv.2008.05.012
http://dx.doi.org/10.1016/j.apm.2010.07.005
http://dx.doi.org/10.1016/j.jsv.2009.04.013
http://dx.doi.org/10.1016/j.engstruct.2004.03.019


Y.-W. Kim, S. Y. Lee 
 

 
121 

http://dx.doi.org/10.1016/j.soildyn.2008.06.007 
[10] Mindlin, R.D. and Goodman, L.E. (1950) Beam Vibrations with Time-Dependent Boundary Conditions. Journal of 

Applied Mechanics, ASME, 17, 377-380. 
[11] Datta, T.K. (2010) Seismic Analysis of Structures. John Wiley & Sons (Asia) Pte Ltd., Singapore. 

http://dx.doi.org/10.1002/9780470824634 
[12] Kim, Y.-W. and Jhung, M.J. (2013) Moving Support Elements for Dynamic Finite Element Analysis of Statically De-

terminate Beams Subjected to Support Motions. Transactions of the Korean Society of Mechanical Engineers A, 37, 
555-567. http://dx.doi.org/10.3795/KSME-A.2013.37.4.555 

[13] Kim, Y.-W. (2015) Finite Element Formulation for Earthquake Analysis of Single-Span Beams Involving Forced De-
formation Caused by Multi-Support Motions. Journal of Mechanical Science and Technology, 29, 461-469. 
http://dx.doi.org/10.1007/s12206-015-0106-1 

http://dx.doi.org/10.1016/j.soildyn.2008.06.007
http://dx.doi.org/10.1002/9780470824634
http://dx.doi.org/10.3795/KSME-A.2013.37.4.555
http://dx.doi.org/10.1007/s12206-015-0106-1

	FE Dynamic Analysis Using Moving Support Element on Multi-Span Beams Subjected to Support Motions
	Abstract
	Keywords
	1. Introduction
	2. Multi-Span Beam Subjected to Support Motions
	2.1. Rayleigh-Damped Euler-Bernoulli Beam
	2.2. Continuous Beam Subjected to Support Motions

	3. Moving Support Element
	3.1. F.E. Equation Based on the Total Displacements
	3.2. Static FE Analysis for Quasi-Static Displacements

	4. Numerical Tests
	5. Conclusion
	References

