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Abstract 
In supervised learning, the imbalanced number of instances among the classes in a dataset can 
make the algorithms to classify one instance from the minority class as one from the majority class. 
With the aim to solve this problem, the KNN algorithm provides a basis to other balancing me-
thods. These balancing methods are revisited in this work, and a new and simple approach of KNN 
undersampling is proposed. The experiments demonstrated that the KNN undersampling method 
outperformed other sampling methods. The proposed method also outperformed the results of 
other studies, and indicates that the simplicity of KNN can be used as a base for efficient algo-
rithms in machine learning and knowledge discovery. 

 
Keywords 
Machine Learning, Class Overlaping, Imbalanced Datases 

 
 

1. Introduction 
When dealing with supervised learning, one of the main problems in classification activities lies in the treatment 
of datasets where one or more classes have a minority quantity of instances. This condition denotes an imba-
lanced dataset, which makes the algorithm to incorrectly classify one instance from the minority class as be-
longing to the majority class, and in highly skewed datasets, this is also denoted as a “needle in the haystack” 
problem [1], due to the high number of instances from a class overcoming one or more minority classes. Never-
theless, in most of cases the minority class represents an abnormal event in a dataset, and usually this is the most 
interesting and valuable information to be discovered.  

Learning from imbalanced datasets is still considered an open problem in data mining and knowledge discov-
ery, and needs real attention from the scientific community [2]. The experiments performed in [3] demonstrated 
the class overlapping is commonly associated with the class imbalance problem. An empirical study was per-
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formed by [1], in order to identify causes of why classifiers perform worse in the presence of class imbalance. In 
[4] the authors conducted a taxonomy of methods applied to correct or mitigate this problem, and in this study 
three main approaches were found: data adjusting, cost sensitive learning, and algorithm adjusting. In the data 
adjusting, there are two main sub-approaches: creation of instances from minority class (oversampling), and re-
moval of instances from majority class.   

This work is focused in the data adjusting algorithms, and a proposal of a KNN undersampling (KNN-Und) 
algorithm will be presented. The KNN-Und is a very simple algorithm, and basically it uses the neighbor count 
to remove instances from majority class. Despite its simplicity, the classification experiments performed with 
KNN-Und balancing resulted in better performance of G-Mean [5] and AUC [6], in most of the 33 datasets, if 
compared with three methods based on KNN: SMOTE [7], ENN [8], NCL [9], and the random undersampling 
method. The KNN-Und balancing also performed better than the results published previously by [10] in 11 of 15 
datasets, and had higher average values of G-Mean and AUC, than the evolutionary algorithm proposed by [11]. 
The results obtained in the experiments show that KNN-Und and other balancing methods based on KNN are an 
interesting approach to solve the imbalanced dataset problem. Instead of generating new synthetic data as over-
sampling methods, especially when the datasets are approaching petabytes of size [12], the oriented removal of 
majority instances can be a better solution than to create more data. 

This paper is organized as follows. In Session 2 a literature review about KNN balancing methods is pre-
sented, in Session 3 the KNN-Und methodology is explained in more details. In section 4 the experiments con-
ducted in this work will be presented, compared and commented, followed by the conclusions. 

Imbalanced Dataset Definition 
This section establishes some notations that will be used in this work.  

Given the training set T with m examples and n attributes, where { }, , 1, ,i iT x y i m= =  , and where ix X∈  is 

an instance in the set of attributes { }1, , nX a a=  , and iy Y∈  is an instance in the set of classes { }1, ,Y c=  , 

there is a subset with positive instances P X⊂ , and a subset of negative instances N X⊂ , where P N< . All  
subset of P created by sampling methods will be denominated S. The pre-processing strategies applied to datasets 
aims to balance the training set T, such as P N≅ . 

2. Literature Review 
Along the years, a great effort was done in the scientific community in order to solve or mitigate the imbalanced 
dataset problem. Specifically for KNN, there are several balancing methods based on this algorithm. This sec-
tion will provide a bibliographic review about the KNN and its derivate algorithms for dataset balancing. Also, 
the random oversampling and undersampling methods, the class overlapping problem, and evaluation measures 
will be reviewed. 

2.1. KNN Classifier 
The k Nearest Neighbor (KNN) is a supervised classifier algorithm, and despite his simplicity, it is considered 
one of the top 10 data mining algorithms [13]. It creates a decision surface that adapts to the shape of the data 
distribution, enabling them to obtain good accuracy rates when the training set is large or representative. The 
KNN was introduced initially by [14], and it was developed with the need of perform discriminant analysis 
when reliable parametric estimates of probability densities are unknown or difficult to determine.  

The KNN is a nonparametric lazy learning algorithm. It is nonparametric because it does not make any as-
sumptions on the underlying data distribution. Most of the practical data in the real world does not obey the typ-
ical theoretical assumptions made (for example, Gaussian mixtures, linear separability, etc....). Nonparametric 
algorithms like KNN are more suitable on these cases [15] [16]. 

It is also considered a lazy algorithm. A lazy algorithm works with a nonexistent or minimal training phase 
but a costly testing phase. For KNN this means the training phase is fast, but all the training data is needed dur-
ing the testing phase, or at the least, a subset with the most representative data must be present. This contrasts 
with other techniques like SVM, where you can discard all nonsupport vectors.  

The classification algorithm is performed according to the following steps:  
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1. Calculate the distance (usually Euclidean) between a xi instance and all instances of the training set T; 
2. Select the k nearest neighbors; 
3. The xi instance is classified (labeled) with the most frequent class among the k nearest neighbors. It is also 

possible to use the neighbors' distance to weight the classification decision.  
The value of k is training-data dependent. A small value of k means that noise will have a higher influence on 

the result. A large value makes it computationally expensive and defeats the basic philosophy behind KNN: 
points that are close might have similar densities or classes. Typically in the literature are found odd values for k, 
normally with k = 5 or k = 7, and [15] reports k = 3 allowing to obtain a performance very close to the Bayesian 
classifier in large datasets. An approach to determine k as a function (1) of data size m is proposed in [16]. 

( )k odd m=                                       (1) 

The algorithm may use other distance metrics than Euclidean [17] [18].  

2.2. SMOTE 
The SMOTE algorithm proposed by [7] is one of the most known oversampling techniques, being successful in 
several areas of application, being also a base for other oversampling algorithms [9] [19]-[22].  

The SMOTE executes the balancing of a P set of minority instances, creating n synthetic instances from each 
instance ix  of the P set. The synthetic instance is created based in a minority instance and its nearest neighbors. 
One synthetic instance is generated based in the instances ix  and ˆix , being ˆix  an instance randomly selected 
among the k nearest neighbors (KNN) of ix , and δ  as a random number between 0 and 1, according the Equ-
ation (2). The process is repeated n times for each instance ix  from the P set, where n = b/100, and b is a pa-
rameter that defines the percentage of oversampling required to balance the dataset. 

( )synthetic ˆi i ix x x x δ= + − ⋅                                 (2) 

Figure 1 shows the SMOTE process with k = 5. Starting from (a), there is an imbalanced dataset, where (−) 
belongs to majority instances, also known as negative instances, and (+) belongs to minority instances, also known 
as positive instances. In (b) The KNN selects 5 nearest neighbors from a minority instance ˆix . In (c) one of the 
five nearest neighbors ˆix  is randomly selected. In (d) a new synthetic instance is generated with random 
attributes between ix  and ˆix . The process is repeated for every minority instance (+) from the subset P. 

 

 
(a)                                            (b) 

 
(c)                                            (d) 

Figure 1. SMOTE process for k = 5. (a) An imbalanced dataset, with negative (−) and 
positive (+) instances. An instance xi is selected; (b) the k = 5 nearest instances (neighbors) 
of xi are selected; (c) one of the k = 5 neighbors ˆix , is randomly selected; (d) a new syn-
thetic instance is created with the random values of v1 and v2 between xi and ˆ .ix           
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An extensive comparison of several oversampling and undersampling methods was performed in [23]. The 
authors concluded the SMOTE combined with Tomek Links [24] and ENN methods [8] presented better per-
formance in 50% of the experiments. Nevertheless, the SMOTE algorithm alone had better performance in 16% 
of the cases, and in most of the cases, it presented similar results in terms of AUC, if compared with the com-
bined methods.  

According the experiments conducted in [25], one of the weaknesses of SMOTE lies in the fact all the positive 
instances acts as a base for synthetic instance generation. The authors argue such strategy doesn’t take into ac-
count that not always a homogeneous distribution of synthetic instances is applicable to an unbalancing problem; 
as such practice could cause overfitting and class overlapping. Another weakness reported is the result variance, 
caused by the random characteristics existing in some points of the algorithm. 

2.3. Edited Nearest Neighbor Rule (ENN) 
The ENN method proposed by [8], removes the instances of the majority class whose prediction made by KNN 
method is different from the majority class. So, if an instance ix N∈  has more neighbors of a different class, 
this instance ix  will be removed. The ENN works according to the steps below: 
1. Obtain the k nearest neighbors of ix , ix N∈ ; 
2. ix  will be removed if the number of neighbors from another class is predominant; 
3. The process is repeated for every majority instance of the subset N.  

According to the experiments conducted in [26], the ENN method removes both the noisy examples as bor-
derline examples, providing a smoother decision surface. 

2.4. Neighbor Cleaning Rule (NCL) 
The Neighbor Cleaning Rule (NCL) proposed by [9], consists in improving the ENN method for two-classes 
problems in the following way: for each example ix T∈ , find its k = 3 nearest neighbors. If ix  belongs to the 
majority class and there is a prediction error related to its nearest neighbors, ix  will be removed. If ix  belongs to 
the minority class and there is a prediction error related to its nearest neighbors, the nearest neighbors belonging to 
the majority class will be removed. 

2.5. Random Sampling 
This is one of the simplest strategies for data sets adjusting, and basically consists in the random removal (un-
dersampling) and addition (oversampling) of instances. For oversampling, instances of the positive set P are 
randomly selected, duplicated and added to the set T. For undersampling, the instances from negative set N are 
randomly selected for removal. 

Although both strategies have the similar operation and brings some benefit than simply classifying without any 
preprocessing [1] [9], they also introduce problems in learning. For the instances removal, there is the risk of 
removing important concepts related to the negative class. In the case of adding positive instances, the risk is to 
create over adjustment (overfitting), i.e., a classifier can construct rules that apparently are precise, but in fact 
cover only a replicated example. 

2.6. Class Overlapping Problem 
According the experiments of [3], the low classification performance on imbalanced datasets is not associated 
only to the class distribution, but is also related to class overlapping. The authors concluded that normally in 
highly skewed datasets, the problem of “needle in the haystack” comes together with a class overlapping prob-
lems. 

2.7. Evaluation Measures 
In supervised learning, it is necessary to use some measure to evaluate the results obtained with a classifier algo-
rithm. The confusion matrix from Table 1, also known as contingency table, is frequently applied for such pur-
poses, providing not only the count of errors and hits, but also the necessary variables to calculate other measures. 

The confusion matrix is able to represent either two class or multiclass problems. Nevertheless, the research and 
literature related to imbalanced datasets is concentrated in two class problems, also known as binary or binomial  
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Table 1. Confusion matrix                                                                                  

 Positive prediction Negative prediction 

Positive class True Positive (TP) False Negative (FN) 

Negative class False Positive (FN) True Negative (TN) 

 
problems, which the less frequent class is named as positive, and the remaining classes are merged and named as 
negative. 

Some of the most known measures derived from this matrix are the error rate (3) and the accuracy (4). Nev-
ertheless, such measures are not appropriated to evaluate imbalanced datasets, because they do not take into ac-
count the number of examples distributed among the classes. On the other hand, there are measures that com-
pensate this disproportion in their calculation. The Precision (5), Recall (8) and F-Measure [27] are appropriated 
when the positive class is the main concern. The G-Mean, ROC and AUC are appropriated when the performance 
of both classes (positive and negative) are important. 

FP FNError
TP FN FP TN

+
=

+ + +
                                 (3) 

TP TNAccuracy
TP FN FP TN

+
=

+ + +
                               (4) 

TPPrecision
TP FP

=
+

                                   (5) 

In this work, both classes are considered as equal importance, therefore, the measures G-Mean and AUC will be 
used to evaluate the experiments. 

The G-Mean [5] verifies the performance in both classes, taking into account the distribution between them, by 
computing the geometric average between the true positives and true negatives (6). 

-Mean TP TNG = ∗                                    (6) 
The Receiver Operating Characteristics (ROC) chart, also denominated ROC Curve, has been applied in de-

tection, signal analysis since the Second World War, and recently in data mining and classification. It consists of a 
two dimensions chart, were the y-axis refers to Sensitivity or Recall (7), and the x-axis calculated as 1-Especificity 
(8). According to [6] there are several points in this chart that deserve attention. By analyzing this chart it is 
possible to identify not only the classifier performance, but also to deduce some classifier behaviors like: con-
servative, aggressive, or aleatory. 

TPRecall
TP FN

=
+

                                    (7) 

TNEspecificity
FP TN

=
+

                                 (8) 

The AUC measure (9) synthetizes as a simple scalar the information represented by a ROC chart, and is in-
sensitive to class imbalance problems. 

AUC
pos neg

δ
φ φ

 
 = Φ
 + 

                                 (9) 

where Φ  is the normal cumulative distribution, δ  is the Euclidean distance between the class centroids of two 
classes, and posφ , and negφ  are the standard deviation from the positive and negative classes. An algorithm to 
calculate AUC is also provided in [6]. 

3. Proposed Method: KNN-Und 
The KNN-Und method works removing instances from the majority classes based on his k nearest neighbors, 
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and works according to the steps below: 
1. Obtain the k nearest neighbors for ix N∈ ; 
2. ix  will be removed if the count of its neighbor is greater or equal to t; 
3. The process is repeated for every majority instance of the subset N.  

The parameter t defines the minimum count of neighbors around ix  belonging to the P (minority) subset. If 
this count is greater or equal t, the instance ix  will be removed from the training set T. The valid values of tare
1 t k≤ ≤  and as lower t is, as aggressive is the undersampling. This algorithm can also be used in multiclass 
problems, as in the negative subset N can contain instances from several majority classes. The KNN-Und algo-
rithm was developed as a preprocessing plug in in Weka platform [28]. 

If compared with ENN, the KNN-Und has a more aggressive behavior in terms of instance removal, because 
KNN-Und does not depend of a wrong prediction of KNN to remove an instance ix N∈ . KNN-Und only acts 
in the class overlapping areas, because an instance from majority class only will be removed if a number t of in-
stances from other classes are present in its neighborhood. In the cases that an instance of the majority class is 
not surrounded by t instances of other classes, that instance will not be removed. This situation only occurs in 
non-overlapping areas. Despite this behavior, in our experiments t = 1 was kept in most of the cases, because the 
KNN-Und only acts in overlapping areas. The nonoverlapping areas, which are far from the decision surface are 
kept untouchable. This explains why the KNN-Und can also be used to solve the class-overlapping problem, 
which is commonly associated with imbalanced datasets [3]. Nevertheless, in highly skewed problems the 
KNN-Und is not efficient to balance the dataset. In these cases, the combination of KNN-Und with another 
sampling method could improve the results. 

The KNN-Und can be considered a very simple algorithm, and has the advantage to be a deterministic method, 
since different of other methods, there is no random component. In the literature review, only one study [29] has 
mentioned a similar methodology and application so far, but the results published previously demonstrated this 
alternative was not very well exploited at that time. 

4. Experiments 
In this section, the experiments to validate the applicability of KNN-Und are conducted. The Table 2 depicts the 
33 datasets prepared for the experiments, ordered by imbalance rate (IR) [30], which is the rate between the 
quantity of negative and positive instances. All the 33datasets are originated from UCI machine learning reposi-
tory [31]. For the data sets with more than two classes, one or more classes with fewer examples were selected 
as the positive class, and collapsed the remainder as the negative class. The datasets were balanced with 
KNN-Und and submitted to a classifier, then the evaluation measures were compared with three methods based 
on KNN: SMOTE [7], ENN [8], NCL [9], and the random undersampling method. The performance of KNN- 
Und was also compared with the published results of two other studies [10] [11]. All the algorithms tested in this 
work were implemented in Weka platform [28]. 

In all datasets and algorithms that uses KNN, the parameter k was determined according to (1). The parameter 
t was adjusted in order to control the undersampling level with KNN-Und method, and in most of datasets with 
IR < 2, this parameter was set to t > 1 to control the excessive undersampling. The Table 2 shows the values of 
k and t for each dataset, and the respective under sampling effect of KNN-Und on the negative (majority) class 
and resulting IR. The parameters for SMOTE and Random Undersampling methods were adjusted to obtain a 
balanced class distribution. The ENN and NCL methods do not have a balancing control parameter. 

The classification results in terms of AUC and G-Mean are presented in Table 3 and Table 4, respectively.  
Those tables show the results averaged over 10 runs and the standard deviation between parentheses for the 

33 datasets. 
The classification results in terms of AUC with KNN-Und data preparation were compared with our previous 

work [10]. This paper proposed a Genetic Algorithm (GA) as an oversampling method, with the aim to evolve 
sub regions filled with synthetic instances to adjust imbalanced datasets. To reproduce here the same experi-
ments conditions as before, the classifier used is the C4.5 decision tree algorithm [32], with 25% of pruning and 
10-fold cross validation. The Euclidean distance was used for numeric attributes, and the superposition distance 
for nominal attributes [17] [18]. 

The same experiment setup was applied forC4.5 classifier without balancing (as a baseline comparison) and 
for the others balancing methods: SMOTE, ENN, NCL and Random Undersampling. The last columns of Table 
3 and Table 4 presents the results of the proposed balancing method, KNN-Und, with C4.5 and 1-NN classifier.  
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Table 2. Datasets ordered by IR before balancing with KNN-Und and the respective effect after KNN-Und.                

Dataset # Examples Classes (min, maj) 
# Classes  

before 
(min/maj) 

IR before k t # Classes after 
(min, maj) IR After 

GlassBWNFP 214 (build-wind-non-float, remainder) (76, 138) 1.82 15 5 (76, 76) 1.00 

EcoliCP-IM 220 (im, remainder) (77, 143) 1.86 15 1 (77, 122) 1.58 

Pima 768 (1,0) (268, 500) 1.87 27 5 (268, 228) 0.85 

GlassBWFP 214 (build-wind-float, remainder) (70, 144) 2.06 15 3 (70, 67) 0.96 

German 1000 (bad, good) (300, 700) 2.33 31 7 (300, 326) 1.09 

Post-Oper 90 (S, remainder) (24, 66) 2.75 9 4 (24, 15) 0.63 

Habermann 306 (die, survive) (81, 225) 2.77 17 4 (81, 104) 1.28 

Splice-ie 3176 (ie, remainder) (768, 2422) 3.15 57 9 (768, 773) 1.01 

Splice-ei 3176 (ei, remainder) (767, 2423) 3.15 57 9 (767, 572) 0.75 

GlassNW 214 (non-wind-glass, remainder) (51, 163) 3.19 15 1 (51, 141) 2.76 

VehicleVan 846 (van, remainder) (199, 647) 3.25 29 1 (199, 394) 1.98 

EcoliIM 336 (im, remainder) (77, 259) 3.36 19 1 (77, 186) 2.42 

Letter-vowel 20000 (all vowels, remainder) (3878, 16122) 4.15 161 1 (3878, 4543) 1.17 

New-Thyroid 215 (hypo, remainder) (30, 185) 6.16 15 1 (30, 172) 5.73 

Segment1 2310 (brickface, sky) (330, 1980) 6.00 49 1 (330, 1695) 5.14 

EcoliIMU 336 (iMU, remainder) (35, 301) 8.60 19 1 (35, 236) 6.74 

Optdigits0 5564 (0, remainder) (554, 5066) 9.14 75 1 (554, 4951) 8.94 

Satimage4 6435 (4, remainder) (626, 5809) 9.28 91 1 (626, 4880) 7.80 

Vowel0 990 (0, remainder) (90, 900) 10.00 31 1 (90, 881) 8.79 

Flag 194 (white, remainder) (17, 177) 10.41 15 1 (17, 61) 3.59 

GlassVWFP 214 (ve-win-float-proc, remainder) (17, 197) 11.58 15 1 (17, 151) 8.88 

EcoliOM 336 (om, remainder) (20, 316) 15.80 19 1 (20, 279) 13.95 

GlassContainers 214 (containers, remainder) (13, 201) 15.46 15 1 (13, 175) 13.46 

Abalone9-18 731 (18, 9) (42, 689) 16.40 81 1 (42, 46) 1.10 

GlassTableware 214 (tableware, remainder) (9, 205) 22.77 15 1 (9, 175) 19.44 

YeastCyt-Pox 483 (Pox, Cyt) (20, 463) 23.15 21 1 (20, 344) 17.20 

YeastME2 1484 (ME2, remainder) (51, 1433) 28.10 39 1 (51, 1015) 19.90 

YeastME1 1484 (ME1, remainder) (44, 1440) 32.72 39 1 (44, 1313) 29.84 

YeastEXC 1484 (EXC, remainder) (35, 1449) 41.40 39 1 (35, 1129) 32.26 

Car 1728 (good, remainder) (69, 1659) 24.04 41 1 (69, 556) 8.06 

Letter-A 20000 (a, remainder) (789, 19211) 24.34 141 1 (789, 16680) 21.14 

Nursery 12960 (rec + very − rec, remainder) (330, 12630) 38.27 113 1 (330, 6692) 20.28 

Abalone19 4177 (19, remainder) (32, 4145) 129.53 65 1 (32, 2983) 93.21 
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Table 3. Classification results—AUC.                                                                       

Dataset Best result in 
[10] C4.5 SMOTE 

+ C4.5 
ENN 

+ C4.5 
NCL 
C4.5 

Random 
Undersampling 

+ C4.5 

KNN-Und 
+ C4.5 

KNN-Und 
+ 1-NN 

GlassBWNFP - 74.72 (0) 72.81 (0.56) 77.86 (0) 78.33 (0) 71.97 (2.69) 85.14 (0) 93.46 (0) 

EcoliCP-IM - 97.32 (0) 97.33 (0) 97.32 (0) 99.23 (0) 96.59 (0.34) 98.48 (0) 98.24 (0) 

Pima 82.72 (0.48) 75.14 (0) 73.10 (0.33) 79.71 (0) 91.16 (0) 73.39 (2.06) 92.22 (0) 92.23 (0) 

GlassBWFP - 82.10 (0) 83.27 (2.85) 85.09 (0) 96.16 (0) 86.58 (1.49) 97.86 (0) 98.96 (0) 

German 76.99 (0.82) 63.90 (0) 64.40 (1.29) 67.83 (0) 57.37 (0) 65.53 (1.36) 84.44 (0) 84.20 (0) 

Post-Oper 69.68 (1.69) 42.80 (0) 65.30 (3.42) 42.80 (0) 4.17 (0) 37.22 (7.48) 71.39 (0) - 

Habermann 73.73 (0.74) 56.4 (0) 58.81 (2.32) 56.11 (0) 44.44 (0) 61.05 (1.00) 85.49 (0) 81.22 (0) 

Splice-ie 98.84 (0.20) 96.02 (0) 96.54 (0.39) 96.63 (0) 97.61 (0) 95.80 (0.46) 97.73 (0) 97.96 (0) 

Splice-ei 96.65 (0.22) 96.70 (0) 97.74 (0.16) 97.35 (0) 99.07 (0) 97.24 (0.49) 98.51 (0) 96.46 (0) 

GlassNW - 87.10 (0) 96.54 (2.94) 91.59 (0) 97.38 (0) 91.61 (1.97) 95.08 (0) 97.45 (0) 

VehicleVan 99.01 (0.32) 93.43 (0) 93.42 (0.67) 94.99 (0) 97.39 (0) 95.34 (1.89) 99.14 (0) 100 (0) 

EcoliIM - 91.82 (0) 88.94 (0.16) 92.02 (0) 94.27 (0) 91.08 (0.12) 98.71 (0) 98.10 (0) 

Letter-vowel 95.38 (0.22) 94.98 (0) 94.55 (0.22) 95.02 (0) 98.11 (0) 93.54 (0.38) 99.11 (0) - 

New-Thyroid 99.81 (0.23) 93.98 (0) 93.88 (2.17) 93.98 (0) 96.67 (0) 94.83 (1.32) 95.63 (0) 95.97 (0) 

Segment1 - 98.30 (0) 97.84 (0) 97.70 (0) 98.67 (0) 98.87 (0.36) 99.24 (0) 100 (0) 

EcoliIMU 97.19 (0.24) 80.09 (0) 85.86 (1.60) 84.15 (0) 95.22 (0) 91.45 (0.98) 97.14 (0) 98.43 (0) 

Optdigits0 - 96.53 (0) 98.54 (0.27) 96.75 (0) 96.26 (0) 98.21 (0.54) 97.98 (0) 99.96 (0) 

Satimage4 84.14 (0.52) 83.27 (0) 83.25 (1.07) 87.10 (0) 95.04 (0) 87.25 (0.59) 96.56 (0) 99.27 (0) 

Vowel0 - 97.96 (0) 95.76 (1.92) 97.96 (0) 98.86 (0) 98.64 (0.87) 99.09 (0) 100 (0) 

Flag 86.03 (1.86) 43.17 (0) 42.25 (5.03) 43.17 (0) 76.98 (0) 73.08 (10.55) 84.14 (0) - 

GlassVWFP 96.81 (1.62) 96.55 (0) 96.13 (0.16) 99.48 (0) 99.69 (0) 95.07 (2.75) 99.67 (0) 97.64 (0) 

EcoliOM - 79.63 (0) 79.27 (2.85) 79.63 (0) 84.61 (0) 91.04 (4.19) 85.15 (0) 100 (0) 

GlassContainers - 79.54 (0) 81.30 (3.56) 76.21 (0) 90.94 (0) 91.49 (2.99) 95.31 (0) 79.04 (0) 

Abalone9-18 - 65.14 (0) 63.92 (4.32) 65.14 (0) 87.36 (0) 62.31 (2.67) 92.34 (0) 99.02 (0) 

GlassTableware - 99.54 (0) 94.63 (3.98) 99.54 (0) 100 (0) 100 (0) 99.87 (0) 100 (0) 

YeastCyt-Pox - 48.46 (0) 63.09 (0) 48.46 (0) 63.38 (0) 76.95 (9.04) 63.86 (0) 87.66 (0) 

YeastME2 - 74.12 (0) 75.60 (0.85) 74.12 (0) 92.73 (0) 79.18 (2.78) 95.87 (0) 91.09 (0) 

YeastME1 - 89.42 (0) 83.22 (0) 91.46 (0) 98.01 (0) 95.38 (0.44) 96.22 (0) 100 (0) 

YeastEXC - 80.54 (0) 81.08 (1.50) 80.54 (0) 80.43 (0) 78.23 (4.44) 89.70 (0) 91.77 (0) 

Car - 49.32 (0) 99.25 (0.03) 49.32 (0) 98.93 (0) 92.16 (1.44) 99.97 (0) 100 (0) 

Letter-A 99.95 (0.09) 98.54 (0) 98.05 (0.38) 98.64 (0) 99.97 (0) 97.66 (0.55) 99.00 (0) - 

Nursery 99.38 (0.30) 98.90 (0) 99.86 (0) 98.90 (0) 100 (0) 98.81 (0.48) 100 (0) - 

Abalone19 - 47.47 (0) 43.08 (2.70) 47.47 (0) 51.22 (0) 64.95 (2.32) 71.06 (0) 67.17 (0) 
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Table 4. Classification results—G-mean.                                                                      

Dataset C4.5 
SMOTE ENN NCL Random 

KNN-Und + C4.5 KNN-Und + 1-NN 
+ C4.5 + C4.5 + C4.5 Undersampling + C4.5 

GlassBWNFP 73.39 (0) 73.04 (2.00) 75.44 (0) 76.01 (0) 74.05 (4.01) 85.27 (0) 92.51 (0) 

EcoliCP-IM 98.34 (0) 98.35 (0) 98.34 (0) 98.19 (0) 97.52 (0.40) 97.47 (0) 98.03 (0) 

Pima 69.71 (0) 70.95 (1.25) 75.05 (0) 87.48 (0) 73.40 (2.63) 89.70 (0) 91.30 (0) 

GlassBWFP 80.84 (0) 79.99 (1.99) 83.87 (0) 92.48 (0) 84.79 (1.57) 96.36 (0) 98.54 (0) 

German 57.43 61.26 (1.13) 63.14 (0) 61.60 (0) 65.74 (1.89) 84.30 (0) 83.59 (0) 

Post-Oper 0 (0) 62.32 (2.30) 0 (0) 0 (0) 31.15 (13.30) 77.46 (0) - 

Habermann 44.89 (0) 54.33 (3.54) 47.24 (0) 0 (0) 62.39 (2.19) 83.18 (0) 79.83 (0) 

Splice-ie 94.63 (0) 96.26 (0.31) 94.94 (0) 98.33 (0) 96.00 (0.34) 97.99 (0) 95.70 (0) 

Splice-ei 96.92 (0) 97.42 (0.09) 97.03 (0) 98.93 (0) 96.81 (0.49) 98.84 (0) 93.78 (0) 

GlassNW 89.63 (0) 96.28 (2.79) 93.33 (0) 96.96 (0) 89.95 (4.03) 97.01 (0) 97.01 (0) 

VehicleVan 92.06 (0) 91.76 (0.61) 92.76 (0) 96.65 (0) 93.46 (1.75) 99.11 (0) 100 (0) 

EcoliIM 83.89 (0) 81.99 (0.07) 91.56 (0) 95.37 (0) 91.60 (0.08) 97.50 (0) 98.03 (0) 

Letter-vowel 92.74 (0) 92.02 (0.15) 92.97 (0) 97.71 (0) 91.88 (0.32) 98.96 (0) - 

New-Thyroid 93.84 (0) 93.34 (0.68) 93.84 (0) 96.61 (0) 93.82 (1.93) 94.32 (0) 96.61 (0) 

Segment1 98.30 (0) 97.92 (0) 98.22 (0) 98.19 (0) 98.83 (0.34) 99.36 (0) 100 (0) 

EcoliIMU 74.45 (0) 69.44 (5.58) 83.79 (0) 93.70 (0) 94.65 (1.83) 98.35 (0) 98.56 (0) 

Optdigits0 97.81 (0) 98.67 (0.17) 97.88 (0) 97.74 (0) 98.51 (0.37) 98.34 (0) 99.91 (0) 

Satimage4 79.01 (0) 81.65 (1.34) 83.22 (0) 94.82 (0) 87.95 (0.54) 95.82 (0) 99.28 (0) 

Vowel0 97.48 (0) 93.55 (1.41) 97.48 (0) 98.17 (0) 98.54 (1.01) 96.94 (0) 100 (0) 

Flag 0 (0) 34.97 (3.59) 0 (0) 51.82 (0) 66.37 (9.44) 79.11 (0) - 

GlassVWFP 96.52 (0) 96.22 (0.11) 99.48 (0) 99.69 (0) 92.88 (2.46) 99.67 (0) 97.01 (0) 

EcoliOM 82.87 (0) 79.70 (3.16) 82.87 (0) 83.20 (0) 88.91 (3.26) 85.82 (0) 100 (0) 

GlassContainers 73.01 (0) 79.87 (2.78) 77.26 (0) 86.13 (0) 89.57 (2.48) 95.26 (0) 78.45 (0) 

Abalone9-18 48.33 (0) 39.11 (5.56) 48.33 (0) 86.88 (0) 61.54 (4.38) 91.80 (0) 98.80 (0) 

GlassTableware 87.98 (0) 84.58 (7.60) 87.98 (0) 100 (00) 100 (0) 99.43 (0) 100 (0) 

YeastCyt-Pox 0 (0) 74.08 (0) 0 (0) 49.82 (0) 74.48 (5.15) 44.72 (0) 83.67 (0) 

YeastME2 55.66 (0) 50.22 (0) 55.66 (0) 84.81 (0) 76.72 (1.85) 84.92 (0) 92.88 (0) 

YeastME1 86.27 (0) 82.34 (0) 89.00 (0) 95.27 (0) 96.22 (0.89) 97.66 (0) 100.00 (0) 

YeastEXC 73.35 (0) 68.52 (1.09) 73.35 (0) 79.11 (0) 81.74 (2.49) 86.19 (0) 89.44 (0) 

Car 0 (0) 98.61 (0.01) 0 (0) 98.33 (0) 88.16 (2.49) 99.82 (0) 100 (0) 

Letter-A 97/03 (0) 96.79 (0.23) 99.64 (0) 99.82 (0) 97.30 (0.20) 98.69 (0) - 

Nursery 84.03 (0) 99.69 (0) 84.03 (0) 100 (0) 98.98 (0.33) 100 (0) - 

Abalone19 0 (0) 3.53 (7.89) 0 (0) 0 (0) 63.57 (2.69) 35.32 (0) 61.24 (0) 
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This last classifier was included to make a comparison with the evolutionary algorithm EBUS-MS-GM devel-
oped in [11]. 

The best result for each dataset is marked in bold. 
Analyzing the AUC results in Table 3, it can be observed the KNN-Und with C4.5 algorithm outperformed in 

19 of 33 datasets and had one dataset with equal result, if compared with the results of four different sampling 
methods. If compared with our previous results published in [10], the KNN-Und outperformed in 11 of 15 data-
sets. 

Figure 2 illustrates the results of AUC using the balancing methods with C4.5 classifier for the 33 datasets. It 
shows the AUC values of KNN-Und (in green) at the top, or nearby, in all datasets.  

The results in terms of G-Mean (Table 4) shows that the KNN-Und outperformed in 20 of 33 datasets, and one 
dataset with equal result. Different of GA, SMOTE and Random Undersampling methods, the KNN-Und, C4.5, 
ENN, and NCL have a deterministic behavior, which lead to most stable results with standard deviations equals to 
0. The second best results were obtained with NCL algorithm, but an excessive undersampling was observed in 
datasets with IR < 2, which led to G-Mean values of 0. 

Table 5 summarizes the count of the best results of the balancing methods with C4.5 classifier in terms of AUC 
and G-Mean. The KNN-Und has the highest scores. 

These results can be explained by the fact that KNN-Und acts removing instances from the majority classes and 
at the same time cleaning the decision surface, reducing the class overlapping. Figure 3 and Figure 4 show the 
scatter plot of datasets EcoliIMU, and Satimage4, before and after the balancing methods. The points in blue 
belong to the majority class, the points in red to the minority class. These plots show the behavior of the methods, 
as described previously. The SMOTE algorithm performs a homogeneous distribution of synthetic instances 
around each positive instance. The ENN removes negative instances around the positive instances, and KNN-Und 
performs a more aggressive removal of negative instances in the decision surface region. 

G-Mean and AUC values were not published by dataset for the evolutionary algorithm EUB-MS-GM in [11], 
so another comparison was done with the available results, that is, the average and standard deviation of G- 
Mean and AUC for the 28 evaluated datasets. Table 6 compares the average results of KNN-Und and EUB-MS- 
GM methods. The KNN-Und results are at least 13 points higher than the EUB-MS-GM. It is not reasonable to 
do a comparison of standard deviations here, as the 28 datasets have independent results in both cases. One ex-
planation for the obtained high values would be the 1-NN classifier used for comparison, that uses a decision 
boundary similar to KNN-Und, but the results for KNN-Und with C4.5 decision tree also had higher average 
values, showing that KNN-Und can also improve the classification results with other algorithms. 

 

 
Figure 2. Comparison of classification with AUC after the balancing methods.                                 
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No Balancing                                       SMOTE 

   
ENN                                          KNN-Und 

Figure 3. Scatter plot of EcoliIMU dataset before and after balancing methods. For x = aac (score of Amino 
acid content), y = alm1 (score of the ALOM membrane).                                             

 

   
No Balancing                                       SMOTE 

   
ENN                                          KNN-Und 

Figure 4. Scatter plot of Satimage4 dataset before and after balancing. For x = pixel column 6, y = pixel 
column 31.                                                                                     

 
Table 5. Summary of the classification best results in terms of AUC and G-Mean between KNN-Und and other balancing 
methods using C4.5.                                                                                         

Measure Other methods Equal results KNN-Und 

AUC 13 1 19 

G-Mean 12 1 20 
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Table 6. Average of G-Mean and AUC from 28 the datasets used in [11].                                             

Algorithm 
1-NN C4.5 

G-Mean AUC G-Mean AUC 

KNN-Und 93.72 (9.02) 94.47 (7.99) 90.11 (15.52) 93.12 (8.77) 

EBUS-MS-GM 79.71 (16.87) 80.85 (16.99) - - 

5. Conclusions 
This work presented a proposal of an algorithm, KNN-Und, to adjust datasets with imbalanced number of in-
stances among the classes, also known as imbalanced datasets. The proposed method is an undersampling me-
thod, and is based on KNN algorithm, removing instances from the majority class based on the count of neigh-
bors of different classes. The classification experiments conducted with the KNN Undersampling method on 33 
datasets outperformed the results of other six methods, two studies based in evolutionary algorithms and the 
SMOTE, ENN, NCL and Random Undersampling methods.  

The good results obtained with KNN Undersampling can be explained by the fact that KNN-Und acts remov-
ing instances from the majority classes, reducing this way the “needle in a haystack” effect, at the same time, 
cleaning the decision surface, reducing the class overlapping and removing noisy examples. These results indicate 
that the simplicity of KNN can be used as a base for constructing efficient algorithms in machine learning and 
knowledge discovery. They also show that the selective removal of instances from the majority class is an inter-
esting way to be followed rather than to generate instances to balance datasets. This issue is important nowadays 
as the datasets are approaching the size of petabytes with big data, and retaining only the representative data can 
be better than creating more data. 
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