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Abstract 
The Higgs mode is expected to exist in any system with the spontaneous symmetry breaking of the 
continuous symmetry. We make numerical study about the Higgs mode in the Heisenberg antifer-
romagnet on the square lattice by the exact diagonalisation approach. Since the Higgs mode can 
couple with a pair of the Nambu-Goldstone modes, we calculate the dynamical correlation of the 
two spin operators, employing the finite temperature Lanczos method. Because the lattice size is 
severely limited, we make a careful discussion on procedures of finding evidences for the Higgs 
mode by numerical works. By the discussed procedures, we present numerical results for the dy-
namical correlation at zero temperature. Then we obtain clear evidences for the Higgs mode of the 
spin-1/2 Heisenberg antiferromagnet on the square lattice. 
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1. Introduction 
The spontaneous symmetry breaking (SSB) of the continuous symmetry has been one of the most important 
concepts and phenomena of the modern physics [1] [2]. It is well known that the SSB induces the massless par-
ticle or the gapless mode, which is called the Nambu-Goldstone (NG) particle or mode [3] [4]. In the particle 
physics for the SSB mechanism we need another particle called the Higgs particle [5]. Recently the Higgs par-
ticle has been observed and its property has been confirmed to agree with the prediction of the standard model 
[6] [7]. However the quest on the Higgs particle has not finished, because many researchers consider that it is 
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not a fundamental object of the underlying Hamiltonian [8]. Therefore we need deep understanding on the Higgs 
particle. The study of the Higgs mode in the other fields gives some keys for the next stage of its study. 

In the condensed matter physics the Higgs mode has been extensively studied recently [9]. One can find many 
experimental reports on the existence of the Higgs mode. The authors of [10] have showed this mode in a 
two-dimensional neutral superfluid close to a quantum phase transition. The study of [11] about the material of

3TlCuCl , has demonstrated a massive excitation corresponding to longitudinal fluctuations of the magnetic 
moment. For theoretical discussions on this material, see [12]. Also the experiment in [13] for the BCS super-
conductor 1Nb Ti Nx x−  film has confirmed the appearance of the collective mode of the order parameter. One 
should note the experimental evidence for the observation of the superconducting Higgs mode in the charge 
density wave superconductor 22H- NbSe  [14]. 

On the other hand theoretical study has been active, especially using the sigma model and other effective 
models. Its purpose is to find experimental possibilities of observing the Higgs mode [15]-[17]. Another is to 
understand the role of the Higgs mode near the critical point of the quantum phase transition [18]-[20]. 

In this work we would like to study the Higgs mode in the spin-1/2 Heisenberg antiferromagnet on the square 
lattice [21]. This system has been studied extensively by the spin wave theory [22] as well as by numerical me-
thods such as the quantum Monte Carlo method [23]-[25] and the exact diagonalisation [26]. The spin wave 
theory is quite successful in describing experimental results on this system. Note that this theory contains the 
NG modes, but not the Higgs mode. This success of the theory is due to the experimental difficulty of observing 
the Higgs mode [9]. As a result there are few theoretical works about the Higgs mode in the antiferromagnet. 

The first motivation of our study is to find directly the Higgs mode in the quantum antiferromagnet. In this 
system the Hamiltonian is clearly defined and we have many materials that realize it. Therefore the numerical 
evidence for the Higgs mode should stimulate researchers to study experimentally as well as theoretically for 
this new degree of freedom in the condensed matter physics. Another motivation is to investigate how the Higgs 
mode is induced from the fundamental Hamiltonian. In the particle physics the Higgs particle is the object to 
constitute the Hamiltonian. By contrast, in the condensed matter physics the Higgs mode is not an object of the 
Hamiltonian, but the collective mode induced from it. Therefore we should be able to calculate the gap energy 
and other properties of the Higgs mode without any assumption. For this purpose the Hamiltonian of the Hei-
senberg antiferromagnet on the two-dimensional lattice is the most suitable because one can investigate it by 
various methods. 

In our study on the Heisenberg antiferromagnet, the most important purpose is to find evidences for the Higgs 
mode on the finite lattice by the reliable method of the numerical calculations at zero temperature. Also we 
would like to clarify differences between the Higgs modes in the SU(2) symmetry and those in the U(1) symme-
try through the study of the XXZ model [27]. 

Since the Higgs mode is an excited state, we calculate the dynamical spin correlation. Here we employ the fi-
nite temperature Lanczos method [28], which is the reliable diagonalisation approach. 

In the next section after a brief description of the Higgs mode, we discuss procedures of finding evidences for 
it in our calculation. Here we emphasize that the Higgs mode is the excited mode and it couples with a pair of 
the NG-modes. Therefore the Higgs mode should be a resonance in the dynamical correlation of two spin oper-
ators. On the infinitely large lattice we can easily judge signals for the resonance. On the finite lattice, however, 
the numerical study for the resonance is a non-trivial task, because we calculate not continuous, but discrete 
energy eigen values. By taking this discreteness into account, we suggest four procedures to find the evidences. 
Numerical results are presented in Section 3. This section is divided to four subsections. In each subsection, we 
show the evidence for Higgs mode by using each suggested procedure. The final section is devoted to a sum-
mary and discussion for future researches. 

2. Higgs Mode 
The spin-1/2 Heisenberg antiferromagnet on the square lattice is given by 

{ }
,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ .x x y y z z
i j i j i j

i j
H s s s s s s= + +∑                                    (1) 

Here ( )ˆ , ,k
is k x y z= , is a spin operator on a site i and the sum runs over pairs of the neighbor sites on the 

square lattice. ˆz
is  is a diagonal matrix, i.e. each state is represented by 1 2, , , Ns s s⋅ ⋅ ⋅ , where 1 2is =  or 

1 2is = − . N is a total number of sites. Since we make an exact diagonalisation by this representation, we can  
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obtain eigen values of the Ĥ  for a fixed value of a total z
T iS s= ∑ , where z

TS  is an integer if N is an even  

number. For each z
TS  the lowest energy state is denoted by z

TS . Note that ( )ˆ 0 , ,z k z
T i TS s S k x y z= = , be-  

cause the symmetry is not broken on a finite lattice system. In our representation the evidence of the SSB is 
given by the non-zero value of ( )z

Tv S  for a finite value of z
TS , where ( )z

Tv S  is introduced by 

( ) ( ) ( )ˆ ˆ1 1 .iz x y z z
T i i T TS s is S v S+ + = − r                              (2) 

Here we denote a location by ( ),i i ix y=r  and i i ix y= +r . 
From the field theory on the SSB [2] [29], for the ground state G we have 

( ) ( )ˆ ˆ ˆ, 0.G Q x G G x Gφ δφ  = ≠                              (3) 

Here ( )0
ˆ ˆdQ xJ x= ∫  is the charge, ( )0Ĵ x  is the 0-th component of the current of the continuous symmetry  

and ( )ˆ xφ  is the field operator. From the discussion in [2] on (3) we know that there exists a field operator of 
the NG boson ( )N̂G xφ , which appears in ( )0Ĵ x  and ( )ˆ xφ . If we neglect the higher order products of field 
operators, we have 

( ) ( )0 0
ˆˆ ,NGJ x f xφ= ∂                                    (4) 

( ) ( )ˆ ˆ .NGx Z xφ φ=                                     (5) 

Here f is the decay constant and Z is the renormalization factor. If we apply the above discussion to the Hei-
senberg antiferromagnet on the square lattice, we have the following correspondence, as discussed in [29]. 

( )0
ˆ ˆ ,x

iJ x s→  

( ) ( )ˆ ˆ 1 ,iy
ix sφ → − r  

( ) ( )ˆ ˆ 1 .ix
ix sδφ → − r  

Using the annihilation operator ( )â k  and the creation operator ( )†â k  for the NG mode of the wave vector 
k , we obtain the correspondences, 

( ) ( ) ( ) ( ){ }†1ˆ ˆ ˆ ˆe ,iiz z
is s if a a

N
ω= → − −∑ krk k k k                         (6) 

( ) ( )
( )

( ) ( ){ }†1ˆ ˆ ˆ ˆ1 e .i iiy y
i

Zs s a a
N ω

+ = − → + −∑ r krk T k k
k

                    (7) 

Here ( )π, π=T  and ( )ω k  is the energy of the NG mode with the wave vector k . For another NG mode, 
we use ˆ y

is  as another current and use ( )ˆ 1 iz
is − r  as the field operator. By the annihilation operator ( )b̂ k  and  

the creation operator ( )†b̂ k  for another NG mode of the wave vector k , we have the followings,  

( ) ( ) ( ) ( ){ }†1 ˆ ˆˆ ˆ e ,iiy y
is s if b b

N
ω= → − −∑ krk k k k                        (8) 

( ) ( )
( )

( ) ( ){ }†1 ˆ ˆˆ ˆ 1 e .i iiz z
i

Zs s b b
N ω

+ = − → + −∑ r krk T k k
k

                    (9) 

In the sigma model of the SSB, we have an interaction between the two NG modes and the Higgs mode. In 
order to obtain a state of the two NG modes, we apply two spin operators of ( ) ( )1 2ˆ ˆz zs sk k  to the lowest ener-
gy state z

TS . Therefore this application leads us to calculate the dynamical correlation [30] of the two spin op-
erators at zero temperature in order to find the signal for the Higgs mode, 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )
1 2 1 2

1 2 1 2

ˆ ˆ ˆ ˆ, , , d exp , , , 0 , 0

ˆˆ ˆ ˆ ˆ2π .

z z z z z z z
T T T

z z z z z z z
T T T

G S t i t S s t s t s t s t S

S s s H E S s s S

ω ω

δ ω

∞

−∞
≡ − = − =

= − − − −

∫q k k k k k

k k k k
        (10) 
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Here ( ) ( ) ( ) ( )ˆ ˆˆ ˆ, exp expz zs t iHt s iHt= −k k , ( )z
TE S  is the energy eigen value of the state z

TS , 1 = +k q k   

and 2 = −k q k . Since the energy eigen value is discrete on the finite lattice, the delta-function is not well de-
fined. For the definition of the delta-function on this lattice, we use a following function, 

( ) 2 2π ,x
x
εδ
ε

→
+

 

with the infinitely small ε . Therefore we have a definition for the dynamical correlation on the finite size lat-
tice 

( ) ( ) ( )
( )( )

( ) ( ), 1 2 1 22 2
ˆ ˆ ˆ ˆ, , , 2 .

ˆ
z z z z z z z

N T T T
z

T

G S S s s s s S
H E S

ε
εω

ω ε
≡ − −

− − +
q k k k k k         (11) 

We make ε  to be zero after we take the large size limit. Let us consider a simple case of =q 0 . In this case 
we can use a simpler notation for the dynamical correlation, 

( ) ( ), ,, , , , , .s z z
N T N TG S G Sε εω ω≡ =k q k0                            (12) 

If only one resonance state exists as the Higgs mode in the large size limit, we have 

( ) ( )
( ) ( ){ }0 , 2 2

lim lim , , .s z
N N T

h

C
G S

E
ε ε ω

ω ω
→ →∞ =

− + Γ

k
k                     (13) 

Here hE , which does not depend on the wave vector k , is the energy of the Higgs mode, and ( )ωΓ  is the 
width of the resonance. On a finite lattice, however, the Hamiltonian has the discrete eigen values only. For a fi-
nite lattice size N, we have  

( ) ( )
( )( ){ }, 2 2

, ,
, , .

, ,

z
j Ts z

N T
zj

j T

C N S
G S

E N S
ε ω

ω ε
=

− +
∑

k
k

k
                       (14) 

Here we assume that ( ) ( )1 , , , ,z z
j T j TE N S E N S− <k k . If the limit in (13) exists,  

( ) ( ) ( )1, , , , , ,z z z
j T j T j TE N S E N S E N S−∆ = −k k k  will decrease with the larger N. Based on these considerations  

about the Higgs mode on the finite lattice, we propose following four procedures to obtain numerical evidences 
on the existence of the Higgs mode. 

(A) Since we generate the state with the pair of the NG modes from the ground state, which is 0z
TS =  on 

the finite lattice, we should see peaks in the correlation ( ), , 0,s z
N TG Sε ω = k . When ε  is sufficiently small, we 

can observe a peak which corresponds with each eigen value. If there are several peaks of ( ), , 0,s z
N TG Sε ω = k , 

in a narrow region of ω , an observation of these peaks is the basic evidence for the Higgs mode. In following 
three procedures, we make ε  a moderate value in order to examine clusters that are made by several eigen states. 

(B) On a lattice of the finite size N we have the lowest energy state z
TS  for each value of z

TS . In the SSB 
its energy ( )z

N TE S  agrees with ( )0z
N TE S =  for the fixed value of z

TS , when N becomes large, and we could 
not distinguish between states for z

TS  on the infinitely large lattice. In addition we suppose that a physical 
quantity depends on z

TS  for the finite N, and the dependence can be expressed by a smooth function of z
TS . For 

an example, the energy ( )z
N TE S  is given by 

( ) ( ) ( ) 20 1 .z z z z
N T N T T TE S E S cS S N= = + +  

Therefore the Higgs mode must exist on each z
TS , and properties of the Higgs mode should be smooth 

functions of z
TS . If we observe this existence and these functions in our calculation, this observation is an evi-

dence for the Higgs mode. 
(C) On the square lattice, there is the NG mode at k  near ( )π, π=T  [29]. Therefore we will find peaks in  

( ), , ,s z
N T sG Sε ω +k T  as well as peaks in ( ), , ,s z

N T sG Sε ω k  when the wave vector sk  is near (0,0). If the shape  

of the peak in ( ), , ,s z
N T sG Sε ω +k T  is the same as that in ( ), , ,s z

N T sG Sε ω k , this observation is also an evidence 
for the Higgs mode. 
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(D) We will consider the XXZ model [27], which has the U(1) symmetry only, 

{ }
,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,x x y y z z
i j i j i j

i j
H s s s s s sλ λ= + +∑                               (15) 

where 1λ < . In this Hamiltonian the conserved current is only ( )0
ˆ ˆz

i iJ s=r . From the discussion on the cor-
respondence between the current and the field operator of the NG boson, we should find the NG mode at k near 
(0,0), whereas the excitation at k near T cannot be the NG mode. As a result the peak in ( ), , ,s z

N T sG Sε ω +k T  is 
not the Higgs mode A numerical evidence for this argument is a clear difference between the peaks of 

( ), , ,s z
N T sG Sε ω +k T  in the Heisenberg antiferromagnet and those in the XXZ model. 
In the next section we will show the above four evidences through numerical calculations of the dynamical 

correlation. 

3. Numerical Results 
In this section we present numerical results of our calculations about the Higgs mode in the Heisenberg antifer-
romagnet on the finite square lattice. Before presenting results shown in subsections, we describe three steps in 
calculations of ( ), , ,s z

N TG Sε ω k . The first step is to obtain the eigen state z
TS  with the lowest energy eigen val-

ue for each z
TS  by the exact diagonalisation [26]. As the second step, we operate ( ) ( )ˆ ˆz zs s −k k  to z

TS  in 
order to make the state that includes the two NG modes of the wave vectors k  and −k . Since the state 

( ) ( )ˆ ˆz z z
Ts s S−k k  contains the contribution of z

TS , we reduce its component from ( ) ( )ˆ ˆz z z
Ts s S−k k . Then 

we obtain the irreducible state, 

( ) ( ) ( ) ( )ˆ ˆ, .z z z z z z z z z
T T T T TS s s S S S s s S= − − −k k k k k                  (16) 

Since the magnitude of the ( ), , ,s z
N TG Sε ω k  strongly depends on the lattice size and the wave vector, we will 

normalize the correlation in order to make a clear comparison among them for the various lattices and the various 
wave vectors. Therefore we examine the correlation, 

( )
( )( )

, 2 2
, , , , ,

ˆ
n z z z
N T T T

z
T

G S C S S
H E S

ε
εω

ω ε
≡

− − +
k k k                  (17) 

where C is determined for the correlation to satisfy a following normalization, 

( ),d , , 1.n z
N TG Sεω ω

∞

−∞
=∫ k                                (18) 

The third step of the calculation is to apply the finite temperature Lanczos method [28] [31] [32] by adopting 
, z

TSk  as the initial state. Then following the usual Lanczos method, we generate the Lanczos states. The num-
ber of these states is fixed to 50, because we see no change in the results when this number is larger than 50. By 
these Lanczos states we diagonalise the Hamiltonian so that we obtain ( ), , ,n z

N TG Sε ω k  for any value of ω . 

3.1. Results of the Dynamical Correlation 
In this subsection we examine several peaks of the dynamical correlation in the narrow energy region in or-
der to obtain the evidence by the first procedure (A) discussed in the Section 2. First we show results of the 
dynamical correlation ( ), , ,n z

N TG Sε ω k  for 0z
TS =  on the lattices of N = 20, 26, 32 and 36. The edge vector

( )11 12,l l  are (4,2), (5,1), (4,4) and (6,0) for N = 20, 26, 32 and 36, respectively. Here we impose the π 2  
rotational symmetry to the Hamiltonian. Therefore another edge vector ( )21 22,l l  is given by ( )12 11,l l− . 
Note that these edge vectors are defined uniquely for a given lattice size N except for accidental cases. Here
k  is the non-zero wave vector of the lowest magnitude on the each lattice. They are ( )2π 5, π 5=k , 

( )5π 13, π 13=k , ( )π 4, π 4=k  and ( )π 3,0=k  for N = 20, 26, 32 and 36, respectively. 
Figure 1 shows the dynamical correlation ( ), , ,n z

N TG Sε ω k  versus ω  with the 0z
TS = . Here ε  is fixed  

to be sufficiently small in order that each peak corresponds to a single energy eigen state. By the procedure 
(A) of finding several peaks in the narrow energy region, we can obtain the first evidence for the Higgs 
mode. 

We suppose that the Higgs mode appears as a resonance on the infinitely large lattice. On the finite lattice,  
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Figure 1. The dynamical correlation of two spin operators ( ), , 0,n z
N TG Sε ω = k  with 

0.025ε = . The lattice sizes are N = 20, 26, 32 and 36. We calculate them for the 
wave vector k  whose magnitude is non-zero and the smallest on each lattice.             

 
this resonance consists of the several energy eigen states. We would like to investigate the resonance which 
survives in the large N limit. For this purpose we make several peaks in Figure 1 to merge to one broad peak 
by using the larger ε . Therefore this ε  must be larger than the energy difference between the peaks which 
form the resonance. On the other hand ε  has to be smaller than the width of the resonance because, if we 
use the large ε , the observed width becomes ε  and irrelevant to the width of the Higgs mode. 

By taking both conditions into account, we determine 0.5ε = . In following calculations we use this value. 
In Figure 2 of ( ), , ,n z

N TG Sε ω k , whose z
TS  and the wave vector are the same as those in Figure 1 except for 

the value of ε , we find the broad peaks. We can see that the cluster of peaks in Figure 1 merges to the sin-
gle broad peak, which can be understood as the resonance. Such broad peak is found on all lattices. Although 
the energy at which we see the broad peak depends on the lattice size, this dependence is small. 

Here we make a comment on the sharp peak whose energy 1.0ω  , which is isolated from the broad 
peak. As seen in Figure 1, this peak is given by a single energy eigen value. Therefore we conclude that this 
peak is irrelevant to the resonance. This conclusion is supported by vanishing of this peak in 

( ), , 1,n z
N TG Sε ω ≥ k , which will be shown in the next subsection. 

3.2. Results for Total Spin S > 0 
As discussed in the previous section, if the broad peaks found in Figure 2 are relevant to the Higgs mode, one 
should see similar peaks in the dynamical correlation of ( ), , ,n z

N TG Sε ω k  with other values of z
TS . Figure 3 

gives us the correlation on the N = 36 lattice with 0 7z
TS≤ ≤ . The clear broad peaks are found in 

( ), , ,n z
N TG Sε ω k  for any z

TS . Here note that the ω  location, the height and the broadness of the peak change 
smoothly when z

TS  increases.  
In order to make quantitative discussion, we introduce definitions for the location of the peak and its broad-

ness. First we find the maxω  where ( ), , ,n z
N TG Sε ω k  is maximal. Next we determine two values of ω , at which  

the value of ( ), , ,n z
N TG Sε ω k  is half of ( ), max , ,n z

N TG Sε ω k . These two values are denoted as lowerω  and upperω   

( )lower upperω ω≤ . Here the central energy cω  of a peak and the width Γ  are defined by 

( )upper lower 2 ,cω ω ω≡ +                                  (19) 
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Figure 2. The dynamical correlation of two spin operators ( ), , 0,n z
N TG Sε ω = k  

with 0.5ε = . The conditions are the same as those in Figure 1, except for 
the value of ε .                                                                

 

 

Figure 3. The dynamical correlation of two spin operators ( ), , ,n z
N TG Sε ω k  with 

the wave vector ( )π 3,0=k  on the lattice of N = 36. The values of z
TS  are 0, 

1, ∙∙∙, 6 and 7. In the figure z
TS  is denoted by S.                                          

 

( )upper lower 2.ω ωΓ ≡ −                                  (20) 

For a concrete example, see Figure 4. Note that cω  agrees with the resonance energy and Γ  agrees with its 
width, if ( ), , ,n z

N TG Sε ω k  is a simple form of the Breit-Wigner resonance.  
In Figure 5 we plot cω  and Γ  for 0 7z

TS≤ ≤  on N = 26, 32 and 36 lattices. We find that cω  depends on 
z

TS , i.e. cω  decreases with larger z
TS . It seems that cω  is the linear function of z

TS . If we make the least 
square fit on each lattice, we obtain the errors of the fit, which are 0.058, 0.062 and 0.064 for N = 26, 32 and 36, 
respectively. These errors show that the linear function is acceptable for us. Also as dependences on the lattice 
size N, cω  decreases weakly with larger N. 
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Figure 4. An example for the central energy cω  and the width Γ . A black ho-
rizontal line denotes ω . At maxω ω= , whose location is expressed by the red 

dashed line, ( ), , ,n z
N TG Sε ω k  is maximal. The blue vertical lines show the loca-

tions of lowerω  and upperω , where the horizontal dashed line is a half of the 

maximum value. The red solid line gives us ( )upper lower 2cω ω ω= + . The width 

Γ  is obtained by the energy distance between the blue dashed line and the red 
solid line.                                                                       

 

 
Figure 5. The central energy cω  ( ) and the width Γ  (× ) of the broad 
peaks in the dynamical correlation of two spin operators. cω  and Γ  are de-
fined by (19) and (20) in Subsection 3.2. Results are shown for the correlation 
on the lattices of the size N = 26, 32 and 36. Lines are obtained by making the 
least square fit.                                                                          

 
Next we will discuss the width Γ  of the broad peak. Γ  is smaller with larger z

TS , and approaches to 
0.5ε = . If Γ  agrees with ε , we understand that the peak is formed by a single eigen state. Also from this 

figure we observe that the width depend weakly on z
TS . This dependence shows that we see the same resonance. 
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By making the least square fit for Γ , we plot the fitted lines in the figure. The errors of the fit are 0.064, 0.054 
and 0.087 for N = 26, 32 and 36, respectively. These errors are worse than those of cω .  

Summarizing this subsection we conclude that the observation in the state for 0z
TS ≥  is the second evidence 

for the Higgs mode, as discussed in the Section 2. 

3.3. Two Kinds of the NG Modes 
The SSB of the SU(2) symmetry of the Heisenberg antiferromagnet on the square lattice implies two kinds of 
the NG modes, as discussed in the previous section. One is the excited state of the small wave vector sk  in

( )ˆz z
s Ts Sk . Another is the excited state of the wave vector s +k T  in ( )ˆz z

s Ts S+k T . From the discussion 
by the sigma model for the SSB, we have one Higgs mode which has the same interaction with any kind of the 
NG modes. Therefore in the dynamical correlation ( ), , ,n z

N T sG Sε ω +k T  we should find the same resonance 
peak as that in ( ), , ,n z

N T sG Sε ω k  for the small wave vector sk . Since we calculate the correlation on the small 
lattice, the magnitude of the wave vector in our study is not so small. From the previous study [21] we can as-
sume that the excited states with 1.5≤k  are candidates for the NG modes. On the N = 36 lattice, which is the 
maximal lattice in our calculation, the wave vector ( )π 3,0  has the magnitude of 1.047, and the wave vector
( )π 3, π 3  has the magnitude of 1.481. Therefore on the N = 36 lattice we calculate the dynamical correlation 
on the excited states of the wave vectors ( )4π 3, π  and ( )4π 3,4π 3 , as well as ( )π 3,0  and ( )π 3, π 3 . In 
addition this is calculated for the wave vectors of ( )π 4, π 4  and ( )5π 4,5π 4  on the N = 32 lattice. Here 
note that the wave vector ( )π 4, π 4  has the magnitude of 1.111.  

In Figure 6 we show ( ), , ,n z
N TG Sε ω k  with the above wave vectors. The first noticeable observation is the 

excellent agreement between peaks of the wave vector ( )π 3, π 3  and ( )4π 3,4π 3 . On the peaks with the 
smallest wave vector ( )π 3,0  and ( )4π 3, π , the agreement is not perfect due to the dip in the peak with 
( )π 3,0 . As we will discuss in the summary, we suppose that the dip is artificial by the lattice symmetry. In or-
der to confirm that this disagreement is accidental, we calculate ( ), , ,n z

N TG Sε ω k  with 1z
TS =  and the wave 

vector ( )π 3,0  and ( )4π 3, π . These results are included in Figure 6, where we find the agreement between  
 

 

Figure 6. The dynamical correlation of two spin operators ( ), , ,n z
N T sG Sε ω k  with the wave 

vectors of sk  and s +k T  on the lattices N = 32 and 36. In the figure the expression of N = 

36 is dropped. The results denoted by S =1 are the correlations with 1z
TS = , while other re-

sults are calculated with 0z
TS = . The expressions of k1, k2 and k3 show the wave vector 

( )π 3,0 , ( )π 3,π 3 , and ( )π 4,π 4 . T is used for ( )π,π=T .                                   
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these peaks. Also the result on the N = 32 lattice shows the similar agreement between peaks of the correlation 
with the wave vector sk  and s +k T . These agreements can be explained by a fact that the Higgs mode 
couples to two kinds of the NG modes and it couples at the same strength to them. Therefore this observation is 
the strong evidence for the Higgs mode in the SU(2) symmetry. 

3.4. Results about the XXZ Model 
In this subsection we will carefully examine the broad peaks in ( ), , ,n z

N T sG Sε ω k  and ( ), , ,n z
N T sG Sε ω +k T  of 

the XXZ model.  
As discussed in the previous subsection, the agreement between the peaks in these correlations reflects the 

symmetry of SU(2). If the symmetry of the model is U(1), we should not expect agreements between these 
peaks. Therefore we would like to study the correlation in the XXZ model which has only the U(1) symmetry. 
The Hamiltonian of the XXZ model is given by (15) in the Section 2. Since in this model the conserved charge 
is ˆz

ii s∑ , the 0-th component of conserved current corresponds with ˆz
is . By this consideration, the NG mode 

appears in ( )ˆz z
Ts Sk  with the small wave vector k  and we can expect the broad peak by the Higgs mode in  

( ), , ,n z
N T sG Sε ω k . On the contrary the peak in ( ), , ,n z

N T sG Sε ω +k T  is irrelevant to the Higgs mode. 

In Figure 7 we show ( ), , ,n z
N T sG Sε ω k  and ( ), , ,n z

N T sG Sε ω +k T  about models of λ = 0.1, 0.2, 0.3, 0.5, 0.8 
and 1 (Heisenberg model). Here the lattice size N is 36 and the wave vector sk  is ( )π 3,0 . As is expected, 
these peaks of ( ), , ,n z

N T sG Sε ω k  and ( ), , ,n z
N T sG Sε ω +k T  begin to separate from each other when λ deceases 

from 1. The central energy cω  of the broad peaks for the wave vector ( )π 3,0  decreases when λ deceases. 
Also the width Γ  becomes smaller. On the other hand the central energy cω  for the wave vector ( )4π 3, π  
increases and the width Γ  does not change clearly. We show the central energy of the broad peaks on the lat-
tices of N = 26, 32 and 36 in Figure 8. From results in Figure 7 and Figure 8, we obtain the fourth evidence for 
the Higgs mode by the separated peaks in ( ), , ,n z

N T sG Sε ω k  and ( ), , ,n z
N T sG Sε ω +k T  in the XXZ model. 

 

 

Figure 7. The dynamical correlation of two spin operators ( ), , 0,n z
N T sG Sε ω = k  on the N = 36 lattice 

with the wave vectors ( )π 3,0  and ( )4π 3,π  of the Heisenberg antiferromagnet and the XXZ 

models. The solid lines are results for ( )π 3,0=k , whereas the dashed lines are for 

( )4π 3,π+ =k T . Also the value of λ of the XXZ model is denoted by the value inside the expres-

sion XXZ(λ).                                                                                 
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Figure 8. The central energy cω  of the broad peaks of the XXZ model for N = 26, 32 
and 36. The symbol ( ) is used for cω  of the wave vector k  whose magnitude is the 
smallest on each lattice. Also we plot cω  for +k T  by the symbol (× ).                      

4. Summary and Discussion 
In this work we have presented the numerical evidences for the Higgs mode of the spin-1/2 Heisenberg antifer-
romagnet on the square lattice, using the exact diagonalisation method and the finite temperature Lanczos me-
thod. Since the Higgs mode is the resonance which couples with the two Nambu-Goldstone (NG) modes, we 
calculate the dynamical correlation of the two spin operators with various wave vectors at zero temperature. For 
the dynamical correlation we have to calculate the inverse of the Hamiltonian operator. Since our calculations 
are carried out on the finite lattice, we need the smearing parameter ε  to avoid the singular behavior of the in-
verse operator.  

In this work we suggest four procedures (A)-(D) to find the Higgs mode in the calculation of the dynamical 
correlation. Using the first procedure (A) about peaks in the correlation with the small value of ε , we observe 
many peaks in the narrow energy region, which gives us the first evidence for the Higgs mode. By calculations 
with the moderate value of ε , we have found broad peaks on the lattices of various sizes. The second procedure 
(B) is suggested by a fact that the property of a state with any value of z

TS  should agree with that of the state
0z

TS = , because the spontaneous breaking of the continuous symmetry requires the degenerated states. Al-
though this agreement is obtained on the infinitely large lattice, the property on a state with non-zero value of 

z
TS  on the finite lattice should be the smooth function of z

TS . The study on the lattices of N = 26, 32 and 36 has 
shown that the central energy of the broad peaks is the linear function of z

TS . This is the second evidence for the 
Higgs mode. By noticing that the SU(2) symmetry is broken by the O(3) scalar model, i.e. we have only one 
Higgs mode as well as two kinds of the NG modes, we suggest the third procedure (C). The Hamiltonian has the 
SU(2) symmetry so that we have the NG mode of the wave vector ( )π, πx yk k+ = + +k T  as well as those of 

( ),x yk k=k  for the small xk  and yk . Since these NG modes interact with the same Higgs mode, we should 
find the same broad peaks in the dynamical correlation with +k T  as those with ( ),x yk k=k . The calcula-
tions of ( )π 3, π 3=k  with 0z

TS =  and ( )π 3,0=k  with 1z
TS =  on the lattice of N = 36 have given us 

the strong support for the same broad peaks. Also we find the same peaks in the calculations of ( )π 4, π 4=k  
with 0z

TS =  on the lattice of N = 32. These results give us the third evidence for the Higgs mode. By the ob-
servation of these same broad peaks, we suggest the fourth procedure (D), which makes a comparison between 
the Higgs modes of the SU(2) and the U(1) symmetry. For this purpose we study XXZ model which has only 
U(1) symmetry. In this model the excited mode of the wave vector ( ),x yk k=k  for small xk  and yk  is the 
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NG mode, while the mode of +k T  is not. Therefore the excited mode of the wave vector +k T  does not in-
teract with the Higgs mode. Our study about the various XXZ models has showed that the broad peak in the 
correlation with +k T  is separated from the peaks with ( ),x yk k=k . This observation has given us the fourth 
evidence. By these evidences we can confirm the existence of the Higgs mode in the Heisenberg antiferromag-
net on the square lattice. 

Now we comment on the dip that is seen in the broad peak of the correlation of N = 36, 0z
TS =  and

( )π 3,0=k . The similar dip is found in the peak of N = 26, 0z
TS =  and ( )5π 13,5π 13=k . We suppose that 

these dips are accidental because we do not see the dip for 1z
TS ≥ . Also on the small lattices we do not see the 

dip, as shown in Figure 9. This figure gives us results of N = 18, 20, 25a and 25b for 0z
TS = , where the edge 

vectors are (3,3), (4,2), (4,3) and (5,0). Here we assume the symmetry of π 2  rotation. Also we can see the 
dependence of peaks on the edge vector, if we make a comparison between results of the edge vector (4,3) for 
25a and that of the edge vector (5,0) for 25b.  

Since we have calculated the central energy cω  of the broad peak on many lattices, we discuss cω  on the 
infinitely large lattice. When we assume that 

( ) ( ) ,c cN Nω ω α= ∞ +                                  (21) 

we obtain ( ) 1.88 0.15cω ∞ = ±  for 0z
TS = , while we obtain ( ) 1.89 0.12cω ∞ = ±  for 1.z

TS =  Although the 
estimated error is not small, one should note that this is clearly non-zero, and they give the same value. Using 
the same analysis for the width, we obtain ( ) 1.2 0.2Γ ∞ = ±  for 0z

TS =  and ( ) 0.95 0.1Γ ∞ = ±  for 1z
TS = . 

The width for 0z
TS =  does not agree with that for 1z

TS = , but it is clear that they are larger than 0.5ε = . This 
implies that we obtain the finite width on the infinitely large lattice. 

Finally we would like to discuss about further study of the Higgs mode. If the broad peak is the resonance of 
the Higgs mode, we should find the same peak that has the same central energy cω  and the same width Γ  for 
any pair of the NG modes of the wave vectors k  and −k . In the present work we employ the exact diagona-
lisation approach, by which the size of the lattice is severely limited. As a result the wave vector is not small 
enough even for the N = 36 lattice, and we cannot find the same peak in the dynamical correlation with more 
than two kinds of the wave vectors. Therefore it is quite important to find the same peak for various wave vec-
tors on larger lattices. 

 

 

Figure 9. The dynamical correlation of two spin operators ( ), , 0,n z
N TG Sε ω = k  on the 

small lattices of N = 18, 20, 25a and 25b. The magnitude of the wave vector k  is the 
smallest for each lattice. The edge vector for N = 25a is (4,3), while it for N = 25b is 
(5,0). The lattice size is 25 for both edge vectors. The wave vectors for N = 18, 20, 25a 
and 25b are ( )π 3,π 3 , ( )2π 5,π 5 , ( )8π 25,6π 25  and ( )2π 5,0 , respectively.              
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In this work our calculations are made at the zero temperature. The extensive study at the finite temperature is 
an important subject because the experiments are performed at the finite temperature. Also the Higgs mode in 
two dimensional systems near a quantum critical point has been a subject of debate [15]-[20]. Our approach to 
the Higgs mode is useful to study models with the quantum phase transition. 
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