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Abstract 
In this paper, we present an SEIQRS epidemic model with non-linear incidence function. The pro-
posed model exhibits two equilibrium points, the virus free equilibrium and viral equilibrium. 
The model stability is connected with the basic reproduction number R0. If R0 < 1 then the virus 
free equilibrium point is stable locally and globally. In the opposite case R0 > 1, then the model is 
locally and globally stable at viral equilibrium point. Numerical methods are used for supporting 
the analytical work. 
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1. Introduction 
The Malicious objects are harmful codes that reproduce and spread by way of internet [1]. A number of mali-
cious objects have been noticed to appear on the internet for the last decade. They are powerful enough to con-
front and disfunction the infected computer system. As the internet has been used for a wide range of function so, 
the malicious objects have become a serious threat to man’s work. They have hampered the economic and fi-
nancial growth of man. Now it has become an issue of great concern and therefore it is vital to suggest such 
plans that are effective in combating the malicious objects. The correspondence between the propagation of bio-
logical virus and the malicious objects compel the researchers to advocate epidemic models that could explain 
and overcome the propagation of malicious objects. Re F. Wang et al. in [2] present the SEIQRS model with 
graded infection rates for internet worms. The infection ratio of exposed class have less then infected ratio and 
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show the worm free and viral equilibrium stability locally as well as globally, which is connected to threshold 
quantity. In the previous decade or something like that, various epidemic models (see [3]-[6]) were essentially 
obtained to depict the spread of computer virus. B. K. Mishrand G. M. Ansari present an E-SIRS epidemic mod-
el for virus and worms in a computer network. In which they consider the immune as well as the latent period 
and self-replication time. They stated the global stability of the proposed model in term of reproduction number 
[7]. M. Kumar et.al. studied the quarantine and vaccination role in the control of virus and worms in the com-
puter network [8]. S. T. Ge et al. presented the SEIQR epidemic model with the discrete time in computer net-
works. The stability of the proposed model was shown by Lyapunove method in [9]. M. Kummar and A. Kumar 
analyzes the SIj RS E-Epidemic model for various groups of infection in computer networking [10]. 

In this paper, we present a Propagation Model with non-linear incidence function, (susceptible, exposed, in-
fected, quarantined, and recovered) which exhibits two equilibria the virus free and viral equilibrium point. The 
stability of both equilibrium points is connected with the threshold quantity. On the off chance that its value is 
less then unity then the virus free equilibrium point is locally and additionally globally asymptotically stable and 
in the opposite case of the threshold quantity, the same condition of stability is satisfied for viral equilibrium 
point. 

The rest of the paper is set as follows, in Section 2 we shall formulate the new model, in Section 3 the basic 
propertied is discussed like reproduction number, virus free and viral equilibrium. In Section 4, we shall study 
the local and global stability of the virus free equilibrium point. In Section 5, we shall examine the local and 
global stability at viral equilibrium point. Finally, we support our analytical work with numerical simulations.   

2. Model Formulation 
As usual the computer it either internal or external (i.e. connected with the internet or not). In this model we di-
vide the internal computers into five states. Susceptible, exposed, infected, quarantined and recovered. Where 
the variable S(t), E(t), I(t), Q(t) and R(t) denote the sizes of nodes at time t in the states susceptible, exposed, in-
fectious, quarantined and recovered respectively. N(t) the total number of computer at time t, where N(t) = S(t) + 
E(t) + I(t) + Q(t) + R(t). The governed model is given below: 

( ) ( )

( ) ( )

( )

( )

1

1 2 3

3

2

d 1
d
d
d
d
d
d
d
d
d

S SIS R
t f I
E SI E
t f I
I E I
t
Q I Q
t
R I Q R R
t

βϕ ϑ

β ϑ η

η ϑ η ψ η

ψ ϑ η ξ

ϕ η ξ ϑ

 = − ∂ − − +



= − +

 = − + + +



= − + +

 = ∂ + + − −






                               (1) 

With Initial conditions 

( ) ( ) ( ) ( ) ( )1 2 3 4 50 0, 0 0, 0 0, 0 0, 0 0S E I Q R= Θ ≥ = Θ ≥ = Θ ≥ = Θ ≥ = Θ ≥       (2) 

where ∂  is the recruitment rate of the computers. The ratio of crashing nodes without attack of malicious ob-
jectsis ϑ . The transmission rate is denoted by β . While   is the ratio at which the recovered computers loss 
their immunity. The contact ratio between exposed and infected computers is 1η . The rate of recovery is 2η  
and 3η  is the contact ratio between infected and recovered computers. ξ  is the contact ratio between infected 
and recovered computers. ϕ  is the fraction of computers to be immune from virus. 

We suppose that the like transmission rate in the form of 
( )
SI

f I
β , where f is a positive function with, 

( )0 1f =  and 0ψ ′ ≥ , used by [11]. This is the generalized form of mass action law, that is, ( ) 1f I = , and the 
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incidence rate 
1 q

SI
I

β
κ+

. The function 
( )
I

f I
 is increasing for small values of I and decreasing in the opposite 

case where ( ) 21f I I= + . 

3. Basic Reproduction Number and Equilibrium Points 
In this subsection, we shall investigate the feasible region and the threshold quantity for the proposed model (1). 
Where the size of total population is represented by N satisfy the following equation. 

( ) 3
d
d
N N I Q N
t

ϑ η ϑ= ∂ − − + ≤ ∂ −  

and then 

( )
3

lim .
x

N t
η→∞

∂
=  

Therefore, for the system (1) the positively invariant feasible region is given below. 

( )
3

, , , , : 0 , , , , ,S E I Q R S E I Q R S E I Q R
η

 ∂
∏ = ≤ + + + + ≤ 

 
, 

Thus, the solution with initial condition will be analyzes inside the feasible region ∏ . 
For viral free equilibrium point we take 0E I Q= = = , thus from the system (1) we get  

( ) ( )( )
( )

0 0 0 1
,0,0,0, ,0,0,E S R

ϕ ϑ ϕ
ϑ ϑ ϑ

 ∂ − + ∂
= =   + + 



 

. 

To investigate the reproduction Number for system (1) we use the next generation method [12]. 
Assume that ( ),z E I=  then from system (1) we can write. 

d
d
z F J
t
= −  

where 

( ) ( )
( )

1

1 3 20

SI
E

f IF J
E I

β
ϑ η

η ϑ η ψ η

 
 +  = =    − + + + +   

 

00
Jacobian of Matrix at VFE

0 0
SG F

β 
= =  

 
 

( )
( )

1

1 2 3

0
Jacobian of Matrix at VEH J

ϑ η
η ϑ η η ψ

 + 
= =  − + + + 

 

( )( )
( )

( )
2 31

1 12 3 1

01H
ϑ η η ψ

η ϑ ηϑ η η ψ ϑ η
−  + + +
=  ++ + + +  

 

( )( )
( )

( )
0

2 31

1 12 3 1

001
0 0

SGH
ϑ η η ψβ

η ϑ ηϑ η η ψ ϑ η
−  + + + 
=    ++ + + +    

 

The spectral radius of the matrix 1GH −  is represented by 0R  

( ) ( )( )
( )( )( )

11
0

1 2 3

1
R GH

η β ϕ ϑ
ρ

ϑ ϑ η ϑ ϑ η η ψ
− ∂ − +

= =
+ + + + +




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Now we examine the virus equilibrium point for the given system (1) and denoted by  

( )1 * * * * *, , , ,E S E I Q R=  

where  

( )( ) ( )*
1 2 3*

1

f I
S

ϑ η ϑ η η ψ

βη

+ + + +
= , 

( ) *
2 3*

1

I
E

ϑ η η ψ
η

+ + +
=  

*
*

3

IQ ψ
ϑ η ξ

=
+ +

,
( ) ( )( )

( )( )

*
3 2 3*

3

I
R

ϕ ϑ η ξ ξψ η ϑ η ξ

ϑ ϑ η ξ

∂ + + + + + +
=

+ + +

 

Now by substituting the above mention values of * * * *, ,  and S E I R , in equation 

( ) ( )* * *
11 0S E Rϕ ϑ ϑ η∂ − − − + + =  

we get 

( )
( )( ) ( )( ) ( )

( )( ) ( )
( )( )

1 2 3

1

1 2 3 2 2 3 2

1 3

1

0

f I
F I

I I

ϕ ϑ ϑ ϑ η η ϑ η ψ
ϑ βη

ϑ η η ϑ η ψ ϑη ξψ η η η ξ
η ϑ η ϑ ξ

∂ − + + + + +
= −

+

+ + + + + + +
− + =

+ + +









 

When 
( )( ) ( )( )

( )( )
2 31 2 3

1 3

0
II ξψ η ϑ η ξϑ η η ϑ η ψ

η ϑ η ϑ ξ

 + + ++ + + +
 − >
 + + + 





, ( ) ( )0 1,f f I′=  is non-negative then 

( )F I  is a decreasing function Moreover. 

( )
( )( ) ( )( ) ( )

( )( )
1 2 3 2 2 3 2

1 3

1 I
F I I

ϕ ϑ ϑ η η ϑ η ψ ϑη ξψ η η η ξ
ϑ η ϑ η ϑ ξ

∂ − +  + + + + + + +
< − −  + + + + 




 

 

( )lim
x

F I
→∞

= −∞                                        (3) 

Next to take the derivative of ( )F I . 

( ) ( )( ) ( )
( )( )

( )( ) ( )1 2 3 2 2 3 2 1 2 3

1 3 1

0
I f I

F I I
ϑ η η ϑ η ψ ϑη ξψ η η η ξ ϑ ϑ η η ϑ η ψ

η ϑ η ϑ ξ βη
′ + + + + + + + + + + +

= − − − < 
+ + +  







 

Since 
( )( ) ( )( )

( )( )
2 31 2 3

1 3

0
II ξψ η ϑ η ξϑ η η ϑ η ψ

η ϑ η ϑ ξ

 + + ++ + + +
 − >
 + + + 





 and ( ) 0f I′ ≥  also for 0I = , 

( )0 1f =  is follows that 

( ) ( )( ) ( )1 2 3
0

1

0 1F R
ϑ ϑ η η ϑ η ψ

βη
+ + + +

= −  

Therefore, F  has a unique positive zero if and only if ( )0 1F = , i.e. 0 1R > . It can be stated as below. 
Proposition 3.1. Suppose that ( )F I  holds the conditions imposed on it. Then, the system (1) has virus free 

equilibrium point 
( )( )
( )

0 1
,0,0,E

ϕ ϑ ϕ
ϑ ϑ ϑ

 ∂ − + ∂
=   + + 



 

 which is true for all parameter values. When, the system 

(1) admits also a unique viral equilibrium point ( )1 * * * * *, , , ,E S E I Q R= . 

4. The Stability Analysis of the Virus Free Equilibrium Point 
In this section, we shall study the local and global stability of the given system (1) at virus free equilibrium point 
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0E . 
Theorem 4.1. The given system (1) is locally asymptotically stable if 0 1R < , otherwise unstable. 
Proof: 
To examine the local stability of the given system (1) we construct the jacobian matrix at 0E , which is given 

below. 

( )

( )

0

0
1

0
1 1

2

2

0
0 0 0
0 0
0

0
0 0

0

0

0

S
S

J k
k

ϑ λ β
ϑ η λ β

η λ
λ

η ξ ϑ
ψ

λ

 − − −
 

− + + 
 = −
 

− − 
 − + + 

−





 

1 2 3 2 3,k kϑ η η ψ ϑ η ξ= + + + = + +  

With row operation we can get the characteristic equation of the above jacobian matrix is 

( )( )( ) ( ) ( )( )( )0
1 1 1 2 3 0k Sϑ λ ϑ λ λ βη ϑ η λ η ϑ η ψ λ + + + + − + + + + + + + =   

The first three roots of the above equation is ( ) 1, , kϑ ϑ− − + −  and the other roots will be find on the fol-
lowing way.  

( )( ) 0
1 2 3 1 0Sϑ η λ η ϑ η ψ λ βη + + + + + + − =   

After a little algebraic calculation we can get the following equation 
2

1 2 0T Tλ λ+ + =  

where 

1 2 3 12T ϑ η η ψ η= + + + +  

( )( )( )2 1 3 2 01T Rϑ η ϑ η ψ η= + + + + −  

1 0T >  and 2 0T >  if 0 1R <  then according to Routh-Hurtwiz criteria the virus free equilibrium point 0E  
is locally asymptotically stable. If 0 1R >  then 2 0T <  and hence one of the eigenvalue have positive real part. 
So the virus free equilibrium point is unstable. 

Global Stability of Viral Free Equilibrium Point 
Theorem 4.2. The system (1) at 0E  is globally stable when 0 1R >  otherwise unstable. 

Proof: To examine the global stability of the proposed model consider a Lyapunov function as below: 
( ) ( )1 1V t E Iη ϑ η= + +  

Taking the derivative i.e. d
d
V
t

, we get the following 

( ) ( ) ( ) ( ) ( )( )1 1 1 1 2 3
SIV t E E I

f I
βη ϑ η ϑ η η ϑ η ψ η

 
= − + + + − + + +  

 


 
Since for ( )0, 1I f I= =  and after a little simplification we get the following results 

( ) ( )( )( )0 1 2 31V t R Iϑ η ϑ η ψ η≤ − + + + +  

0V =  if 00 or 1E I R= = =  and 00 if 1V R< <  then according to Lasalle’s invariance principle the virus 
free equilibrium point 0E  is globally stable and in case of 0 1R >  the mention result is failed and hence the 
system is unstable [13]. 

5. The Local Stability Analysis of Viral Equilibrium Point 
In this section we will discuss the local as well as the global stability of the system (1) for the viral equilibrium 
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point. 
Theorem 5.1. The given system (1) at 1E  is locally asymptotically stable if 0 1R > . 
Proof: To investigate the local stability of the given system (1) we find the jacobian matrix at 1E , which is 

given below. 

[ ]

( )

( ) ( )

( )
( )

*

*

*

* 1*

1

1

2

3

1

2

0

0 0

0 0
0 0 0
0 0

0

0

I
f I

I
J f

b

b

b
I

βϑ

β ϑ η

η
ϑ η ξ

η ξ
ψ

ϑ

 
− − 
 
 
 − + =
 
 −
 

− + + 
 − 

−

+ 



 

( )
( )
( )

* **

1 2 2 3* *
1 ,

I f ISb b
f I f I
β ϑ η η ψ

 ′
 = − = + + +
 
 

 

Trace of the above jacobian Matrix [ ]*J  is 

[ ]

( )
*

2 3Trace 5 2 0I
f I

J βη ϑ η ξ ψ  = − − − − − − − <  
 

And after some row operation we get the following matrix [ ]*J  

[ ]

( )

( ) ( ) ( )

( ) ( )
( )

( ) ( )

1

1

*

1 1 2

3

2 3

11 0

0 ( ) 1

0 0

0

0 0

0 0 0
0 00

I I
f I f I

J I Ib b
f I

b

f I

ϑ ϑ η

β βϑ η
ϑ

β βϑ η
ϑ

ϑ η ξ
η ϑ η ξ ξψ

ψ
ϑ

− − + 
 

  − + +   
  

 =  
 + +    
 

− + + 
 + + + − + 

+









 

[ ]( ) ( ) ( )
( )

( )( )
( )

( )( ) ( )
( )
( ) ( )( )

2 2*
1

1 1
3 1 3 2

Det 1

1 0

f I
J

f I f I

f Ib
f I f I

β ψ η ϑ η ξ ξψβ
ϑ ϑ η

ϑ ϑ

βη
ϑ ϑ ξ η ϑ η η ϑ η ψ

ϑ

 + + +′ 
= + +      

 ′ 
+ + + + + + + + + + + >      





 

Thus, the system (1) at 1E  has eigenvalues, that contains negative real part. So, we conclude that the model 
(1) is locally asymptotically stable.  

Global Stability of Viral Equilibrium Point 
In this segment we should look at the global stability of the given system (1) at viral equilibrium point. We use 
the method presented in [14] established by Li and Mouldowney. According to which we find sufficient condi-
tion for the global stability of the model (1) at viral equilibrium point. First we shall discuss the method briefly. 

Consider  
( ) ,y g y=                                             (4) 

where : ,n ng K K→ ⊂   is simply connected, open set and ( )1g C K∈ . The solution of Equation (4) is 

denoted by ( ) ( )*
0, , . , 0.y t y i e g y =  Let us suppose that the assumptions given below are true: 
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• ( )iL  There exist a compact absorbing set .O K⊂  

• ( )iiL  Equation (4) admit a unique equilibrium * .y K∈  
We know that equilibrium point *y  is globally stable in K  when it locally stable as well as all the orbits in 

K  converges to *y . Bendixson criterion for 2c ≥  we mean that g  satisfied a condition which prohibit the 
existence of non-constant periodic solutions of (4) The classical Bendixson’s condition ( )div 0g y <  for 

2c = , is robust under 1C robust properties are discussed in [14] [15]. 
If a neighborhood V  exist for 0y K∈  for 0I >  such that i.e. ( ), .V y t V t Iφ= ∀ >  Then the point 

0y  is wandering for the Equation (4). The following principle for global stability is established in [14] for any 
finite dimension autonomous systems. 

Lemma 5.1. Assume that conditions ( )iL  and ( )iiL  holds. Such that (4) satisfies a Bendixson criterion 
that is robust under 1C  local perturbations of g  at all non-equilibrium non-wandering points for (4). Then 

*y  is globally stable in K  provided it is stable. 
The accompanying Bandixson criterion is displayed in [14] and indicates to have the heartiness needed by 

Lemma (5.1). Let 
2 2
c c   

×   
   

 be a nonsingular matrix and ( )P h  is a matrix valued function that 1C  on K . 

Suppose that for a compact absorbing set 1,O P−  not only exist but also continues for h O∈ . A q  quantity 
is defined as. 

( )( )( )0
0

1limsupsup , d ,
t

t h O
q B h s h s

t
µ

→∞ ∈
= ∫  

where 
[ ]**1 1

fB A A AJ A− −= +  

The matrix fA  is  

( )( ) ( )( ) ( ) ( ) ( )t
ij ij ijf

A h A h h f h A h f h= ∂ ∂ ⋅ = ∇ ⋅  

And [ ]**J  represents the second additive compound matrix of the Jacobian matrix J, i.e., ( ) ( )J h Df h= . Let 

2
c

N  
=  
 

 and ( )Bℵ  be the Lozinskii measure of B  with respect to a vector norm .  in N
 , 

( )
0

1
lim .
x

I xB
B

x+→

+ −
ℵ =  

It is shown in [14] that, if K  is simply connected, the condition 0q <  rules out the presence of any trajec-
tory that fives rise to a simple closed rectifiable curve, like periodic orbits, and heteroclinic cycles it is invariant 
for system (4). The accompanying result for the global stability is displayed in [14] by Li and Muldowney. 

Lemma 5.2. Let the simply connected set K  satisfy the conditions ( )iL  and ( )iiL . Then the system (4) is 
globally stable in K  at a unique equilibrium *h  if 0q < . 

Now for the analysis of global stability at viral equilibrium we follow the method presented by Li and Mul-
downey in [14]. The unstable viral equilibrium point 1E  means that the viruses will persists [16], i.e., for any 
solution ( ) ( ) ( )( ), ,S t E t I t  with initial conditions ( )1 2 3, ,Θ Θ Θ  in the trajectory of the model (1) there exist a 
constant 0s >  which satisfy the following 

( ) ( ) ( ){ }min lim inf , lim inf , lim inf .
x x x

a S t E t I t s
→∞ →∞ →∞

= >  

Theorem 5.2. The viral equilibrium ( )1 * * * * *, , , ,E S E I Q R=  of the system (1) is globally stable in ∏  if 

0 1R > . 

Proof: For the global stability of the system (1) we find the second additive compound matrix [ ]**J  
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[ ]

( )

( )

( )

1 1

**
1 2 3

1

*

2

02

0

I
f I

b

I
f I

I Q

b

f I

J

βϑ η

βη ϑ η η

β

ψ

 
− − − 
 
 
 =
 
 
 − 


− − − −



 

( )*
2 32Q ϑ η η ψ= + + +  

Let us choose a function ( ), , diag 1, ,E EA A S E I
I I

 = =  
 

. 

Then,  

1 diag 1, ,I IA
E E

−  =  
 

 

2 2diag 0, ,f
E EI E EIA
I II I

 
= − − 

 

   

 

So, 

1 diag 0, ,f
E I E IA A
E I E I

−  
= − − 

 

   

 

Therefore, 

[ ] [ ]

( )

( )

( )

1 1

** **1 1
1 1

1 1

12

0

0

f

I
f I

b b
E E

E IX A A AJ A J k
E I

E I k
Ef I

I
f I

I
I

η

η

βϑ η

β

β

− −= + = − −

 
− − − 
 
 
 =
 
 
 −
 

−

− −

 

 

 

1 2 32k ϑ η η ψ= + + +  
Let 

11 12

21 22

X X
X

X X
 

=  
 

 

where, 

( )11 12 IX
f I
βϑ η

 
= − − −  
 

 

1 1
12 ,

b bX
E E

 =  
 

 

T
1

21 ,0 ,
EX

I
η =  
 

 

( )

( )

2 3

22

2 3 1

2 0
.

2

E I I
E I f I

X
I E I

f I E I

βϑ η η ψ

β ϑ η η ψ η

 
− − − − − − 

 =  
 − − − − − − 
 

 

 
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Suppose the norm in 3
  as: 

( ) { }1 2 3 1 2 3, , max , ,v v v v v v= +  

where ( )1 2 3, ,v v v  be the vector in 3
  and ℵ  signify the Lozinskii measure as regard to this norm follows 

[17]. 

( ) { } ( ) ( ){ }1 2 11 12 22 21sup , sup , ,X g g X X X Xℵ ≤ = ℵ + ℵ +  

where, 

( ) ( )11 12 ,IX
f I
βϑ ηℵ = − − −  

1
12

bX
E

=  

Therefore, 

( ) ( )
( )

( )

2

1 1 22
SI f ISI Ig

Ef I f I Ef I
ββ βϑ η= − − + − −  

using second equation of system (1) 
( ) 1,SI E

Ef I E
β ϑ η= + +



 

∴  

( )
( )

( )

2

1 2

SI f IE Ig
E f I Ef I

ββϑ= − − −


 

Again, 

( )2 22 21 ,g X X=ℵ +  

where, 

( )22 3 2 3 2 1max 2 , 2E I E IX
E I E I

ϑ η η ψ ϑ η η ψ η
 

ℵ = − − − − − − − − − − − 
 

   

 

And 21 1
EX
I

η=  

2 3 2 12E I Eg
E I I

ϑ η η ψ η= − − − − − +
 

 

using third equation of system (1), 1
2 3 ,

E I
I I

η
ϑ η η ψ= + + + +



 

2
Eg
E

ϑ= −


 

( ) { }1 2sup , EX g g
E

ϑℵ ≤ = −


 

With a compact absorbing set O  every solution ( ) ( ) ( )( ), ,S t E t I t  of the model (1) with  

( )1 2 2, , OΘ Θ Θ ∈  we have 

( ) ( )
( )0

1 1d log
0

t E t
X E

t t E
ϑℵ ≤ −∫  
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( )
0

1lim supsup d 0
t

x
X E

t
ϑ

→∞
ℵ < − <∫  

Thus the viral equilibrium 1E  is globally asymptotically stable according to [14]. 
Next we talk about the given subsystem of system (1) 

( ) ( )

( )
3

2

d
d

d
d

Q t
I Q

t
R t

I Q R R
t

ψ ϑ η ξ

ϕ η ξ ϑ

= − + +

= ∂ + + − − 

                                (5) 

And it limit system is 

( ) ( )

( )

*
3

* *
2

d
d

d
d

Q t
I Q

t
R t

I Q R R
t

ψ ϑ η ξ

ϕ η ξ ϑ

= − + +

= ∂ + + − − 

                            (6) 

Based on (6), we get 

( ) ( ) ( ) ( )3 3*

0

e 0 e d
t

t t sQ t Q I sϑ ξ η ϑ ξ ηψ− + + + + 
= + 

 
∫  

( ) ( ) ( ) ( ) ( )* *
2

0

e 0 e d
t

t t sR t R I Q sϑ ϑ ϕ η ξ− + + 
= + ∂ + + 

 
∫   

This implies that as t →∞  then 

( ) ( )
( ) ( )( )

( )( )

**
3 2 3* *

3 3

,
IIQ t Q R t R

ϕ ϑ η ξ ξψ η ϑ η ξψ
ϑ η ξ ϑ ϑ η ξ

∂ + + + + + +
→ = → =

+ + + + +

 

Then according to [18] the system (1) at 1E  is globally asymptotically stable. 

6. Discussion 
The aim of this work is to study and analyze the dynamic behavior of an epidemic model SEIQRS with a nonli-
near incidence function. We consider a mathematical model of the type SEIQRS and obtained the basic repro-
duction number, to determine its dynamical behavior. In epidemiology, the reproduction ratio is very important, 
because the stability of the proposed model is associated with reproduction ratio. For virus free equilibrium 
point, the model is stable locally and globally if 0 1R < . In the case of when 0R  exceeds then unity then the 
system (1) is asymptotically stable at viral equilibrium point. 

The purpose of this section is to support the analytic results mentioned in above work are supported through 
numerical results. Numerical results we choose different values of parameters, which we discuss below with the 
help of graph. For 0ϕ = , the reproduction ratio for immune free system is 

( )( )
1

1
1 2 3

R η β
ϑ ϑ η ϑ η ψ η

∂
=

+ + + +
 

Thus we can write 0R  is 

0 1 11R R Rϑ
ϑ
∂ = − ≤ + 

 

If 1 1R ≤ , then clearly the virus is vanished. But if 1 1R >  (see Figure 1), then the vaccination ( )vϕ  is 

needed so that 0 1R ≤  or equivalently to 
1

11v R
ϑϕ ϕ
ϑ

 +
= = − 

 

 . 
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Thereby, 1,v vϕ ϕ≤  is the vaccination able to exterminate the virus from the internal computers Figure 2 and 
Figure 3. In the opposite case ( )1vϕ > , the virus will persists, even if we can vaccinate all recruitment Figure 
4. 

Nothing that when 0 1R > , since vϕ  is an increasing function of  , and the value of the vaccination cover  
 

 
Figure 1. The dynamical behaviour of system (1), for different initial conditions and parameters: ∂ = 5, ϑ = 0.05, β = 0.02, ћ 

= 0.02, η1 = 0.009, η2 = 0.001, η1 = 0.03, ξ = 0.01, ψ = 0.01, φ = 0, Here ( ) 2

1
1

f I
I

=
+

, R1 = 1.9068.                        

 

 
Figure 2. The dynamical behaviour of system (1), for different initial conditions and parameters of Figure 1 except φ = 0.6 
< φv = 0.6658.                                                                                             
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Figure 3. The dynamical behaviour of system (1), for different initial conditions and parametes of Figure 1 except φ = φv = 
0.6658.                                                                                                 

 

 
Figure 4. The dynamical behaviour of system (1), for different initial conditions and parametes ∂ = 8, ϑ = 0.03, β = 0.02, ћ = 

0.02, η1 = 0.009, η2 = 0.01, η1 = 0.03, ξ = 0.01, ψ = 0.01, φ = 1. Here ( ) 2

1
1

f I
I

=
+

, φv = 1.5150.                          

 

age vϕ  exceed then unity when 
0 1R
ϑ

>
−

 . Therefore, for the reduction of vaccination coverage it is important 

through vaccination 1


 increase the time period of the loss of immunity. 
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