

Researches on Six Lattice-Valued Logic

Hua Li

Department of Information Engineering, Hangzhou Polytechnic College, Hangzhou, China Email: <u>zjlihua@126.com</u>

Received 2 September 2015; accepted 26 October 2015; published 29 October 2015

Copyright © 2015 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Abstract

Based on the direct product of Boolean algebra and Lukasiewicz algebra, six lattice-valued logic is put forward in this paper. The algebraic structure and properties of the lattice are analyzed profoundly and the tautologies of six-valued logic system $L_6P(X)$ are discussed deeply. The researches of this paper can be used in lattice-valued logic systems and can be helpful to automated reasoning systems.

Keywords

Six Lattice-Valued Logic, Lattice Implication Algebra, Filter, Tautology

1. Introduction

Lattice-valued logic is an important case of multi-valued logic, and it plays more and more important roles in artificial intelligence and automated reasoning. Six lattice-valued is a kind of common lattice, which can express logic in real world, such as language values, and evaluation values. It can deal with not only comparable information but also non-comparable information. Therefore, theoretical researches and logic and reasoning systems based on six lattice-valued logic are of great significance.

2. The Structure of Lattice L₆

The set of $L = \{O, a, b, c, d, I\}$ is a lattice, and the order relation of *L* is shown in Figure 1. The complement operator ""and implication operation " \rightarrow " are defined in Table 1 respectively.

L means an lattice implication algebra.

Then set $A = \{O, I\}$, $B = \{O, m, I\}$. As *A* is the true set of classical binary logic, the operation rules of the complement operation and the implication operation are the same with the classical two-valued logic systems. *B* is the true-value set of Lukasiewicz system with three-valued logic, and complement operations and implication operations are defined in Table 2.

Let $L^* = A \times B$, the order relations, disjunctive, conjunctive, complement operation and implication operation

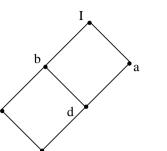


Figure 1. Structure of the six-valued lattice.

x	x'	\rightarrow	0	а	b	с	d	Ι
0	Ι	0	Ι	Ι	Ι	Ι	Ι	Ι
а	с	а	с	Ι	b	с	b	Ι
b	d	b	d	а	Ι	b	а	Ι
с	а	с	а	а	Ι	Ι	а	Ι
d	b	d	b	Ι	Ι	b	Ι	Ι
I	0	Ι	0	а	b	с	d	Ι

x	<i>x'</i>	\rightarrow	0	т	Ι		
0	Ι	0	Ι	Ι	Ι		
m	m	m	m	Ι	Ι		
Ι	0	Ι	0	т	Ι		

on *L* are defined as follows:

For any $(a,b) \in L^*$, $(c,d) \in L^*$:

- (1) $(x, y) \le (z, r)$, if and only if $x \le z$ and $y \le r$.
- (2) (x, y) = (z, r), if and only if x = z and y = r.
- (3) Under other circumstances, (x, y) cannot be compared with (z, r).
- (4) $(x, y) \land (z, r) = (x \land z, y \land r), (x, y) \lor (z, r) = (x \lor z, y \lor r).$ (5) $(x, y) \rightarrow (z, r) = (x \rightarrow z, y \rightarrow r).$

(6)
$$(x, y)' = (x', y').$$

The L^* constitute a six element lattice and its operation diagram is shown in Hasse Figure 2. **Theorem 1.** *L* is isomorphic lattice implication of L^* .

Proof:

Obviously, we can construct a upward one-to-one mapping from L to L^* : $f: L \to L^*$, making

$$f(O) = (O,O), \quad f(a) = (O,I), \quad f(b) = (I,m)$$

$$f(c) = (I,O), \quad f(d) = (O,m), \quad f(I) = (I,I)$$

Clearly f is conjunctive homomorphic mapping and disjunctive homomorphism mapping.

Here is the proof that f is complement homomorphic mapping and implication homomorphism mapping.

According to the definition of implication operations and complement operations, it can be easily obtained in Table 3.

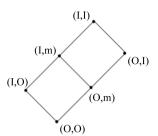


Figure 2. Six-valued lattice generated by the direct product.

Table 3. Six-valued lattice generated by the direct product.								
x	<i>x'</i>	\rightarrow	(0,0)	(<i>O</i> , <i>I</i>)	(<i>I</i> , <i>m</i>)	(<i>I</i> , <i>O</i>)	(<i>O</i> , <i>m</i>)	(<i>I</i> , <i>I</i>)
(0,0)	(<i>I</i> , <i>I</i>)	(0,0)	(<i>I</i> , <i>I</i>)	(I,I)	(I,I)	(I,I)	(I,I)	(I,I)
(<i>O</i> , <i>I</i>)	(1,0)	(O,I)	(I,O)	(I,I)	(<i>I</i> , <i>m</i>)	(<i>I</i> , <i>O</i>)	(<i>I</i> , <i>m</i>)	(<i>I</i> , <i>I</i>)
(<i>I</i> , <i>m</i>)	(O,m)	(<i>I</i> , <i>m</i>)	(<i>O</i> , <i>m</i>)	(<i>O</i> , <i>I</i>)	(<i>I</i> , <i>I</i>)	(<i>I</i> , <i>m</i>)	(<i>O</i> , <i>I</i>)	(I,I)
(<i>I</i> , <i>O</i>)	(O,I)	(I,O)	(<i>O</i> , <i>I</i>)	(<i>O</i> , <i>I</i>)	(I,I)	(I,I)	(O,I)	(1,1)
(O,m)	(<i>I</i> , <i>m</i>)	(O,m)	(<i>I</i> , <i>m</i>)	(I,I)	(I,I)	(<i>I</i> , <i>m</i>)	(I,I)	(1,1)
(I,I)	(0,0)	(I,I)	(0,0)	(<i>O</i> , <i>I</i>)	(<i>I</i> , <i>m</i>)	(<i>I</i> , <i>O</i>)	(<i>O</i> , <i>m</i>)	(<i>I</i> , <i>I</i>)

It can be seen from the Table 3, f is the implication operations and the complement operations homomorphic. In summary, we proofed that:

For any $x, y \in L$, f(x') = (f(x))', f(x * y) = f(x) * f(y), where * is one of disjunctive, conjunctive, complement operation.

Thus L and L^* is isomorphic lattice implication.

3. The Property and Language of Lattice L₆

Due to L_6 is a lattice implication algebra, it not only has all the properties of lattice implication algebra but also properties as follows.

Theorem 2. As shown the six-valued lattice L_6 in Figure 1, the implication operation satisfies the following properties: For any $x, y, z \in L_6$:

- (1) $z \le y \to x$ iff $y \le z \to x$.
- (2) $z \to (y \to x) \ge (z \to y) \to (z \to x).$
- (3) $(x \to y) \lor ((x \to y) \to (x' \lor y)) = I.$
- (4) $y \to z \le (x \to y) \to (x \to z)$.
- (5) $x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z).$
- (6) $x \to y \le (x \lor z) \to (y \lor z)$.

Theorem 3. As the true subset of L_6 , $L_0 = \{O, I, a, c\}$ is a sub lattice implication algebra. What's more, L_0 is a Boolean algebra, and the implication arithmetic of it meets that: for any x, $y \in L_0$, $x \to y = x' \lor y$.

Proof: It is clearly that L_0 is a sub lattice of L_6 . For any $x, y \in L_0$, $x' \in L_0$, $x \to y \in L_0$, therefore when regarding L_6 , the operation of L_0 is closed, that is to say, L_0 is a sub lattice implication algebras of L_6 .

It can be verified easily: for any $x, y \in L_0$, $x \to y = x' \lor y$. Meeting the of Boolean algebra axiom, L_0 is a Boolean algebra.

Any sub-set of power set lattice in a collection is called the set lattice for the collection. The isomorphism from a lattice L to a set lattice B(X) in collection X is named as a isomorphic representation L by B(X), which can be denoted as L for abbreviation. Through establishing the lattice representation, lattice language can be simplified, which is very important for studying the structure and properties of the lattice.

Definition 1 [1]. Let L is a lattice, an element $x \in L$ is called as an join-irreducible element, if

(1) $x \neq O$ (when there is a minimum of *O* when *L*);

(2) For any $a, b \in L$, if $x = a \lor b$, then x = a or x = b.

Assume *L* is a finite distributive lattice, $\Im(L)$ denotes the set of all join-irreducible element in the collection, and all the join-irreducible element in *L* can form under set lattice (*i.e.* ideal Lattice) according to the order relation which can be indicated as $O(\Im(L))$. Then we have the following conclusions:

Theorem 4 [2]. Let *L* is a finite distributive lattice, and mapping can be constructed as follows:

$$\eta: L \to O(\mathfrak{I}(L))$$
$$\eta(a) = \left\{ x \in \mathfrak{I}(L) \middle| x \le a \right\}$$

The η is the lattice isomorphism from *L* to $O(\mathfrak{I}(L))$.

Theorem 5 [2]. Let L is a finite distributive lattice, then the following equivalent hold:

1) *L* is a distributive lattice;

2)
$$L \cong O(\mathfrak{I}(L));$$

3) *L* is isomorphic to a set lattice;

4) For any $n \ge 0$, *L* is isomorphic to 2^n sub lattice.

According to Theorem 5, theorem representation of six lattice-valued L_6 can be got easily.

Theorem 6. As shown the six-valued lattice L_6 in Figure 1, conclusions as follows can be got:

(1) The set of join-irreducible element in L_6 is $\Im(L_6) = \{a, b, c\}$, and its order relation are shown in **Figure 3**. (2) The under set lattice (*i.e.* ideal lattice), which is the set of all the join-irreducible element and forms according to its order relation, is $O(\Im(L_6)) = \{\phi, \{c\}, \{a\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$.

(3) The Hasse diagram $O(\mathfrak{I}(L_6))$ of the ideal lattice of L_6 , which forms through inclusion relation, is shown in **Figure 4**. Form the figure, we can see that L_6 is isomorphic of lattice implication to its ideal lattice $O(\mathfrak{I}(L_6))$. Lattice implication isomorphism η is defined as follows:

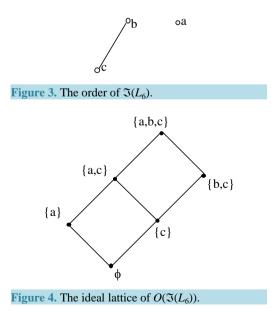
$$\eta: L \to O(\Im(L))$$

$$h(O) = \phi, \ \eta(a) = \{b, c\}, \ \eta(b) = \{a, c\}, \ \eta(c) = \{a\}$$

$$\eta(d) = \{c\}, \ \eta(I) = \{a, b, c\}$$

4. The Filter of Lattice L₆

Since all Lukasiewicz algebras are lattice implication algebra [1], it can be proved that Lukasiewicz algebra filters are trivial.



Theorem 7.

(1) The finite chain of Lukasiewicz only contains trivial filters.

(2) Lukasiewicz algebra [0,1] only contains trivial filters.

Proof: (1) Let's set $L = L_n = \left\{0, \frac{1}{n-1}, \frac{2}{n-1}, \dots, \frac{n-2}{n-1}, 1\right\} (n = 2, 3, \dots)$. Specific operations are as follows:

For any $x, y \in L$,

 $x \lor y = \max\{x, y\}, x \land y = \min\{x, y\}$ x' = 1 - x, $x \to y = \min\{1, 1 - x + y\}$

It is clearly that set $\{1\}$ and L are trivial filters in L. we can proof that L don't contain any other trivial filters.

From Theorem 6 we can see that filters in L are ideal dual filters of L, and the set of ideal dual filters of L are upper set of L.

If
$$F = \left\{ \frac{k}{n-1}, \frac{k+1}{n-1}, \dots, 1 \right\}$$
 (where $k \ge 1$) is a filter of L , then
 $\frac{k}{n-1} \rightarrow \frac{k-1}{n-1} = \min\left\{ 1 - \frac{k}{n-1} + \frac{k-1}{n-1}, 1 \right\} = \frac{n-2}{n-1} \in F$,
And $\frac{k}{n-1} \in F$, so it can be seen that the definition of filters: $\frac{k-1}{n-1} \in F$.

This shows that F = L, so it demonstrated that L don't contain any other trivial filters.

(2) Let L = [0,1], its upper operation is the same as defined C_2 .

It is clearly that set $\{1\}$ and L are trivial filters in L. we can proof that L don't contain any other trivial filters. We can see that filters in L are ideal dual filters of L, and the set of ideal dual filters of L are upper set of L. So the filter of L must be an interval containing greatest element 1.

Firstly, we can proof that the filter of *L* must be a closed interval.

Let us set F = (u, 1) is a filter of L, where 0 < u < 1, for any x, satisfies u < x < 1, then $x \in F$, and $x \rightarrow u = \min\{1, 1-u+x\} = 1-u+x > u \in F$, conclusion can get $u \in F$.

This shows that *F* is a closed interval.

Secondly, assume F = [u, 1] is a filter of L, where 0 < u < 1.

For any x, making u < x < 1 and $x + u \ge 1$, then

$$u \rightarrow (x+u-1) = \min\{1-u+(x+u-1),1\} = x \in F$$

thereby $x+u-1 \in F$, that is contradictory, because $0 \le x+u-1 < u$.

So F is an interval.

This proves that Lukasiewicz interval only have trivial filters.

As a special case of Theorem 7, we have the following corollary.

Corollary 1. $C_2 = \{O, I\}$ and $L_3 = \{O, m, I\}$ only contain trivial filters.

Theorem 8. The six element lattice only contains the following four filters:

{*I*}, *L*₆, *F_a* = {*I*,*a*}, *F_{bc}* = {*I*,*b*,*c*}. Proof: According to Theorem 1, *L*₆ can be seen as the direct product of *C*₂ and *L*₃. According to Corollary 1, $C_2 = \{O, I\}$ and $L_3 = \{O, m, I\}$ only contain trivial filters. As followed:

The filters of $C_2 = \{O, I\}$ are $\{I\}$ and $\{O, I\}$.

The filters of $L_3 = \{O, m, I\}$ are $\{I\}$ and $\{O, m, I\}$.

It is easy to know, the filters of L_6 are the direct products of the filters of C_2 and the filters of L_3 . So the filters of L_6 are as followed:

 $\{(I,I)\}, \{(I,I), (O,I)\}, \{(I,I), (I,m), (I,O)\}$ and L_6 itself. In other words: The six element lattice L_6 only contains the following four filters: $\{I\}, L_6, \{I, a\}, \{I, b, c\}.$

5. The Tautologies of Lattice-Valued Logic System L₆P(X)

Here we take the lattice-valued logic system $L_6P(X)$ into consideration, and discuss its tautologies and F-tauto-

H. Li

logies, the true value domain is L_6 .

It is easy to verify:

$$L_6 = C_2 \times L_3$$

where C_2 is a Boolean algebra $\{O, I\}, L_3$ is a Lukasiewicz algebra $\{O, m, I\}$.

Theorem 9. (The definition of tautologies in $L_6P(X)$ [3]) The tautologies in six lattice-valued logic system $L_6P(X)$ process the following relationship:

- (1) $T^{L_6} = T^{C_2} \cap T^{L_3} = T^{L_3}$. (2) $T^{L_6}_a = T^{L_3}$.
- (3) $T_b^{L_6} = T^{C_2} \cap T_m^{L_3} = T^{C_2}$.
- (4) $T_c^{L_6} = T^{C_2}$.
- (5) $T_d^{L_6} = T_m^{L_3} = T^{C_2}$.

Proof: It is noticed that the tautologies in Lukasiewicz three-valued logic system process the following relationship:

$$T^{L_3} \subset T_m^{L_3} = T^{C_2}$$

Proof of this theorem can be obtained.

From Theorem 7, the six element lattice L_6 only contains four filters as followed:

 $\{I\}, L_6, F_a = \{I, a\}, F_{bc} = \{I, b, c\}.$

Therefore, its non-trivial filters are $F_a = \{I, a\}, F_{bc} = \{I, b, c\}.$

We can get the definition of *F*-tautologies in six lattice-valued logic system $L_6P(X)$ as Theorem 8 similarly.

Theorem 10. (The definition of *F*-tautologies in $L_6P(X)$ [4]) The *F*-tautologies in six lattice-valued logic system $L_6P(X)$ process the following relationship:

(1) $T_{F_a}^{L_6} = T^{L_3}$.

(2) $T_{F_{hc}}^{L_6} = T^{C_2}$.

Proof:

Since $T(f)(A) \neq T(g)(A)$, so *T* is an injection. Clearly *T* is a surjection. For any $(U_1, \Psi_L(U_1)), (U_2, \Psi_L(U_2)) \in |\aleph(L)|$,

(((()))))

 $\forall \hat{\Re}_{f} \in H_{\mathfrak{SN}(L)}((U_{1}, \Psi_{L}(U_{1})), (U_{2}, \Psi_{L}(U_{2}))), G \text{ has the inverse image.}$

Thus *G* is an isomorphic functor of $\aleph(L)$. As isomorphic relationship means an equivalence relation, so $S\aleph(L)$ and $\Im(L)$ are isomorphic.

6. Conclusion

In this paper, the six element lattice is built by the direct product of Boolean algebra and Lukasiewicz algebra; the operation of the lattice is defined; the structures, properties and filters are studied; finally the tautologies and *F*-tautologies of the six lattice-valued logic system are discussed. The results of this paper can be applied to lattice-valued logic systems and automated reasoning applications.

Acknowledgements

The work is supported by the project of Zhejiang province education department of China, Grant No. Y201326675.

References

- [1] Yang, X. and Yun, Q.K. (1995) Fuzzy Lattice Implication Algebra. Southwest Jiaotong University, 2, 121-127.
- [2] Xu, Y., Ruan, D. and Liu, J. (2004) Progress and Prospect in Lattice-Valued Logic Systems Based on Lattice Implication Algebras. Proceedings of the 6th International FLINS Conference Applied Computational Intelligence, 29-34.

http://dx.doi.org/10.1142/9789812702661_0009

- [3] Min, H.T. (1996) Georgia, Sequencing Primer Theory and Its Application. Southwest Jiaotong University Press.
- [4] Fang, S. and Mei, Z.F. (2010) Six Yuan-Based Language of Logic Attributed True Value Method. *Guangxi Normal University*, **3**, 118-122.