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Abstract 
Starting with the theoretical basis of quantum computing, entanglement has been explored as one 
of the key resources required for quantum computation, the functional dependence of the entangle- 
ment measures on spin correlation functions has been established and the role of entanglement in 
implementation of QNN has been emphasized. Necessary and sufficient conditions for the general 
two-qubit state to be maximally entangled state (MES) have been obtained and a new set of MES 
constituting a very powerful and reliable eigen basis (different from magic bases) of two-qubit 
systems has been constructed. In terms of the MES constituting this basis, Bell’s States have been 
generated and all the qubits of two-qubit system have been obtained. Carrying out the correct 
computation of XOR function in neural network, it has been shown that QNN requires the proper 
correlation between the input and output qubits and the presence of appropriate entanglement in 
the system guarantees this correlation. 
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1. Introduction 
Richard Feynman examined the role quantum mechanics can play in the development of future computer hard-
ware and demonstrated [1] that time evolution of an arbitrary quantum state was intrinsically more powerful 
computationally than the evolution of logical classical state. Since then, quantum computing has attracted wide 
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attention and soon become the hot topic of research, especially after Shor’s quantum prime factoring algorithm 
[2] and Grover’s random data base search algorithm [3] were proposed. Quantum Computer (QC) is quantum 
information processing. It is a relatively new discipline and not yet completely understood, however, it provides 
an excellent introduction to many key ideas. Simon [4] demonstrated the power of quantum computation and 
proved quadratic reduction of the amount of quantum data required if quantum states rather than classical states 
were transmitted and Vetura and Martinez [5] demonstrated potential of quantum system to exhibit correlations 
that cannot be accounted classically. There are two main motivations for applying capabilities of quantum com-
putation to neural networks: to compensate the ever decreasing scale in hardware development and to produce 
computational capability not available in classical neural computation. Zak [6] combined classical and quantum 
neural networks and developed quantum decision maker and Bshouty and Jackson [7] demonstrated superiority 
of quantum learning algorithm over classical one in certain situations like Quantum Hopfield Networks and 
Quantum Associative Memories (Qu. AM). Quantum entanglement [8] is one of the most interesting features of 
quantum mechanics and it provides promising and wide applications in quantum information processing such as 
teleportation [9], dense coding [10] [11], geometric quantum computation [12] [13], quantum neural computing 
[14]-[16], universal quantum computing network [17]-[19] and quantum cryptography [20]-[22]. Measurement 
and manipulation of entangled state of many particles system becomes a far reaching consequence of quantum 
information processing. 

The physically allowed degree of entanglement and mixture is a timely issue given that the entangled mixed 
states could be advantageous for certain quantum information situation [23]. The simplest non-trivial multi-par- 
ticle system that can be investigated theoretically, as well as experimentally, consists of two qubits which dis-
play many of the paradoxical features of quantum mechanics such as superposition and entanglement. Basis of 
entanglement is the correlation that can exist between qubits. From physical point of view, entanglement is still 
little understood. What makes it too powerful is the fact that since quantum states exist as superposition, these 
correlations exist in superposition as well and when superposition is destroyed, the proper correlation is some-
how communicated between the qubits. It is this communication that is the crux of entanglement. Entanglement 
is one of the key resources required for quantum computation and hence the experimental creation and mea-
surement of entangled states is of crucial importance for various physical implementations of quantum comput-
ers. The generation of quantum entanglement among spatially separated particles requires non-local interactions 
through which the quantum correlations are dynamically created [24], but our present knowledge of quantum 
entanglement is not at all satisfactory [25].  

Starting with the theoretical basis of quantum computing in the present paper, entanglement has been ex-
plored as one of the key resources required for quantum computation, the functional dependence of the entan-
glement measures on spin correlation functions has been established and the role of entanglement in implemen-
tation of QNN has been emphasized. It has been shown that the degree of entanglement for a two-qubit state 
depends on the extent of fractionalization of its density matrix and that the entanglement is completely a quan-
tum phenomenon without any classical analogue. A reliable measure of entanglement of two-qubit states has al-
so been expressed in terms of concurrence [26] [27] and it has been shown that in a free two-qubit system the 
states with both combinations of parallel spins (i.e. states with maximum Hamming spread) are definitely max-
imally entangled states (MES) while among the states with minimum Hamming spread, those with both anti- 
parallel combinations are MES and those with one combination of parallel spins and other with anti-parallel 
spins are not entangled at all. Necessary and sufficient conditions for the general two-qubit state to be maximal-
ly entangled state have been obtained and the conditions for this state to be non-entangled (i.e. separable) and to 
be partially entangled respectively, have been derived. Two different sets of maximally entangled two-qubit 
states have been obtained and it has been shown that the set of Bell states [26] is not the only eigen basis (magic 
eigen basis) of the space of two-qubit system, another set of MES also constitutes a very powerful and reliable 
eigen basis of two-qubit systems. This is the new eigen basis, being introduced for the first time, and to differen-
tiate it from the already known Bell’s basis, it has been named as Singh-Rajput basis for its possible use in fu-
ture in the literature. In terms of the MES constituting this basis, Bell’s States have been generated and all the 
qubits of two-qubit system have been obtained.  

Carrying out the correct computation of XOR function in neural network, it has been shown that QNN re-
quires the proper correlation between the input and output qubits and the presence of appropriate entanglement 
in the system guarantees this correlation. It has been emphasized that the newly constructed maximally entan-
gled two-qubit states, constituting new eigen basis, may be the most appropriate choice for utilizing entangle-
ment in quantum neural computation. It has been shown that in quantum approach to neural networks all pat-
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terns can be stored as a superposition, where each of the patterns can be considered as existing in a separate 
quantum universe. It has also been shown that in neural networks the integrity of a stored pattern (bases states) 
is due to entanglement and the quantum associate memory (Qu AM) is the realization of the extreme condition 
of many Hopfield networks each storing a single pattern in parallel quantum universes. 

2. Theoretical Basis of Quantum Computing 
At quantum level an electron can be in a superposition of many different energy states, which is not possible 
classically. Similarly, any Physical system is described by quantum state 

i i
i

Cψ = ∅∑                                    (2.1) 

which is a linear superposition of basis states i∅ . Such a state is a Coherent State. This superposition is de-
stroyed on interaction of system with its environment, i.e. it becomes decoherent. 2

iC  gives the probability of 
ψ  collapsing in to state i∅  as it decoheres.  

Electron-spin is a two state system with elements ↑  corresponding to spin-up and ↓  corresponding to 
spin-down. A state of this system may be written as 

2 1
5 5

ψ = ↑ + ↓                                  (2.2) 

As long as system maintains coherence, it cannot be said to be in either spin-up or spin-down. When it deco-
heres, it can be in either of these states. Such a simple two- state quantum system is the basic unit of quantum 
computation: quantum-bit (qu-bit) where we rename two states as 0-state, and 1-state. Smallest unit of information 
stored in a two-state quantum computer is called a qu-bit. If there is a system of m qu-bits, it can represent 2m  
states at the same time. 

Qubit is simply a two-level system with generic state as 

0 1a bψ = + ,                                  (2.3) 

a two-dimensional complex vector, where a and b are complex coefficients specifying the probability amplitudes 
of corresponding states such that 

2 2 1a b+ =  

Qubit individual is defined by a string of qubits. An operator on a Hilbert space describes how one eigen state is 
changed into other. Thus a quantum operator is a q-gate and represented by a square matrix.  

State of a qubit can be changed by the operation with a quantum gate which derives the individuals towards 
better solution (eventually towards a single state). A quantum gate is a reversible gate and can be represented as a 
unitary matrix U acting on a qubit basis state. Q-gates operating on just two bits at a time are sufficient to construct 
ageneral quantum circuit (based on Lie-Grouptheory). Thus quantum operator may be made [28] to work as NOT 
gate; controlled NOT gate (C-NOT); Rotation-gate; Hadmard-gate, etc. 

Wave-peaks in phase interfere constructively and those out of phase destructively 

Let 
21 2 1
15 5 5

ψ
 

= = ↑ + ↓ 
 

 

and an operator represented by matrix 

1 11ˆ
1 12

O  
=  − 

 

Then we have 

1 1 2 31 1 1ˆ
1 1 1 12 5 10

O ψ
     

= =     −     
 

3 1
10 10

ψ⇒ = ↑ + ↓  
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⇒Amplitude of ↑  has increased while that of ↓  has decreased. 
Quantum Computation (QC) can be defined as representing the problem to be solved in the language of 

quantum states and producing operators that derive the system to a final state such that when system is observed 
there is high probability of finding a solution. QC consists of state preparation; useful time evolution of quantum 
system; and measurement of the system to obtain information. Upon measurement system will collapse to a single 
basis state. Object of QC is to ensure that measured basis state is with high probability. There are three different 
approaches to state preparation, based on information in set T of (n + 1) two states quantum systems ( 0  and 
1 ) : 

1) Inclusion, 2) Exclusion, 3) Phase Inversion. 
Inclusion is most intuitive where basis states not in T have zero coefficients and those in T have non-zero 

coefficients in the superposition: 
1

i i i ix y T x y
m ∈

Ψ ≥ ∑                               (2.4)  

Exclusion is an opposite approach, where basis state in T has zero coefficients and those not in T have non-zero 
coefficients in the superposition: 

€

1

2 i i i ix y Tn
x y

m
Ψ =

−
∑                              (2.5) 

In Phase Inversion all basis states are included with coefficients of equal amplitudes but with different phases 
based on membership in T: 

( )€

1

2 i i i ii i i ix y T x y Tn
x y x y

∈
Ψ = −∑ ∑                         (2.6) 

After state preparation, the pattern classification may be performed in straight forward approach employing the 
method of Grover’s [3] iterate which is described as a product of unitary operators GR applied to quantum state 
iteratively and probability of desired result maximized by measuring the system after appropriate number of ite-
rations. Here the operator R is phase inversion of the state (s) that we wish to observe upon measuring the system. 
It is represented by identity matrix I with diagonal elements corresponding to desired state (s) equal to −1 and the 
operator G described as an inversion about average: 

If 1
1

1

2 i
n

i i iBx yn
x y+∈+

Ψ = ∑  then 2 1G = Ψ Ψ −                   (2.7) 

Let us consider the case of n = 2 and T = {(001), (111)}. Then we have 

2

6

0
0
I

R
I

− 
=  
 

;  

and ( )1
4 ijG g= ,  

where 3 and 1 for ,ii ijg g i j= − = ≠  with , 1, 2, ,8i j =   
Here probability cP  of correct classification is maximized after four iterations and inclusion method gives the 

highest conditional probability c

c w

P
P P+

 where wP  is probability of incorrect classification. 

Requirements for Implementation of Quantum Computation 
For implementing quantum computation there are following five requirements: 
1) A scalable system with well characterized qubits; 
2) Ability to initialize the state of qubits to a simple feudal state 

0 00=   

3) Long relevant decoherence time (longer than gate operation time); 
4) A universal set of quantum gates; 
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5) A qubit-specific measurement capability; 
For quantum communication there are two more requirements; 

1) Ability to interconvert stationary and flying qubits; 
2) Ability to faithful transmit flying qubits between specific locations.  

3. Entanglement 
It is the correlation that can exist between different qu-bits (very little understood). When superposition is de-
stroyed, the proper correlation is communicated between the qu-bits. It is this correlation that is the crux of en-
tanglement. 

Mathematically, it is described using density matrix formulation. 
Density matrix of state ψ  is given by 

ψρ ψ ψ=                                      (3.1) 

The state for which density matrix cannot be factorized is said to be entangled while those with fully factorized 
density matrix are not entangled at all. For instance, let us consider a two-qubit state 

1 00 11
2

ψ =  +    

which appears in matrix form as 

1
01
02
1

ψ

 
 
 =
 
 
 

                                    (3.2) 

where “1” denotes the presence of the corresponding eigen state in the superposition and ‘0’ denotes its absence, 
i.e. “1” for 00  and 11  and “0” for 01  and 10 . This quantum state is the superposition of only the states 
00  and 11  which have maximum Hamming spread between two qubits. For this state we have the density 

matrix 

1 0 0 1
0 0 0 01
0 0 0 02
1 0 0 1

ψρ ψ ψ

 
 
 = =
 
 
 

                            (3.3) 

which cannot be factorized at all and the state ψ  is maximally entangled (MES).  
Let us now consider the following quantum state as superposition of qubits 00  and 01  which have 

minimum Hamming spread; 
1 100 01
2 2

ε = +  

or 

1
11
02
0

ε

 
 
 =
 
 
 

                                    (3.4) 

Its density matrix is 

1 1 0 0
1 1 0 0 1 0 1 11 1
0 0 0 0 0 0 1 12 2
0 0 0 0

ερ ε ε

 
      = = = ⊗        
 
 

                     (3.5) 
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which is completely factorized. This state is not entangled at all. 
Another quantum state with as superposition of qubits with least Hamming spread may be written as 

0
01 1 101 11
12 2 2
1

 
 
 ∈ = + =
 
 
 

                            (3.6) 

with density matrix  

0 0 0 0
0 0 0 0 0 0 1 11 1
0 0 1 1 0 1 1 12 2
0 0 1 1

ρ∈

 
      = ∈ ∈ = = ⊗        
 
 

                    (3.6a) 

which is fully factorized. 
On the other hand the quantum state as superposition of qubits 00 , 01  and 11  may be written as 

1
11 1 1 100 01 11
03 3 3 3
1

ζ

 
 
 = + + =
 
 
 

                         (3.7) 

Its density matrix is 

1 1 0 1
1 1 0 11
0 0 0 03
1 1 0 1

ζρ ζ ζ

 
 
 = =
 
 
 

 

which can be only partially factorized as 

1 1 0 1
1 1 0 0 1 0 0 01
1 1 0 1 0 0 0 03

1 0 0 0

ζρ

  
       = ⊗ +          
   

                        (3.7a) 

and hence the state is partially entangled. Thus the degree of entanglement for a two-qubit state depends on the 
extent of fractionalization of its density matrix and the entanglement is completely quantum phenomena without 
classical analogue. 

It may readily be shown that the density matrix for the following two-qubit states (Bell States) cannot be fac-
torized at all; 

( )1 00 11
2
iφ = − − ;                                (3.8a) 

( )2
1 00 11
2

φ = + ;                                (3.8b) 

( )3 01 10
2
iφ = − + ;                               (3.8c) 

( )4
1 01 10
2

φ = − .                               (3.8d) 

And hence all these states are maximally entangled states (MES). The matrices of these states satisfy the con-
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dition 
4

1
1

µφ
µ
ρ

=

=∑  

or 4
1 1µ µµ φ φ
=

=∑                                   (3.9) 

The states given by Equation (3.8) also satisfy the condition 

µ υ µνφ φ δ=                                    (3.10) 

These Equations (3.9) and (3.10) show that the states, given by Equation (3.8), constitute the orthonormal 
complete set and hence form the eigen-basis (magic basis) of the space of two level qubits. These states are 
maximally entangled states (MES) and also the eigen states of the unitary operator 

( ) ( )( )3
1

ˆ exp j j
j A BjU i λ σ σ′ ′
′′=

= ⊗∑                             (3.11) 

where ( )j
Aσ  and ( )j

Bσ  are the matrices representing thj  components of spin-matrices (Pauli matrices) of qubits 
“A” and “B” respectively. This equation may also be written as 

ˆ e , 1, 2,3, 4ji
j jU jαφ φ= =                              (3.12) 

where 1 1 2 3α λ λ λ= − + + ; 2 1 2 3α λ λ λ= − + ; 3 1 2 3α λ λ λ= + − ; 
and 4 1 2 3α λ λ λ= − −                                  (3.13) 

For pure state ψ  any two-qubit state may be written in magic basis as 
4

1
k k

k
bψ φ

=

= ∑  

with its concurrence defined as [19] 

( ) 2
1

a
kkC bψ

=
= ∑                                  (3.15) 

If the concurrence ( ) 1C ψ = , the state is maximally entangled while for ( ) 0C ψ = , the state ψ  is not 
entangled at all. 

For ( )0 1C ψ< < ,                                (3.16) 

the state ψ  is partially entangled. 
The concurrence of a state is as reliable measure of degree of entanglement as the extent of factorization of its 

density matrix while Hamming spread of a two-qubit state is not that reliable measure of the entanglement since 
the states ε  of Equation (3.4) and ∈  of Equation (3.6) with minimum Hamming spread and zero concur-
rence are not entangled at all (i.e. completely separable) and the states 3∅  and 4∅ , given by Equations (3.8c) 
and (3.8d) respectively, with minimum Hamming spread but concurrence unity, are maximally entangled states 
(MES). 

In terms of Z-components of spins of two electrons, the states 3∅  and 4∅  of magic bases given by eqns. 
(3.8), with minimum Hamming spread, may be written as 

3∅ = ↑↓ + ↓↑  

and 4∅ = ↑↓ − ↓↑                                 (3.17)  

which consists of qubits with anti-parallel spins. On the other hand, the states ε  of Equation (3.4) and ∈  of 
Equation (3.6) with minimum Hamming spreads may be written as  

ε = ↑↑ + ↑↓  

and ∈ = ↑↓ + ↓↓                                  (3.18) 
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with one combination of parallel spins and other of anti-parallel spins. In states 1∅  and 2∅  of Equations 
(3.8a) and (3.8b) respectively both combinations are with parallel spins. Thus in free two-qubit system the states 
with combinations of parallel spins (i.e. states with maximum Hamming separation) are definitely MES while 
among the states with minimum Hamming spread, those with anti-parallel spins are MES and those with one 
combination of parallel spins and other with anti-parallel spins are not entangled at all.  

Various qubits of two-qubit states may be written as follows in magic basis; 

1 2

3 4

3 4

1 2

100 ,
2 2

101 ,
2 2

110 ,
2 2

111 .
2 2

i

i

i

i

= ↑↑ = ∅ + ∅

= ↑↓ = ∅ + ∅

= ↓↑ = ∅ − ∅

= ↓↓ = − ∅ + ∅

                           (3.19) 

4. Necessary and Sufficient Conditions for a Two-Qubit State to Be MES 
A general two-qubit state may be written as 

1 1Ψ 00 01 10 11

a
b

a b c d
c
d

γ γ

 
 
 =  + + +  =   
 
 

                    (4.1) 

where 2 2 2 2a b c dγ = + + +                               (4.2) 

Using the relations (3.19), this state may be written as 

( )
( ) ( ) ( ) ( )1 2 3 4

1Ψ
2

i a d a d i b c b c
γ

 = − ∅ + + ∅ + + ∅ + − ∅              (4.3) 

and using relation (3.15), its concurrence becomes 

( ) 2ΨC ad bc
γ

= −                                   (4.4) 

Thus for non-entangled state (i.e. separable state), we have 
ad bc=                                        (4.5) 

and for partially entangled states, 

2
0 1

ad bc
γ
−

< <                                    (4.6) 

For MES, we have 
2 2 2 22 ad bc a b c d− = + + +  

or ( ) ( )2 2* * 0a d b c+ ± =                                 (4.7) 

which can be true either for  
* *andd a c b= = −                                  (4.8a)  

or for * *andd a c b= − =                                 (4.8b) 

These are the necessary conditions for the state Ψ  of Equation (4.1) to be maximally entangled. Thus we get 
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the following two sets of MES 

( )
* *

1
2 2

1 00 01 10 11
2

a b b a
a b

 Ψ = + − + 
 + 

                (4.9a) 

and 
( )

* *
2

2 2

1 00 01 10 11
2

a b b a
a b

 Ψ = + + − 
 + 

                (4.9b) 

Bell states (i.e. magic bases) given by Equation (3.8) may readily be obtained from the state 1Ψ  of Equation 
(4.9a) on substituting 

( ) ( ) ( ) ( )1, 0 ; , 0 ; 0, 1 ; and 0,a b a i b a b a b i= = = − = = = = = −                (4.10) 

For these sets of values of a and b, the state 2Ψ  of Equation (4.9) gives 1∅  and 4∅  with phase ro-  

tated by π
2

 and 2∅  and 3∅  with phase rotated by π
2

− . 

Other maximally entangled two-qubit states which form the orthonormal complete set (i.e. eigen bases) may be 
obtained as follows by putting 1a = ±  and 1b =  in state 2Ψ  of Equation (4.9b) and 1, 1a b= = ±  in state 

1Ψ  of Equation (4.9a); 

1
1 00 01 10 11 ,
2

ψ = − + + +                           (4.11a) 

2
1 00 01 10 11 ,
2

ψ =  − + +                            (4.11b) 

3
1 00 01 10 11
2

ψ =  + − +   ,                         (4.11c) 

4
1 00 01 10 11
2

ψ =  + + −                            (4.11d) 

with their density matrices respectively given by 

1 2

3 4

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 11 1, ,
1 1 1 1 1 1 1 14 4
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 11 1,
1 1 1 1 1 1 1 14 4
1 1 1 1 1 1 1 1

ψ ψ

ψ ψ

ρ ρ

ρ ρ

− − − −   
   − − − −   = =
   − −
   
− − −   

− −   
   − −   = =
   − − − −
   
− − − − −   

                (4.12) 

None of which can be factorized at all. The concurrence for each of these states is unity and these states con-
stitute the orthonormal set since 

µ ν µνψ ψ δ=  

And 4
1 Iν µµ ψ ψ
=

=∑  

Other six MES obtained from 1Ψ  of Equation (4.9a) and 2Ψ  of Equation (4.9b) by substituting 
( )1,a b i= = ±  and ( ), 1a i b= = ±  respectively, do not constitute complete set (i.e. do not form eigen bases). 

States given by Equation (4.11) also constitute the eigen basis (different from magic basis given by Equation 
(3.8)) of the space of two-qubit system. In this basis, various qubits of two-qubit states may be written as 
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2 3 4 1

1 3 4 2

1 2 4 3

1 2 3 4

100 ,
2
101 ,
2
110 ,
2
111
2

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

 = + + − 

 = + + − 

 = + + − 

 = + + − 

                         (4.13) 

Substituting these relations in Equation (3.8), Bell states may be constructed as follows in this basis; 

1 4 2

3

1 2 3

3 324 1

1; ;
2 2

1;
2 2

i

i

φ ψ ψ φ ψ ψ

φ ψ ψ φ ψ ψ

−
 =  −  = +   

−
 =  +  = −   

                     (4.14) 

Concurrence of each of Bell states in this basis also is unity showing the invariance of concurrence in different 
bases. 

Condition (4.6) for partial entanglement shows that if any coefficient of qubits in the state Ψ  given by Eq-  

uation (4.1) is vanishing, then the state is necessarily partially entangled and its concurrence is 2
3

 if the sum of  

squares of moduli of non-zero coefficients is 3. For instance, let 0b = , and 2 2 2 3a c d+ + = , then the con-  

currence given by Equation (4.4) becomes 2
3

 when 1, 1a c= ± = ±  and 1d = ± . It may be readily shown that all 

the states 

1 00 01 11
3
± ± ±    

are partially entangled with concurrence 2
3

= . 

5. Quantum Artificial Neural Network (QNN) 
We have following motivations for applying capabilities of quantum computation to neural networks. 
1) To compensate for ever decreasing scale in hardware development; 
2) To produce computational capability not available using classical neural computation; 
3) Recent Demonstration of superiority of Quantum Neural Network (QNN) over Classical ones [14]-[19] where 

the entanglement as learning rule plays as major role. 
In Quantum neural computing, the phenomenon of entanglement can be viewed as playing arole similar to that 

of weighted connections in the classical neural network, producing correlations between different parts of the 
system. The quantum computational systems that make use of entangled states have the potential functionality of 
quantum neural networks (QNN). For instance, let us consider the entangled three-qubit state 

[ ]T1 1000 011 110 1 0 0 1 0 1 1 0
2 2

∅ =  + +  =                     (5.1) 

which can be interpreted as computing the XOR function [19], where the first two qubits encode the input and the 
third encode the output. The requisite correlations for computing the function are encoded in the entanglement of 
the state. Computing the value for the input x requires forcing the first two qubits to have unit probability of being 
found in the basis state x  i.e. when measured, they are found in the state x . Then due to entanglement, the 
third qubit will be ( )XOR x  with unit probability.  

The probability of finding the input in the state x  can be improved to unity if the operator R̂  with matrix 
elements 
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1, and
1, and

0, otherwise
ij

i j i xz
R i j i xz

= ≠
= − = =



                                (5.2) 

followed by the operator 

1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 01ˆ
0 0 0 0 0 0 0 02
1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0

Q

− 
 
 
 
 

− =  
 

− 
 − 
  

                         (5.3) 

is operated upon the state ∅  before measuring the input qubits. Then we have the out put state y  as 

[ ]Tˆ ˆ 0 0 0 0 0 0 1 0 110y QR= ∅ = =                     (5.4) 

Thus the correct computation of XOR function requires the proper correlation between the input and output 
qubits. The presence of appropriate entanglement in the system guarantees this correlation. For entangled quantum 
states local operations on some qubits affect the states of all qubits in the system. Maximally entangled two-qubit 
states, constructed in Section 4, are the most appropriate choice for utilizing entanglement in quantum neural 
computation. 

Two main difficulties faced in the implementation of QNN are related with linearity of quantum theory (while 
neural-computing depends upon non-linear data processing) and unitarity of evolutionary operators in quantum 
mechanics (while the pattern recall problem in QNN is equivalent to a search of a random data base). In the case of 
storage algorithm, evolution processes are a necessity (since the system must maintain a coherent superposition 
that represents the stored pattern) but requiring the recall mechanism to be evolutionary will limit the efficiency 
with which the recall may be accomplished and hence the recall is needed through non-evolutionary (i.e. non- 
unitary) process. These difficulties may be removed in the many universe interpretation of quantum mechanics, 
where decoherence or collapse of wave-function is only an illusion and the effect of measurement is split in to a 
number of copies each observing just one of the possible results of the measurement, unaware of the other possible 
outcomes. In this approach, there exist many mutually unobservable but equally real universes, each corres-
ponding to a single possible outcome of the measurement and correlating through maximally entangled states. 
This combines the field of ANN with quantum computation in a natural way. 

Hopfield neural network is best suited for the extraction of the locally most plausible version of a single pro-
totype. If we generate multiple classical Hopfield networks which store only one pattern each, we lose any par-
allelism in processing the information. But in quantum approach, we can store all patterns as the quantum su-
perposition 

1 21Ψ p s s s
Ns σ σ σ

=
= ∑                                     (5.5) 

where each of the patterns p can be considered as existing in a separate universe. Interaction of a superposition 
with the environment is performed in parallel. Each of the basis states in superposition will play the role of a single 
memory state independent of the number of them that exist in superposition. 

6. Discussion 
Entanglement has been explored as one of the key resources required for quantum computation, the functional 
dependence of the entanglement measures on spin correlation functions has been established and the role of en-
tanglement in implementation of QNN has been emphasized. Equations (3.3), (3.5), (3.6a) and (3.7a) show that 
the degree of entanglement for a two-qubit state depends on the extent of fractionalization of its density matrix and 
that the entanglement is completely a quantum phenomenon without any classical analogue. Equations (3.9) and 
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(3.10) show that the maximally entangled Bell states, given by Equation (3.8), constitute the orthonormal com-
plete set and hence form the eigen basis of the space of two-qubit states. These states have also been shown to be 
the eigen states of the unitary operator, defined by Equation (3.11), with the corresponding eigen values given by 
Equation (3.13). A reliable measure of entanglement of two-qubit states has also been expressed in terms of 
concurrence defined by Equation (3.15) and it has been shown by Equations (3.17) and (3.18) that in a free 
two-qubit system the states with both combinations of parallel spins (i.e. states with maximum Hamming spread) 
are definitely maximally entangled states (MES) while among the states with minimum Hamming spread, those 
with both anti-parallel combinations are MES and those with one combination of parallel spins and other with 
anti-parallel spins are not entangled at all. Equation (3.19) represents various qubits of two-qubit states in magic 
bases. Equation (4.7) gives the necessary and sufficient conditions for the general state, given by Equation (4.1), to 
be maximally entangled state. Equation (4.5) gives the condition for this state to be non-entangle (i.e. separable) 
while (4.6) gives the condition for this state to be partially entangled. Equations (4.8) and (4.9) give two different 
sets of maximally entangled two-qubit states, where it has been demonstrated that Bell states may be obtained 
from the state of Equation (4.8) by substituting ( )1, 0a b= = ; ( ), 0a i b= − = ; ( )0, 1a b= = ; and 
( )0,a b i= = − . For these sets of the values of coefficients, the maximally entangled state of Equation (4.9) has  

been shown to produce Bell states 1∅  and 4∅  with phase rotated by π
2

 and 2∅  and 3∅  with phase  

rotated by π
2

− . 

Equation (4.10) gives other MES, different from Bell states, forming the orthonormal complete set (i.e. eigen 
basis) and it has been shown that, besides these two sets, there is no other orthonormal complete set of MES in 
two-qubit systems. Thus the set of Bell states is not the only eigen basis (magic eigen basis) of the space of two- 
qubit system, the set of MES given by Equation (3.10) also constitutes a very powerful and reliable eigen basis of 
two-qubit systems. This is the new eigen basis, being introduced for the first time, and to differentiate it from the 
already known Bell’s bases, let us call it Singh-Rajput basis for its possible use in future in the literature. The MES 
constructed in form given by Equation (4.10) may be correspondingly called Singh-Rajput states which generate 
Bell’s States in the form given by Equation (4.12). In terms of these states, all the qubits of two-qubit system may 
be obtained in terms of Equation (4.11). For symmetry purpose, for establishing functional dependence of en-
tanglement on spin operators of qubits constituting MES and for the representations of SU(2) group and three 
dimensional rotation group, the use of these states may be more convenient. These possibilities will be demon-
strated in our forthcoming papers. 

Equations (5.1) and (5.4) demonstrate that the correct computation of XOR function in QNN requires the proper 
correlation between the input and output qubits. The presence of appropriate entanglement in the system guar-
antees this correlation. For entangled quantum states, local operations on some qubits affect the states of all qubits 
in the system. Maximally entangled two-qubit states (Singh-Rajput States), constructed in Section 4, may be the 
most appropriate choice for utilizing entanglement in quantum neural computation. In quantum approach to neural 
networks, all patterns can be stored as superposition given by Equation (5.5), where each of the patterns p can be 
considered as existing in a separate quantum universe. In this quantum analogue of Hopfield neural network, the 
integrity of a stored pattern (basis states) is due to entanglement. It leads to all known quantum algorithms. 
Quantum associate memory (Qu AM) is the realization of the extreme condition of many Hopfield networks, each 
storing a single pattern in parallel quantum universes. 
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