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Abstract 
In this paper, I show that an interpretation of quantum mechanics using two-state vector formal-
ism proposed by Aharonov, Bergmann, and Lebowitz, can solve one of the measurement problems 
formulated by Maudlin. According to this interpretation, we can simultaneously insist that the 
wave function of a system is complete, that the wave function is determined by the Schrödinger 
equation, and that the measurement of a physical quantity always has determinate outcomes, al-
though Maudlin in his formulation of the measurement problem states that these three claims are 
mutually inconsistent. Further, I show that my interpretation does not contradict the uncertainty 
relation and the no-go theorem. 
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1. Introduction 
In his formalization of one of the measurement problems, Maudlin asserts that the following three claims are 
mutually inconsistent [1]: 
A The wave function of a system is complete; i.e., the wave function specifies (directly or indirectly) all of the 

physical properties of a system.  
B The wave function always evolves according to a linear dynamical equation (e.g., the Schrödinger equation).  
C The measurement of, e.g., the spin of an electron, always (or at least usually) has determinate outcomes; i.e., 

at the end of the measurement, the measuring device is in a state that indicates either spin up (and not down) 
or spin down (and not up).  

According to Maudlin, since these three claims are mutually inconsistent, all interpretations of quantum 
mechanics and alternative theories have to discard at least one of these claims. For example, hidden variable 
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theories (e.g., Bohm mechanics and modal interpretations) deny statement A above, the so-called collapse 
theories deny statement B, and the many-worlds interpretation denies statement C. In this paper, I suggest an 
interpretation that consistently satisfies all the three abovementioned conditions. However, statement B is 
slightly modified as follows: 
B' The wave function at a given time can always be determined according to a linear dynamical equation (e.g., 
the Schrödinger equation).  

Statements A, B' and C are also mutually inconsistent in the existing interpretations. The new interpretation 
makes it possible to satisfy these three claims by considering not only the past state but also the future state of 
the given system. This interpretation is inspired by the two-state vector formalism (TSVF), which is a formalism 
of quantum mechanics proposed by Aharonov, Bergmann, and Lebowitz [2]. 

TSVF has a rule, which is called the “ABL rule” and expressed in Equation (1) (“ABL” is an abbreviation of 
Aharonov, Bergmann, and Lebowitz), which determines the probability that the system under consideration is in 
a given state at t that is dependent on the states of the system at 0t  and 1t  ( )0 1t t t< < . The ABL rule asserts 
that when the state of the system at 1t  is an eigenstate of a physical quantity Q, the probability that the state of 
the system at t is the eigenstate of Q is always 1. Further, we have to use the Schrödinger equation in order to 
calculate the probabilities by using the ABL rule. Therefore, there is no need to discard any of the above- 
mentioned three claims. 

2. Brief Review of Two-State Vector Formalism  
In this section, I present a brief review of TSVF. Let us assume that the physical quantity Q has eigenstates 

1 2, , , nq q q  (in this paper, we assume “the eigenstate-eigenvalue link”). The probability, ( ),iP q t , that 
the state of the system at t is iq  is calculated as follows by using the ABL rule: 

( )
( ) ( )
( ) ( )

2

fin ini

2

fin ini

, .i i
i

k kk

t q q t
P q t

t q q t

Ψ Ψ
=

Ψ Ψ∑
                          (1) 

Here, 

( ) ( ) ( )fin 1 fin 1
ˆexp ,t iH t t t Ψ = − Ψ   

( ) ( ) ( )ini 0 ini 0
ˆexp ,t iH t t t Ψ = − − Ψ                             (2) 

where ( )ini 0tΨ  denotes the initial state of the system measured at 0t  and ( )fin 1tΨ  represents the final 
state of the system measured at 1t , with 0 1t t t< < . Equation (2) indicates that the wave functions in TSVF 
obey the Schrödinger equation. 

There appears to be no method for verifying the prediction made using TSVF because we cannot know the 
intermediate state at t without destroying the state. Aharonov and Vaidman solved this problem by proposing a 
new measurement concept called “weak measurement”; measurements made according to this concept do not 
destroy the intermediate quantum state [3]. 

According to Aharonov and Vaidman, the mean value obtained by weak measurement is the real part of the 
“weak value.” The weak value of the physical quantity Q at t, ( )wQ t , is 

( ) ( )
( ) ( )

fin fin

ini ini

.w

t Q t
Q

t t
Ψ Ψ

=
Ψ Ψ

                               (3) 

Recently, physicists performed a weak measurement and confirmed that the theoretically predicted and 
measured weak values showed good agreement (cf. [4]). Finally, with respect to the speculation that TSVF 
contradicts conventional quantum mechanics (CQM), it has been proved that the Born rule (and the ABL rule) 
can be derived in TSVF [5]. 

3. How to Solve the Measurement Problem  
In general, when the final state is an eigenstate, iq , of Q, the intermediate state is also iq  with certainty 
because 
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Thus, we can simultaneously insist that the wave function of a system is complete, that the wave function is 
determined by using the Schrödinger equation (when the initial and final wave functions are given), and that the 
measurement of a physical quantity always (or at least usually) has determinate outcomes [6]. 

Nevertheless, this interpretation still appears to be problematic in the following situation: Let us assume that 
we measure the x-spin of an electron at 0t  and obtain a value 2+ . Thus, the system state is x+ , where 

( )x z+  and ( )x z−  respectively represent the states in which the measured values of the x(z)-spin are 
2+  and 2− . Thereafter, we measure the z-spin of the electron at 1t  and obtain a value 2+ ; thus, the 

system state is z+ . 
According to the ABL rule, both probabilities, namely, the probability that the system state at t ( )0 1t t t< <  

is x+  and the probability that the system state at t is z+ , are 1. However, a quantum system cannot have 
the eigenstates of both the x-spin and the z-spin simultaneously. Let us assume that the state of a system ( )A  
is an eigenstate of non-commutative observables 1Q  and 2Q  having eigenvalues 1q  and 2q , respectively. 
Consequently, ( ) ( )1 2 2 1 1 2 2 1 0Q Q Q Q A q q q q A− = − = . This contradicts the assumption that 1Q  and 2Q  are 
non-commutative. 

Therefore, Aharonov, Popescu, and Tollaksen state that if at t we measure the spin in the z-direction, we must 
find it up, because that’s how the particle is prepared at 0t . On the other hand, if at t we measure the spin along 
x, we must also find it up, because otherwise the measurement at 1t  wouldn’t find it up ([7], p. 27).  

Nonetheless, there is still concern that our interpretation contradicts the uncertainty relation (Kennard-Rober- 
tson inequality). Let us assume that an ensemble of electrons whose x-spin at 0t  is 2+  and z-spin at 1t  is 

2+  has been prepared, and let us divide this ensemble into two sub-ensembles: 1Σ  and 2Σ . When we 
perform a weak measurement of the x-spin in 1Σ  and the z-spin in 2Σ  at t, we obtain the result that the x-spin 
is 2+  and the z-spin is 2+  with certainty. This result indicates that the standard deviations of both the 
x-spin in 1Σ  and the z-spin in 2Σ  are 0 (because all the measurement results of the x-spin in 1Σ  and the 
z-spin in 2Σ  are 2+ ). This result appears to contradict the uncertainty relation. 

However, note that the uncertainty relation considers only the past state. When we consider the future state as 
well, the standard deviations of both the z-spin and the x-spin can be 0 at t. Here, we define 

( )
22

2 ,z z z z
w z

z z

z S z S
S

z z
+ Ψ + Ψ

∆ = −
+ Ψ + Ψ

 

( ) 2z z zΨ = + + −                                 (5) 

where zS  denotes an operator of the z-spin. Consequently, we can easily obtain 

( )2 0w zS∆ =                                      (6) 

Similarly, we can obtain ( )2 0w xS∆ = . Therefore, when we interpret w zS∆  as the standard deviation of the 
z-spin in TSQM, it is not strange that the standard deviations of both the x-spin in 1Σ  and the z-spin in 2Σ  are 
0. 

In general, when we define 

( ) ( ) ( )2 22 ,w ww
Q Q Q∆ = −  

ini 1 1 2 2 ,k k n na a a aφ φ φ φΨ = + + + + +                        (7) 

where Q denotes an observable quantity, iφ  represents an eigenstate of Q, and i j ijφ φ δ= , we can easily 
obtain 

( )2 0wQ∆ =                                       (8) 

when the final state is an eigenstate of Q. 
Nevertheless, the concern that the abovementioned interpretation may contradict no-go theorem such as the 
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Kochen-Specker theorem remains [8]. However, we can easily infer from Mermin’s version of the Kochen- 
Specker theorem [9] that there might not be any contradiction when only the x-spin and the z -spin are 
determined because the Kochen-Specker theorem holds only when more than two axes of spin are determined. 

Further, Tollaksen states that the weak value of spin changes according to the context of the experiment. For  
example, he showed that there is a case where ( )1 2 2 1 1x y x y w

S S S S = −  even though ( )1 2 1x y w
S S = +  and  

( )2 1 1x y w
S S = + , where ( )ij w

S  represents the weak value of the j-spin ( ),j x y=  of particle i (=1,2) [10]. 

4. Conclusions  
In this paper, I show that the following three claims can be simultaneously satisfied when we accept the 
interpretation of two-state vector formalism. 
A The wave function of a system is complete; i.e., the wave function specifies (directly or indirectly) all of the 

physical properties of a system.  
B' The wave function at a given time can always be determined according to a linear dynamical equation (e.g., 

the Schrödinger equation).  
C The measurement of, e.g., the spin of an electron always (or at least usually) has determinate outcomes; i.e., 

at the end of the measurement, the measuring device is in a state that indicates either spin up (and not down) 
or spin down (and not up).  

The key point is that when we measure a physical quantity Q and obtain a definite value q, the probability that 
the state of the system is the eigenstate of Q whose eigenvalue is q is 1. 

Further, I show that this interpretation does not contradict the uncertainty relation and the Kochen-Specker 
theorem. 
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