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Abstract 
Up to now, cosmology metrics have been based on Einstein relativity, established in 1905. Hubble 
has discovered the correlation between redshift and distance. Cosmology interprets the redshift 
as an expansion effect a(t) through the ΛCDM model. We have proposed a new theory to explain 
Hubble law. The theory has been validated against observation data. It proposes a new approach 
of time which introduces the cosmic time tc. Cosmic time is an absolute reference to universe. It is 
zero at the edge with tc = 0, tc = T at the observer position and tc = s for any source between the 
edge and the observer, with T > s > 0. This theory acts like the relativity of space-time. The redshift 
is interpreted as a perspective parameter p(tc) = tc/T. Using gravitation, it is the Einstein effect ap-
plied to the universe. This paper comments and interprets further consequences of this new 
theory. We emphasize the difference between duration (as usually used in classical cosmologic 
metrics) and the cosmic time tc as a notion of date. It induces two related effects: relativity of 
speed of light and time stretching. We explain why the cosmological standard model is not well 
suited to describe the Hubble law, to describe the universe. We also explain why gravitation and 
temperature increase when going from the center to the edge of the universe, when going from 
present to birth. The model has no use of black energy. As a consequence, the universe is seen as a 
black hole created by the cosmic time shock wave when tc = 0. 
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1. Introduction 
Up to now, cosmology metrics have been based on Einstein relativity, established in 1905. Hubble has discov-
ered the correlation between redshift and distance [1]. Cosmology interprets the redshift as an expansion effect 
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a(t) through the ΛCDM model [2]. 
In [3], we have proposed a new theory to explain Hubble law. The theory has been validated against data from 

[4]. The µ-z diagram is explained without any matter effect and based on the cosmic time parameter. We are 
suggesting here explanations and interpretations of this theory. All of them are oriented toward a time and 
space-time interpretation of physics. 

Here, we hereby detail the theory from [3] in a different way to emphasize the analogy with the eikonal theory. 
In Section 2, we develop the main propositions based on the cosmic time and the associated metric. In Section 3, 
we discuss current metrics. Section 4 deals with gravitation and discuss the edge of the universe. Section 5 
gives physical interpretation of the Schwarzschild metric using the generalized refraction index. At the end, in 
Section 6, we suggest that the relation between cosmic time, gravitation and temperature is connected to the 
evolution of matter. We conclude in Section 7. 

2. The Relativity of Cosmic-Time 
We develop the theory of the relativity of cosmic time already proposed in [3]. Here, we present it in a different 
way (Equation (2B)) to be compatible with a space-time or time stretching interpretation of phenomenon. Cos-
mic time tc is an absolute date and not a duration as time is commonly used. It is a boundary condition, at the 
end of the experiment, at the end of the optical path. In classical cosmological science, the cosmic time is al-
ready defined as the relative time in the “Big Bang” model integrated over the whole universe. 

The observer is measuring waves at cosmic time tc = T. An observed source emits light at cosmic time tc = s. 
The delay time τ between source and observer is: 

T sτ = −                                         (2A) 
The relativity of Cosmic Time theory is defined by the factor z, where z is the redshift effect with: 

( )
11 c Tz p

c s s
−+ = = =                                   (2B) 

c = 299,792,458 m/s (from [5]) is the speed of light of the observer out of any acceleration field. We intro-
duce the parameter p = s/T as a perspective effect. Interpretations of p and c(s) will be discussed later. By defi-
nition, s < T because the source emits light before the observer detects it and so z + 1 > 1. 

The distance between the emitting source and the observer is defined by the product of the space-time relation 
of the observer with the delay τ: 

( ) ( )x s c c T sτ= ⋅ = ⋅ −                                   (2C) 

Let’s note ( )0HR x c T= = ⋅ , the universe radius also called the Hubble radius. 
Figure 1 illustrates the space-time (x/c,tc). It is bounded to the observer. The light cone is defined by Equation 

(2C). Out of any acceleration field, cosmic time T is orthogonal to the space which is surrounding the observer 
with αT = 90˚ and βT = 45˚. 

For simplicity we deal with one dimensional space phenomena so that space is described with only one di-
mension. This two dimensional space is defined according time. The fundamental reason is that, from the ob-
server point of view, time is always increasing. He doesn’t move in his own referential, but his proper time is 
always going on. An observed source can remain static but its own time is generally increasing, out of the edge 
of black holes. 

The observer cosmic time T acts as “a torch lamp” carried by the observer and directed toward the “nadir”. It 
is lightening non-uniformities of the space path: waves, particles and matter around the observer. When looking 
out of the “nadir”, he is watching emitting sources (other events). 

The observed source is Ms(x/c,s). When a photon is emitted by the source, it vibrates at the cosmic time level 
s. At this time, the observer is also at the cosmic time s. He cannot see this light. When time increases from s to 
T, it will be seen by the observer when the emitting source will enter in his field of view, in his light cone. 

We see in Figure 1 two interpretations of the same physical phenomenon: 
• The angle βs is no more equal to 45˚. The apparent light cone in the space-time of the source has changed 

with tg(βs) = p−1. It is a change of space-time effect: ( )c s c p= ⋅ . 
• The angle αs is no more equal to 90˚ with sin(αs) = p−1. It is the time stretching effect. 

We can illustrate theses two effects as follow: 
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Figure 1. Illustration of the relativity of cosmic time theory.                               

 
• Example 1: In matter, we use the refractive index n and we assume that the inner speed of light has changed 

with cn = c/n. Moreover, we define the inner wavelength λn = λ/n and it creates a redshift effect when going out. 
• Example 2: When we look far away, any moving object seems to be moving slower than if it were near us; 

it is a transverse effect which modifies the speed. Moreover, all dimensions are reduced due to the perspec-
tive effect. When the object comes to the observer; that is a radial effect which modifies the apparent size. It 
is a space stretching effect. This explains why we introduce the time perspective parameter p = s/T. 

Effect 1: When dealing with a change of space-time, the local speed of light changes so dimensions are 
stretched with ( ) ( ) ( )( )d d d 1 d 1s sx c s t t z x c z= = + = ⋅ + , this is the Tolman Surface Brightness effect. 

Effect 2: The time stretching effect implies a change of frequency of any local temporal phenomenon 
( )d d 1st t z= + . 

The way to use these effects in physics depends on the experiment. A static source with dx = 0 is the simpler 
one. When dealing with a transverse configuration the both effects act. If we come back to example 2, the mo-
bile is both seen moving (its position is changing) and its size is changing to. This explains the difficulty to take 
the good effect and the mistakes that can easily be done when describing an experiment. This difficulty will be 
discussed in Sections 3 and 5. 

Energy conservation is applied as in the standard model because the proposed model acts in the same way on 
both a space-time change (Effect 1) and a redshift effect (Effect 2). Staying at a phenomenological level, when 
changing space (between the source s and the observer T), space and time change, so that any mathematical in-
tegration creates a (z + 1)−1 factor: one for each of the three spatial dimensions and one for time. 

Application 1: Applied to the photon, energy conservation is a stretching time effect (Effect 2),  
( ) 11sh h zν ν −⋅ = ⋅ ⋅ + . 

Application 2: The radiance (in W/m².sr/Hz) measurement is an imaging observation through a spectral filter. 
It is an application of space-time effect (Effect 1) with two spatial dimensions and one in the time dimension (in 
a spectral filter) (Effect 2). When changing space-time from the source to the observer the radiance must be di-
vided by the factor (z + 1)3: with ( ) ( ) ( )2 1 3

0 01 1 1L L z z L z− − −= ⋅ + ⋅ + = ⋅ + , where L is the measured radiance 
and L0 is the intrinsic one. 

Application 3: The total energy of the black body is the volume integration (three dimensions) of the spectral 
density energy over all frequencies (one dimension). So ( ) ( )34 41 1T sK z z Kσ σ+ ⋅ + = ; where  
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σ = 5.670373(21) × 10−8 W∙m−2∙K−4 from [5] is the Stephan-Boltzmann constant. We derive: ( ) 11T sK K z −= ⋅ + , 
and: 

s TK s K T=⋅ ⋅                                       (2D) 

In cosmology, the configuration of the µ-z diagram (Hubble law) is radial experiment. We have derived (see 
Equation (A4) in Annex 1) the Hubble law, with: 

( )2 22.5 log 1HR z zµ  = ⋅ ⋅ ⋅ +                                  (2E) 

When z tends to 0, the proposed theory is the same as the current one from the ΛCDM model, with 
Hx R z T z c= ⋅ = ⋅ ⋅ . We have shown the very good agreement between theory and observations from [4]. with 

RH = 4.2 × 109 pc and T = 13.7 × 109 years. This value is in very good agreement with the current universe age 
from [6]. Neither critical mass nor black energy is needed to explain observations from Equation (2E). Due to 
the good agreement between the proposed theory and observations, we may deduce that on average, the universe 
is flat and cosmic time gives a good description of cosmology science. 

3. The Space-Time and Associated Metrics 
Einstein relativity [7] [8] and derived metrics concern durations only and do not refer to absolute time. Current 
physics laws are based on differential effects; they are locally valid using the constancy of speed of light. 

When the observer is looking at a “moving matter event”, the relative time t is taken into account. For exam-
ple, the observer considers that the source is moving from Ms1 to Ms2. and ds is the time source increase. The 
source is not moving in its proper referential and moves from Ms1 to Ms3 in the time-space diagram. 

The associated metric is derived from the scalar product. dt is the time distance between events and defined 
by the Pythagorean theorem in the right triangle (Ms1, Ms2, Ms3) with (see Figure 2): 

2
2 2 dd d

²
xs t
c

= −                                      (3A) 

Equation (3A) considers that the source is close to the observer. It is the time law of the restricted relativity. In 
Figure 2: the angle αs is no more equal to αT = 90˚: that is the time stretching effect ( ) 1d d st s sin α −=  and 
d dx v t= ⋅ . 

 

 
Figure 2. The restricted Einstein relativity.                               
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When comparing Figure 1 and Figure 2, we see that αs acts as an “equivalence principle”. Now, the remote 
event is far enough so that cosmic redshift is no more negligible. We apply Effect 1 to Equation (3A). The cos-
mic time of the source is s. The local space-time relation is c(s) and assuming that the physical law is locally va-
lid, Equation (3A) becomes 

( )

2
2 2

2

dd d s
xs t

c s
= −                                     (3B) 

So, using Equation (2B), we write again Equation (3B) such as: 
2

2 2 2
2d d ds

ps t x
c

−

= − ⋅                                    (3C) 

Equation (3C) is the local restricted relativity around the source (tc = s). We can see the analogy between 
p(tc) = tc/T and the expansion factor a(t)/a0 linked to the FLRW model. When the universe is analyzed with the 
FLWR model, the p parameter is considered as depending on: mass, energy and space curvature. The use of 
Equation (3C) suffers two drawbacks to describe the universe: it creates the expansion phenomenon (bounded to 
the restricted relativity) and it does not take into account the cosmic time stretching effect. 

In Equation (3C), indeed dts is a local time and it has to be corrected with the stretching time. We replace dts 
(the local relative time-Effect 2) by dp t⋅  (dt is the observer relative time d d st t p= ) and Equation (3C) be-
comes: 

2 2
2 2

2 2

dd dt ps x
p c

−

−= − ⋅                                   (3D) 

As defined in current metrics, ds is kept in the source space-time. Equation (3D) includes both Effect 1 and 
Effect 2. We recognize a space-time curvature effect, without any expansion. The general space curvature is ex-
plained because cosmic time is centered on the observer, it is a radial effect. Equation (3D) shows how a simple 
metric defined by Equations (2B) and (2C) can be interpreted with a sophisticated tool and lead to wrong inter-
pretations. 

4. Effect of an Acceleration Field: Gravitation 
We discuss the analogy between Equation (3D) and the Schwarzschild metric. We compare the two different 
models: Einstein relativity and relativity of cosmic time to explain the Universe. 

4.1. Analyze with the Einstein General Relativity 
Space-time is no more flat in presence of an acceleration field. When mass distribution is homogeneous and iso-
tropic like a sphere of matter and when dealing with radial effects, a one dimension space description remains 
suited. The formalism is described by the well known Einstein general relativity. We consider a massive spheri-
cal object with a mass M. The associated Schwarzschild metric (from [7] [8]) is: 

1 2
2 2

2 2 2

2 2 dd 1 d 1GM GM xs t
c r c r c

−
   = − − −   
   

⋅                            (4A) 

where G = 6.67384 × 10−11 m3/kg/s2, from [5]. Redshift from the Einstein effect appears when light is going 
from a strong gravitational field toward a weaker one. 

We consider an emitting source at the distance r = xe from the object center and an observer at the distance r = 
xT. From [7], the gravitational redshift z is: 

1
2

2

2

21
1

21

T

e

GM
c xz
GM

c x

 − 
 + =
 −  

                                    (4B) 
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In Equation (4B), xT and xe are distances from the gravity mass center and outside the massive object. The 
upper term is related to the observer and the lower one is related to the source. For example, if we send a light 
from the earth surface toward space, the gravitational field will decrease and light will be affected by redshift; xT 
is higher than xe so z + 1 > 1. 

But, when crossing the Schwarzschild singularity (r = Rs = 2GM/c²) of a black hole from the outside to the 
inside, in Equation (4A) signs of the spatial and temporal terms change. So, time and space are exchanged. That 
implies that the Einstein effect is inversed and when going from the edge of the black hole to its center light is 
redshifted. In the universe, objects are quite uniformly distributed around our own position. We are in the center 
of the universe with a masse Mu. From the “matter” point of view, the cosmic redshift is the gravitational Eins-
tein effect applied to the universe. This explains the high gravitation field at the edge of the universe and why 
the Big Bang theory proposes a high gravitation field at the origin. φs is the relative (divided by c²) gravitational 
potential at the cosmic time s. Equation (4B) becomes: 

1
21 2

1
1 2 s

Tz ϕ
ϕ

 −
+ =  − 

                                     (4C) 

Nota: Black Hole Properties 
A black hole of masse M and radius R is defined by the fact that its liberation speed is equal or greater than the 
speed of light. So that, even light cannot get out from the object. The derived constraint is based on the energy 
conservation, for example from [7]: 

2

2
c GM

R
=                                         (4D) 

We introduce Equation (4D) in Equation (4B). If xe = R then z tend to infinite. So, at the edge of a black hole, 
the redshift tend to infinite. Considering that there is reciprocity, an object for which z tends to infinite at the 
edge is a black hole. Light cannot go out because any wavelength becomes infinite. 

Let ρ be the mean universe mass density, so: 
34π 3u HM Rρ=                                      (4E) 

From Equation (4D) and using Equation (4E), at the edge of universe xe = RH, if ρ tend to a critical value ρc so 
z tends to infinite in Equation (4C). We deduce ρc in Equation (4F) hereafter. This parameter is generally pre-
sented (from [7]) as: 

23
8 πc
H
G

ρ =                                        (4F) 

where H is the Hubble constant (with H = 1/T), the numerical application gives ρc~10−26 kg/m3. When studying 
the universe with a mechanical model this critical value defines the limit when the universe will collapse. Hence 
the scientific community is looking for matter in order to compare the measured density ρ with ρc. 

4.2. Analysis through the Relativity of Cosmic Time 
Let’s now analyze the situation using the proposed theory. It is an observational fact that z increases when look-
ing far away. This is the Hubble law. The Cosmologic Microwave Background (CMB) has a redshift near 1000 
from [9]. The Big Bang theory stipulates that CMB is not the universe origin, redshift is increasing behind the 
CMB and temperature is increasing as discussed in Section 5. So the universe is characterized by a redshift that 
tends to infinite when going to the edge. 

From Equation (2B) we easily derive that in the proposed model z tends to infinite, when looking far from us, 
near the universe edge where s = 0. Equation (2B) explains directly observations without any matter condition 
(such as presented by Equation (4F)). We may hence draw the conclusion that our universe behaves as a black 
hole and this is well explained by the relativity of cosmic time. 

4.3. Relation between Cosmic Time and Gravitation 
We perform the analogy between the two theories through Equation (2B) and Equation (4C): 
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1
21 2

1 2
T

s

T
s

ϕ
ϕ

 −
=  − 

                                    (4G) 

Our local relative gravitation field φT is very weak so φT << 1, we derive: 

2 2 2

1 2 1 2 1s T

s T T
ϕ ϕ− −

=                                  (4H) 

When s is decreasing, the equivalent gravitational potential φs increases. When redshift is analyzed with Equ-
ation (4B), matter and energy are missing to reach the critical value. Matter creates high frequencies non un-
iformities of space-time. Low frequencies are more difficult to identify. The light cone is the lower frequency of 
space-time non-uniformities. 

5. The Space-Time and Refractive Index 
Using Effect 1, we propose that space-time properties (modified by gravitational fields or as proposed by cos-
mic time) may be explained using local space-time properties through the generalized refractive index parameter. 
When analyzing light, in Figure 2, we see that, for photons with a speed of light c, d dx c t= ⋅  and so αs = 0. 
Ms1 and Ms2 remain on the horizontal axis, in the geometrical space. We develop this approach to analyze non 
radial phenomena. 

5.1. Refractive Index and Photons Path 
For a punctual mass M, at the distance r we define the parameter ng(r), where Rs = 2GM/c2 is the Schwarzschild 
radius and r > Rs such as: 

( ) ( )

1
2

1 s
g

Rcn r
c r r

−
 = = −  

                               (5A) 

When r decreases, ng(r) increases. Light is deviated toward the direction where refractive index increases, 
following gradient (ng).  

Figure 3 illustrates the configuration. O is the mass center. The black curved line is the light path. Light is  
 

 
Figure 3. Illustration of the relation between the eikonal theory and the Schwarzschild metric. 
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coming from the left side; it passes through the point M1 and then M2 and after goes to the right side. r is the 
distance (O, M1), with 1r = =r OM  and 1 rr= ⋅OM a . We define 1 2d =u M M  and we note 1 2du = M M . 

We apply the Pythagorean theorem in the right triangle (M1, M2, M3), at first order: 
2 2 2d d du r x= +                                    (5B) 

The local speed of light is c/ng, we can define (Effect 1) the local times ds and dv with d d gr s c n= ⋅ . and 
d d gu v c n= ⋅ . So that Equation (5J) becomes: 

2
2 2 2d d dgn

s v x
c

 
 


⋅= −


                                   (5C) 

dv is the local time when the light “goes” from M1 to M2. We consider that the observer is in his local space- 
time c, he is out of the experiment. So, introducing the stretching time effect (Effect 2), he will measure a time 

2d d dggt n v n u c= ⋅ = . and Equation (5J) becomes: 

( )2 dd dg g
ut n v n
c

= =⋅ ⋅                                   (5D) 

When including Equation (5C) in Equation (5D), we derive: 
22

2 2
2

dd dg

g

nts x
cn

 
 


⋅= −


                                  (5E) 

Experiment 1: Along the path du, an observer (out of any gravitational field) considers that the local speed of 
light is 2

gc n . The gravitational refractive index is taken into account twice with 2
geffn n= . This explains the 

gravitational lens effect [10]. 
Experiment 2: For radial configuration, in Figure 3, dx = 0, M2 = M4 and du = dr. From Equation (5C) and 

(5D) we derive d d d gs v t n= = . This generates the cosmological redshift effect (Einstein effect) as the ratio of 
the refractive index of the source and of the observer. The same result as in Experiment 1 can be found using 

2d d dg gr s c n t nc= ⋅ = ⋅ . 

5.2. The Schwarzschild Metric 
Using Equation (5A), Equation (5E) becomes: 

2
2 2

2
2

2

2 dd d 1
21

GM xs t
GMc r c

c r

 = − −     − 
 

⋅
⋅

                           (5F) 

Equation (5F) is identical with Equation (4A). Figure 3 is the graphical illustration of the Schwarzschild me-
tric. It is the link between light properties using the Maxwell equations through the eikonal theory and the light 
properties using the general relativity. The relative time is the time along the optical path in the observer space. 

Experiment 1: For transverse path such as in gravitational lenses (ds  0 in Figure 3), we get from Equation 
(5F) 

22

d dd
21

g

x xt
cGM c

nc r

= =
 
 
 ⋅
−

                                 (5G) 

In this case, space-time acts as a refractive index 2
gn . 

Experiment 2: For radial propagation such as in the Einstein effect, dx = 0 in Equation (5F), we get: 
1
2

2

2 dd d 1
g

GM ts t
nc r

 = − =
 ⋅ 


                                (5H) 

That is the time stretching effect and also the cosmological redshift as explained before. In this case ng is used 
and not 2

geffn n=  as in experiment 1 because the effect is an inner effect, between two positions. The observer 
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belongs to the experiment. 
In this presentation, the Schwarzschild metric describes a transverse configuration when dx ≠ 0. Equation (5B) 

is symmetric between dr and dx and we can exchange their interpretation. In this case, dx is the radial distance 
and ds is the local time on the transverse path. This gives the idea that the redshift is created by an expansion 
speed such as the restricted relativity could explain. 

Cosmology with the standard model is a mixture of the general relativity and the restricted relativity. This 
leads to wrong interpretations with sophisticated space-time properties. It is not well suited to the Hubble law 
which is simply a radial configuration with static sources, the stretching time effect derived from the relativity of 
cosmic time theory can simply describe observations. In the same way, the Eikonal theory (geometrical optics) 
can be an easier way to explain gravitational lenses. 

5.3. Relativity of Cosmic Time and Refractive Index 
The cosmic time is a radial configuration and it can also be interpreted as a cosmic refractive index. We relate this 
refractive index to the relativity of cosmic time theory, out of any local matter, with  

( ) ( )
1c

c Tn s z
c s s

= = = +                                    (5I) 

By definition the stretching effect is ( )cT n s s= ⋅ . We calculated the total optical path between a source s and 
the observer out of any local acceleration field. It is a radial configuration. We consider an infinitesimal optical 
path ( )d dcn r rδ = ⋅ . The optical path is a straight line, we have: 

( ) ( )
0

dd d d
d

r s
c cT

rn r r n s s
s

δ δ  = = ⋅ = ⋅ ⋅ 
 ∫ ∫ ∫                           (5J) 

At the position x related to the cosmic time s, the local relation between x and s is: ( )d dcr c n s s− ⋅= . The 
minus sign explains that time increases when light is “coming” towards the observers with dr < 0. 

We derive from Equation (5J): 

( )r c T sδ = = ⋅ −  

This is the metric defined by Equation (2C).  
The Eikonal theory applied to the cosmic refractive index explains the Tolman effect through a spatial inter-

pretation. When observing universe the configuration is radial. Photons are coming to the observer following a 
radial path. But, when observing with an imaging system a weak angle exists αs defined by the picture element 
angular field. This angle will be increased by the diverging effect because the cosmic refractive index decreases 
from the light source to the observer. 

We easily derive, using the Eikonal theory that the observed angle is αT = αs.n(r). When changing space-time, 
transverse dimensions increases more than the strict geometric perspective effect. Time is also effected by a 
perspective phenomenon created by the relativity of cosmic time. This is the Tolman Surface Brightness effect. 
Physically, light path is not spatially curved. Any spatial representation will suffer limitations. 

The local speed of light is ( ) ( )cc s c n s c s T c p= = ⋅ = ⋅ , it gives the idea that “speed of light” increases 
when the s time increases. This point of view is developed by C. Mercier in [11] in which he proposes that it is a 
property of vacuum. 

6. Discussion 
In current physics, when setting the speed of light c as constant in the universe (and not taking into account the 
relativity of cosmic time), the whole set of surrounding quantities such as: gravitational fields, relative time (de-
lay) and space (distance) are varying. This assumption leads toward a matter-based description of the universe, 
including gravitation, strength and sophisticated metrics. The Big Bang theory is based on those ideas and 
creates: expansion, temperature heating and gravitation increase when time turns back. These effects are locally 
valid using differential present physics laws. When interpreting z as an expansion parameter a(t) introduced in 
the Einstein general relativity to derive the ΛCDM model, we consider in this paper that the metric is not well 
applied. We have explained in [3] why we think that the standard model interprets the universe not only ex-
panding but also accelerating. 
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When we interpret the redshift effect with the perspective parameter p, the universe is seen under the space- 
time aspect. The model has no use of black energy. Equation (2B) is the first step that proposes that space-time 
relationship is not spatially constant when the observer is looking at space. Equation (2C) is the associated me-
tric. We think that the proposed cosmic time theory leads to a simpler description of the universe: 

Our observable universe is a “cosmic time shock wave” centered on the observer. It is the “Birth of the inner 
matter. The front wave is the beginning of cosmic time tc = 0. It defines the edge of the observable universe ex-
plained as a black hole. The “cosmic time field of view” is defined by the cosmic time limits between 0 and T, 
from p = 0 to 1, from matter birth to present, from the universe edge to the observer. 

When observer cosmic time T increases, RH increases. Keeping the illustration of the “torch lamp”, T acts like 
an increasing altitude level of the lamp over space. When the altitude of the lamp is increasing, the field of view 
increases too. From Equation (2C), the universe is seen expanding at the speed of light c. The so-called “expan-
sion” is a consequence of the fact that time is increasing. It is the edge of our field of view which increases. The 
universe is stable and not expanding; only time is increasing. 

When we wonder what will be the future of the universe expansion, we think that a better question is what 
will be the cosmic time behavior? We have shown that when considering that the universe is flat, the model is 
well suited to observations. Low frequency distortions may exist but with a weak amplitude. The critical matter 
density is not a pertinent way to analyze the universe behavior.  

In Section 4, we have shown that when the cosmic time decreases gravitation increases. It explains the high 
gravitation field at the origin of the Big Bang theory. Equation (2D) suggests that the product K.T is constant. 
Today, based on the cosmic background radiation temperature from [7] with K = 2.725 ˚K and T = 13.7 × 109 
years from [5], we get K.T = 1.18 × 1018 K.s. When cosmic time decreases temperature increases. Gravitation 
and temperature and pressure effects are the leading parameters of matter evolution as a local effect. 

Is there any singularity at the edge? The “edge” notion is derived from our space or time point of view. There 
is a singularity when p = 0, but there is not when z tends to infinite. This last point of view presents the edge as a 
horizon. This horizon defines the ground level of cosmic time where tc = 0 or p = 0 or z infinite. What was there 
before the Big Bang is the same question that what is there outside our black hole universe? The answer, from 
an observer who separates space and time is that there is another time, another space, another universe. 

Are we accreting matter from the outside? Yes, when cosmic time is spreading over space and it is depending 
on the outside matter. In this case, it is seen as an accretion phenomenon when our universe is observed from the 
outside. Matter position is fixed except local differential movements. Whatever the age of the outside matter, the 
shock wave returns it to pure energy with high temperature (Equation (2D)) and high gravitation (Equation (4H)) 
and high redshift (Equation 2B) at the edge. At the horizon, the accreted matter is not observable. It begins to 
appear in the Cosmic Microwave Background (CMB) non uniformities. 

Cosmological observations are fundamentally radial. They are quite isotropic except local non uniformities. 
The very light first order dipole temperature non uniformities of the CMB (even if affected by our local velocity) 
validate this conclusion. 

What would happen if the observer were to change his observation position? He will travel with his cosmic 
time. He is changing space position with his own “torch lamp”, the lamp illuminates the field around the ob-
server whatever be his position. He will not turn back time from his own point of view. At the same cosmic time 
T, in a flat field he will use the same speed of light. From Equation (2B), space-time and redshift will affect his 
observations. He will see (or extrapolate a model such as the Big Bang theory) a universe centered on his new 
position. 

7. Conclusions 
Our basic contribution is the introduction of the cosmic time tc as a new parameter and to consider that 
space-time is modified by a relativity effect which may be a leading point of view to describe physics. The cos-
mic time related to relativity of cosmic time is an absolute reference. The physical gauge of such a theory has 
been investigated by J. P. Petit in [12] based on the variation of speed of light point of view. We think that cos-
mology of universe is a space-time effect. It is from our natural experience that we interpret space and time as 
separated parameters. We may interpret: redshift, universe expansion and acceleration in [3], Hubble law in [3], 
increasing temperature and gravity and naturally decreasing matter age from the center to the universe edge, 
black holes. In the proposed theory, black energy and critical density are not useful for cosmic universe explana-
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tions.  
The study of black holes from the outside could be useful to unify big bang and black hole theory. Cosmology 

and physics could be oriented toward a pure time point of view of phenomena even local ones. 
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Annex 1: The Hubble Law 
Using Equations (2B) and (2C), we derive: 

( )1Hx R z z= ⋅ +                                     (A1) 

When measuring a radiation, we assume that it follows a law such as: 

24πobs
LF
x

=                                       (A2) 

where L is the measured radiation, x is the distance from object to observer. That is due to the assumption of the 
energy conservation so the product Fobs∙x2 remains constant. Propagation reduces the flux by a factor (z + 1)3 
(see Application 2 in Section 2). So that: 

( ) 3
0 1L L z −= ⋅ +                                     (A3) 

where L0 is the intrinsic radiation. We deduce from Equations (A1), (A2) and (2C): 

( )
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The magnitude is defined by ( )2.5 log obsm F⋅= − , so: 

( )
0

2 2

12.5 log
4π 1H

L
m

R z z
 

= − ⋅ ⋅ 
⋅ ⋅ +  

 

So, 

( )2 2
0 2.5 log 1Hm m R z z = + ⋅ ⋅ ⋅ +   

where 

0
0 2.5 log

4π
L

m  = − ⋅   
 

The distance modulus μ is defined by μ = m – m0. So: 

( )2 22.5 log 1HR z zµ  = ⋅ ⋅ ⋅ +                               (A4) 

L. A. Marosi proposes in [4] an empirical law (from 280 measurements), Figure A1 illustrates the good 
agreement between the two models. 

 

 
Figure A1. μ-z diagram. Solid line: Relativity of cosmic time theory with RH = 420 × 106 tenth of parsec Equation (A4). 
Dashed line: the empirical model from Marosi [4] μ = 44.109769 z0.059883.                                                       
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