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Abstract 
In this paper, a new two-step Newton-type method with third-order convergence for solving sys-
tems of nonlinear equations is proposed. We construct the new method based on the integral in-
terpolation of Newton’s method. Its cubic convergence and error equation are proved theoretical-
ly, and demonstrated numerically. Its application to systems of nonlinear equations and boun-
dary-value problems of nonlinear ODEs are shown as well in the numerical examples. 
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1. Introduction 
We consider a system of nonlinear equations as follows: 

( ) 0F x =                                         (1) 

where, : n nF D R R⊂ →  is a given nonlinear function with the following properties: 
1) There exists an ,Dξ ⊂  such that ( ) 0F ξ = ; 
2) ( )F x  is continuously differentiable in a neighborhood of ξ ; 
3) ( )F x′  is a nonsingular matrix. 
How to efficiently solve the system of nonlinear Equation (1) is a typical issue in scientific computation and 

engineering field. The most famous method is probably Newton’s method as follows (see [1] [2]): 
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( ) ( )1
1 , 0,1, 2, ,n n n nx x F x F x n−
+ ′= − =                            (2) 

where x0 is an initial guess of the root. This is one-step method, and it uses two evaluations of the function and 
derivative to achieve second-order convergence by iteration. 

Besides, third-order iterative equations, such as the Halley iterative method and Chebyshev iterative method, 
are often used. In recent years, a few similar methods [3]-[9] with high-order have emerged for solving systems 
of nonlinear equations. 

Especially, M. T. Darvish & A. Barati [3] used Adomian decomposition method to construct a third-order 
Newton-type scheme: 

( ) ( )
( ) ( ) ( )

1

1
1

n n n n

n n n n n

y x F x F x

x x F x F x F y

−

−
+

 ′= −


′  = − +  
                           (3) 

Frontini & Sormani [4] presented a third-order method in using numerical quadrature formulae to solve sys-
tems of nonlinear equations as follows: 

( ) ( )

( ) ( ) ( )

1

1

1
1 1
2 2

n n n n

n n n n n

y x F x F x

x x F x F y F x

−

−

+

 ′= −

  ′ ′= − +  

 

                         (4) 

These are classic two-step Newton-type methods to achieve cubic convergence to approximate the root of a 
system of nonlinear equations. 

In this paper, we propose a new variant of two-step Newton’s method with the third-order convergence by 
quadrature formulae in Section 2, some numerical examples using this new method for solving systems of non-
linear equations and boundary-value problems of nonlinear ODEs in Section 3, and finally make conclusions in 
Section 4. 

2. The New Method and Its Third-Order Convergence 
Based on the multivariable mean-value theorem 

( ) ( ) ( )( )( )1

0
d ,n n n nF x F x F x t x x x x t′− = + − −∫                         (5) 

we use the left rectangular integral rule 

( )( )( ) ( )( )1

0
d ,n n n n nF x t x x x x t F x x x′ ′+ − − ≈ −∫  

and use ( ) 0F x =  to get Newton Method (1). By using the trapezoidal integral rule 

( )( )( ) ( ) ( )( )( )1

0

1d ,
2n n n n nF x t x x x x t F x F x x x′ ′ ′+ − − ≈ + −∫  

substituting ( )F x′  with ( )nF y′ , and using ( ) 0F x = , Weerakoon and Fernando [5] also derived a variant of 
Newton’s method with cubic convergence (3) for a nonlinear equation :f D R R⊂ → . 

Now, we applied the quadrature formula 

( )( )( ) ( ) ( )1

0

31d 2 ,
3 4

n
n n n n n

x x
F x t x x x x t F x F x x

 +  ′ ′ ′+ − − ≈ + −  
  

∫  

to construct the following new scheme: 

( ) ( )

( ) ( )

1

1

1

, 0,1, 2, .31 2
3 3 4

n n n n

n n
n n n n

y x F x F x
nx y

x x F x F F x

−

−

+

 ′= −
 =  +  ′ ′= − +   

   

                  (6) 

We state and prove the convergence theorem as follows: 
Theorem Let : n nF D R R⊂ →  be k-time Fréchet differentiable function in a convex set D with a root 
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Dξ ⊂  and x0 be close to ξ , then the new of Newton-type method (6) is cubically convergent, and its error 
equation is 

( )2 3 4
1 2 3

1
8n n ne C C e O e+

 = + + 
 

. 

Proof. As ( ) 0F ξ = , and note n nx eξ− = , ( )
( ) ( )1

!

k

k

F
C F

k
ξ

ξ −′= . 

By Taylor’s expansion, we have 

( ) ( )( ) ( )( ) ( )( ) ( )

( ) ( )

2 3 4

2 3 4
2 3

1 1
2! 3!

,

n n n n n

n n n n

F x F x F x F x O x

F e C e C e O e

ξ ξ ξ ξ ξ ξ ξ

ξ

′ ′′ ′′′= − + − + − + −

 ′= + + + 

            (7) 

( ) ( ) ( )2 3 4
2 3 42 3 4n n n n nF x F I C e C e C e O eξ  ′ ′= + + + +  ,                     (8) 

From  

( ) ( )1 21 1a aε ε ε−+ ≈ − +                                  (9) 

where ε  is sufficiently small. 
We have 

( ) ( ) ( ) ( )
( ) ( )

1 2 2 2 3
2 2 3 2 3

2 2 3 4
2 2 3

2 4 3

2 2 ,

n n n n n n n

n n n n

F x F x I C e C C e e C e C e

e C e C C e O e

−  ′ = − + − + × + + + 

= − + − +

 

 

By (6), therefore 

( ) ( )2 2 3 4
2 3 22n n n ny C e C C e O eξ− = + − + . 

And 

( ) ( )( )
( )

2 2 3
2 3 2

2 2 3
2 3 2

3 1 3 2
4 4 4

1 3 3 ,
4 4 2

n n
n n n

n n n n

x y
e C e C C e

e C e C C e d

ξ ξ

ξ ξ

+
≈ + + + + −

= + + + − = +
 

where ( )2 2 3
2 3 2

1 3 3
4 4 2n n n nd e C e C C e= + + − . 

By Toylor’s expansion 

( )( )

( ) ( )

2
2 3

2 2 3
2 2 3

3
2 3

4

1 3 3 .
2 2 16

n n
n n

n n n

x y
F F I C d C d

F I C e C C e O e

ξ

ξ

+ ′ ′= + + + 
 

  ′= + + + +    



               (10) 

Furthermore, by (8) and (10), we have 

( ) ( ) ( )

( )

2 2 2
2 3 2 2 3

2 2
2 2 3

31 2 1 2 2 1 1
3 3 4 3 3 3 3 8

9
8

n n
n n n n n

n n

x yF x F F I C e C e F I C e C C e

F I C e C C e

ξ ξ

ξ

+       ′ ′ ′ ′+ = + + + + + + + +           
  ′= + + + +    

 



 (11) 

Finally, using (7), (11) and (6), we obtain the error equation as 
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( ) ( ) ( )

( ) ( )( )

( ) ( )

1

2 2 3 2 3
2 2 3 2 3

2 3 4
2 3

3 31 2 1 2
3 3 4 3 3 4

9
8

1 .
8

n n n n
n n n n n

n n n n n n

n n

x y x yF x F e F x F e F x

F e C e C C e F e C e C e

F C C e O e

ξ ξ

ξ

+
 +   +    ′ ′ ′ ′+ = + −            

  ′ ′= + + + + − + + +    
  ′= + +    

   

That is 

( )2 2 2 3 4
2 2 3 1 2 3

9 1
8 8n n n n nI C e C C e e C C e O e+

    + + + = + +        
. 

Using (9), so, 

( )2 3 4
1 2 3

1
8n n ne C C e O e+

 = + + 
 

.                             (12) 

This shows that the method is the third-order convergence.  
The new scheme of two-step Newton-type method (6) uses three evaluations of the function and derivative 

per iteration to achieve third-order convergence for solving a simple root of systems of nonlinear equations. As 
the efficiency index is 1 wp , the efficiency index of the Newton-type method is 3 3 1.4422= , whereas New-
ton’s method is 2 1.4142= . 

3. Numerical Examples 
The iterative method (6) is demonstrated by solving some systems of nonlinear equations and boundary-value 
problems of nonlinear ODE. 

Example 1. Consider the system of nonlinear equation: 
2 3

1 2 2 2
2

1 2 2

2 4 0
2 1 0

x x x x
x x x

 − + + − =

− − + − =

                                (13) 

where ( )0 1,0x ′= , ( )2, 1ξ ′= − . We have numerical results in Table 1. 
According to results of the numerical experiments, the new iterative method (6) can achieve super third-order 

convergence for some systems of nonlinear equations. 
Example 2. We have numerical results in Table 2 for the following a system of nonlinear equations: 

 
Table 1. The solutions and errors of the system of Equations (13) using method (6).  

k  ( )
1

kx  ( )
2
kx  2kx ξ−  ( )

2kF x  

1 3.444444444444444039576788 −1.025641025641025617667891 1.446e−0 1.971e−0 

2 1.999998516331195414738740 −0.9999996492101374900753236 1.524e−6 1.854e−6 

3 2.000000000000000000004496 −1.0000000000000000000008992 4.585e−21 5.395e−21 

4 1.999999999999999999999999 −0.999999999999999999999999 7.725e−65 9.091e−65 

 
Table 2. The solutions of the system of Equations (14) using method (6).  

k  ( )
1

kx  ( )
2
kx  ( )

3
kx  ( )

2kF x  

1 0.499565371550889536 0.006147092477281110 −0.521628814405284191 1.07e−1 

2 0.500000035199424988 0.000005327105559032 −0.523598502730812839 8.61e−5 

3 0.500000000000000033 0.000000000000003291 −0.523598775598308161 1.97e−13 

4 0.500000000000000000 0.000000000000000000 −0.523598775598298873 1.09e−31 
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Table 3. The errors of the system of Equations (16) using method (6).  

k  1 2 3 4 

2kx ξ−  2.439e−2 1.238e−10 1.612e−14 1.612e−14 

( )
2kF x  1.996e−3 6.128e−12 7.926e−37 1.729e−112 

 

( )
( )

( )1 2

1 2 3
22

1 2 3

3

3 cos 0.5 0

81 0.1 sin 1.06 0
e 20 10π 3 3 0x x

x x x

x x x
x−

 − − =
 − + + + =
 + + − =

                           (14) 

where ( )0 0.1,0.1, 0.1x ′= − , ( )0.5,0, π 6ξ ′= − . 
The above numerical results agree with the theoretical analysis on the convergence, and the iterative efficien-

cy is comparative high. 
Example 3. Consider solving the following boundary-value problem of nonlinear ODE: 

( ) ( ) ( )
( ) ( )

3 2 0, 0,1
0 1 0

x t x t t
x x

 ′′ + = ∈


= =
                              (15) 

Discretize the nonlinear ODE (15) with the finite difference method. Taking nodes it ih= , where 1h N=  
and 10N = , we have a system of nine-dimensional nonlinear equations: 

2 3 2
1 1 2

2 3 2
1 1

2 3 2
8 9 9

2 0
2 0, 2,3, ,8

2 0
i i i i

x h x x
x x h x x i
x x h x
− +

 − − =

− + − − = =
− + − =

                          (16) 

where ( )0 30,60,90,100,120,100,90,60,30x ′= , using the Newton-type method (6), we get the solutions ξ  of 
Equations (16), that is  

(

)

33.5739120483377998 ,65.2024509236543787 ,91.5660200355396017 ,

109.1676242966423523 ,115.3630336377466172 ,109.1676242966423523 ,

91.5660200355396017 ,65.2024509236543787 ,33.5739120483377998 .

ξ =

′

  

  

  

 

The results for the system of nonlinear equations of ODE (15) are shown in Table 3. 

4. Conclusion 
In this paper, we presented a new two-step iterative method of cubic convergence to solve systems of nonlinear 
equations. Through theoretical analysis and numerical experiments, we believe that the new variant of Newton- 
type method is so efficient and fast convergent as to be able to find solutions with required accuracy. To sum up, 
this method is suitable for solving systems of nonlinear equations, and can be used to resolve boundary-value 
problems of nonlinear ordinary differential equations as well. 
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