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Abstract 
Physicochemical properties of a new hybrid compound (C7H9N2O)3HSO4SO4 are synthesized in 
aqueous solution and characterized by various physicochemical studies. This compound crystal-
lizes in the monoclinic space group P21/c and a unit cell with a = 10.3028(2)A˚, b = 12.4995(2)A˚, c = 
20.6730(2)A˚, V = 2600.61(7)A˚3, and Z = 8. The structure has been solved using direct method and 
refined to a reliability R factor of 4.6%. The atomic arrangement of this compound is built up by 
(HS2O8)3− anionic pairs interconnected with two types ( ) +2

7 9 2 2
C H N O  cationic pairs via (N, O)-H...O 

hydrogen bonds. The characterization of these salts was carried out using X-ray diffraction, IR 
spectroscopy and thermal analysis. 
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1. Introduction 
The synthesis of new hybrid materials based sulfate, phosphate and arsenate may contain original physical 
properties, is one of several research studies in chemistry laboratories in the world, due to its importance in both 
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biological processes; in various industrial applications and technological [1] [2]. The cohesion forces in these 
hybrid compounds are dominated by electrostatic interactions, Vander Waals contacts, and hydrogen bonds 
(O-H…O and N-H…O). These hydrogen bonds play an important role in the mechanism of association of mo-
lecules that either biological or not. The strong characteristics and orientation of these links are extremely im-
portant in obtaining new materials such as proton conductors and frequency doublers. Thus, organic sulfates re-
sulting from the interaction between sulfuric acid and organic molecules in which one of atom, at least, carries a 
lone pair, owe their stability to hydrogen bonds [3]-[5]. This work reports the chemical preparation, crystal 
structure and physico-chemical study of a new organic sulfate (C7H9N2O)3HSO4SO4. 

2. Experiment 
2.1. Chemical Preparation 
Crystals of the title compound, (C7H9N2O)3HSO4SO4, were prepared by slow evaporation at room temperature 
of an aqueous solution of sulfuric acid (98wt% from Fluka) and the organic molecule 2-Aminobenzamide (Sig-
ma-Aldrich ) in a 2:3 molar ratio. The corresponding acid-base chemical reaction can be written as follows: 

( ) ( )2H O
2 4 7 8 2 7 9 2 4 43

2H SO 3 C H N O C H N O HSO SO+ →  

After agitation, the resulting solution was left to slowly evaporate at room temperature until single crystals 
suitable for X-ray structure analysis formulates and remain stable under normal conditions of temperature and 
humidity. 

2.2. Investigation 
The title compound has been studied by various physico-chemical methods: X-ray diffraction, Infrared spec-
troscopy and Thermal analysis. 

2.2.1. X-Ray Structure Determination 
X-ray intensity data of the title compound were collected on a Nonius Kappa-CCD diffractometer using mo-
nochromated Mo Kα radiation. For the crystal, 90 frames were recorded, each being of 2˚ in ϕ  and 60 s dura-
tion. Each frame is doubled to eliminate the uncertain electronic impulses. The first 10 frames were used for in-
dexing reflections using the DENZO package and refined to obtain final cell parameters [6]. Preliminary photo-
graphs indicated monoclinic symmetry and systematically absent reflections showed the space group to be P21/c. 
Crystal data and experimental parameters used for the intensity data collection are summarized in Table 1. The 
structure was solved with a direct method, from the SHELXS-97 programs, which allows the location of the SO4 
groups. The remaining non-hydrogen atoms were found by the successive difference Fourier maps using the 
SHELXL-97 programs [7]. The formula structure was drawn by Diamond [8]. In the final least-squares refine-
ment of atomic parameters with isotropic thermal factors of H atoms, R has decreased to 4.6% (Rw = 11.41%) 
for the title compound. 

2.2.2. Thermal Analysis 
Setaram TG-DTA92 star system Mettler Toledo thermoanalysers were used to perform thermal treatment on 
samples of (C7H9N2O)3HSO4SO4. The TG-DTA experiments were carried out with 19.8 mg sample in an open 
alumina crucible. In this technique, samples were heated in an air atmosphere with heating rates of 5˚C∙min−1. 

2.2.3. Infrared Spectroscopy 
IR spectrum of the compound was recorded at room temperature with a Biored FTS 6000 FTIR spectrometer 
over the wave number range of 4000 - 400 cm−1 with a resolution of about 4 cm−1. Thin transparent pellet was 
made by compacting an intimate mixture obtained by shaking 2 mg of the samples in 100 mg of KBr. 

3. Results and Discussion 
3.1. Structure Description 
The atomic arrangement of the structure of the tris (2-amoniumbenzamide) sulfate (C7H9N2O)3HSO4SO4 was  
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Table 1. Crystal data and structure refinement. 

Compound (C7H9N2O)3HSO4SO4 

Color/shape Colorless/prismatic 

Formula weight 314.29 g/mol 

Crystal system monoclinic 

Space group P21/c 

Temperature, K 293(2) 

Unit cell dimensions  

a = 10.3028(2)Å α = 90.00 

b = 12.4995(2) β = 102.355(2) 

c = 20.6730(2)Å γ = 90.00 

Cell volume, Å3 2600.61(7) 

Z 8 

Density (calculated), g/cm3 1.61 

Absorption coefficient, mm−1 0.45 

diffraction measurement device Kappa CCD Nonius 

Radiation, graphite monochr. MoKα (λ = 0.71073 Å) 

Max. crystal dimensions, mm 0.36 × 0.29 × 0.21 

scan mode Φ (CCD diffract.) 

θ range 2 - 25˚ 

Range of h, k, l −12 ≤ h ≤ 11, 0 ≤ k ≤ 14, 0 ≤ l ≤ 24 

Number of scanned reflections 4571 

Number of independent ref. 4441 

Number of observed reflections 4441 

Reflections observed criterion I > 2σ(I) 

Data reductions programs Denzo [6] 

Computer programs SHELX-97 [7] 

Refined parameters 473 

Goodness of fit on F2 0.952 

R 0.046 

Rw 0.114 

 
described by a three-dimensional network of structural units formed by a cluster (HS2O8)3− sulfate and three or-
ganic cations (C7H9N2O)+. Figure 1 shows an ORTEP [9] stereoscopic projection of the crystal packing. The 
mineral skeleton of this compound is formed by basic 2

4SO −  and acid groups 4HSO−  which are interconnected 
via a hydrogen bond type O(2)-H∙∙∙O(7), and are organized in isolated clusters (HS2O8)3− in the plane (a, c) 
(Figure 2). The short distance O(2)∙∙∙O(7)= 2.485(3)Å, shows that this hydrogen bond was considered strong. 
The distance S(1)∙∙∙S(2) being of the order of 4.525(1)Å. Distances and bond angles describing anions ( 2

4SO − ) 
and ( 4HSO− ) are shown in Table 2. S-O distances vary in the range [1.438(3) - 1.506(4)Å]. The review of these 
distances reveals that the last distance S-O(2) [1.506(4)Å] is the longest, this is due to the location of a proton on  
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Figure 1. ORTEP stereoscopic projection of the atomic arrangement (for clarity, H-bonds are represented by 
dashed lines). Thermal ellipsoids are given at 50% probability. 
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Figure 2. Clusters (HS2O8)3− viewed down the crystallographic b axis. 
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oxygen O(2) of the anion 4HSO− , this characteristic is in line with those observed in the protonated oxoanions 
[10]-[12], the mean value of S-O distances and angles O-S-O are: 1.466(3)Å, 109.46(19), 1.473(3)Å, 109.38(20) 
respectively for the tetrahedra S(1)O4 and S(2)O4. These values are also in good agreement with those observed 
for similar anionic groups [13] [14]. The oxygen atoms O(1) and O(3) of the tetrahedron are doubly protonated, 
the HSO4 have the longest distances [1.456(3), 1.466(3)Å], while O(4) engaged in a single hydrogen bond it is a 
S-O distance smaller [1.438(3)Å]. The interaction of the sulfuric acid with the organic molecule (C7H8N2O) 
leads to the protonation of nitrogen grafted on the benzene ring and the formation of three cations (C7H9N2O)+ 
crystallographically independent. Respectively denoted: A{C(1)  C(7)}, B{C(8)  C(14)} et C{C(15)  C(21). 
Figure 3 shows a projection along the a axis of the atomic arrangement in (C7H9N2O)3HSO4SO4. Main geome-
trical characteristics of these cations are summarized in Table 3; these organic species are no local symmetry in 
the structure. Note that the two cations A and C are associated with two hydrogen bonds N(1)-H(1N1)∙∙∙O(10)  

 
Table 2. Main interatomic distances (Å) and bond angles (°) in the SO4 and HSO4 tetrahedra 
of (C7H9 N2O)3HSO4SO4. 

S(1) O(1) O(2) O(3) O(4) 

O(1) 1.456(3) 107.1(2) 110.3(20) 109.3(2) 

O(2) 2.381(1) 1.506(4) 108.96(18) 108.7(2) 

O(3) 2.397(1) 2.419(1) 1.466(3) 112.38(17) 

O(4) 2.362(1) 2.391(2) 2.413(0) 1.438(3) 

S(2) O(5) O(6) O(7) O(8) 

O(5) 1.466(3) 109.4(2) 105.25(19) 112.2(2) 

O(6) 2.404(1) 1.479(3) 107.33(19) 113.7(2) 

O(7) 2.354(1) 2.397(2) 1.497(3) 108.4(2) 

O(8) 2.421(0) 2.455(0) 2.392(1) 1.452(3) 

 

 

b 

c 
 

Figure 3. Projection along the a axis of the atomic arrangement in (C7H9N2O)3HSO4SO4. 
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Table 3. Main interatomic distances (Å) and bond angles (°) in the organic groups of (C7H9N2O)3HSO4SO4. 

Cation A 

N(2)—C(7) 1.333(6) C(6)—C(1)—C(2) 118.2(4) 

C(1)—C(6) 1.387(6) C(6)—C(1)—C(7) 121.1(3) 

C(1)—C(7) 1.521(6) C(2)—C(1)—C(7) 120.6(3) 

C(2)—N(3) 1.458(6) C(1)—C(2)—N(3) 121.2(3) 

C(2)—C(1) 1.411(6) C(3)—C(2)—N(3) 118.6(4) 

C(2)—C(3) 1.380(6) C(3)—C(2)—C(1) 120.2(4) 

C(3)—C(4) 1.382(7) C(2)—C(3)—C(4) 120.5(4) 

C(4)—C(5) 1.376(7) C(5)—C(4)—C(3) 120.0(4) 

C(6)—C(5) 1.389(7) C(4)—C(5)—C(6) 119.9(4) 

C(7)—O(11) 1.225(5) C(1)—C(6)—C(5) 121.1(4) 

  O(11)—C(7)—N(4) 120.9(4) 

  O(11)—C(7)—C(1) 121.5(3) 

  N(4)—C(7)—C(1) 117.5(4) 

  C(6)—C(1)—C(2) 118.2(4) 

Cation B 

N(3)—C(8) 1.446(6) C(9)—C(8)—C(13) 120.7(4) 

N(4)—C(14) 1.331(6) C(9)—C(8)—N(1) 117.5(4) 

C(8)—C(9) 1.383(6) C(13)—C(8)—N(1) 121.8(4) 

C(8)—C(13) 1.398(6) C(10)—C(9)—C(8) 121.1(4) 

C(10)—C(9) 1.374(7) C(9)—C(10)—C(11) 119,2(4) 

C(10)—C(11) 1.383(7) C(10)—C(11)—C(12) 119.7(4) 

C(12)—C(11) 1.387(6) C(11)—C(12)—C(13) 121.9(4) 

C(13)—C(12) 1.389(6) C(12)—C(13)—C(8) 117.3(3) 

C(14)—C(13) 1.504(6) C(12)—C(13)—C(14) 121.9(3) 

C(14)—O(9) 1.241(5) C(8)—C(13)—C(14) 120.7(3) 

  O(9)—C(14)—N2 120.1(4) 

  O(9)—C(14)—C(13) 121.5(3) 

  N(2)—C(14)—C(13) 118.4(3) 

  C(9)—C(8)—C(13) 120.7(4) 

Cation C 

N(5)—C(15) 1.460(6) C(16)—C(15)—N(5) 117.8(4) 

N(6)—C(21) 1.327(6) C(20)—C(15)—N(5) 121.6(3) 

C(15)—C(16) 1.389(7) C(16)—C(15)—C(20) 120.6(4) 

C(16)—C(17) 1.375(8) C(17)—C(16)—C(15) 120.5(4) 

C(18)—C(17) 1.382(8) C(16)—C(17)—C18 119.3(4) 

C(19)—C(18) 1.369(7) C(19)—C(18)—C(17) 120.8(4) 

C(19)—C(20) 1.400(6) C(18)—C(19)—C(20) 121.2(4) 

C(20)—C(21) 1.505(6) C(15)— C(20)—C(19) 117.5(3) 

C(21)—O(10) 1.244(5) C(15)—C(20)—C(21) 120.8(3) 

  C(19)—C(20)—C(21) 121.6(3) 

  O(10)—C(21)—N(6) 120.4(4) 

  O(10)—C(21)—C(20) 121.0(3) 

  N(6)—C(21)—C(20) 118.7(3) 
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and N(5)-H(2N5)∙∙∙O(11) to form a first type of dimmer located in planes z = (2n + 1)/4. A second type of dim-
mer formed by two B cations that associate through hydrogen bond N(3)-H(2N3)···O(9) is situated around the 
center of inversion (0, 0, 0) (Figure 4, Figure 5). 

The work demonstrating the important role of hydrogen bonds, the stability of the structure reveals two types 
of connections: O-H∙∙∙O and N-H∙∙∙O, the structure studied in this work, contains a single hydrogen bond of first 
type and the second type seventeen. The only link O(2)-H(O2)∙∙∙O(7) considered high [O(2)-H(O2)∙∙∙O(7) = 
2.485(3)Å] [14], brings the two anionic species as a cluster (HS2O8)3−. it is noted, among the seventeen hydro-
gen bonds of the N-H∙∙∙O, six strong for which the distance N∙∙∙O range from 2.621(1)Å to 2.756(1)Å [14] and 
eleven moderately low [N∙∙∙O > 2.76Å] [15]. The second type of hydrogen bonds connecting the various clusters 
to generate the three-dimensional network structure. 

The characteristics of the different hydrogen bonds are given in Table 4. As a result, the two types of hydro-
gen bonds, O-H∙∙∙O and N-H-O, contribute to the cohesion in the network of the present crystal structure. 

3.2. Thermal Behavior 
The thermal study was conducted using a thermoanalyzer type Setaram TG-ATD92. The thermogram (TG- 
DTA) of Figure 6 is registered under an air atmosphere using a mass of 19.8 mg sample placed in a platinum 
crucible and heated from ambient to 400˚C. 

The TG curve shows no mass loss in the area, room temperature 200˚C. However it shows a significant loss 
from 200˚C up. The DTA curve shows two endothermic peaks less intense at 98˚C and 110˚C which is attri-
buted to two transitions likely stage since at this temperature was noticed no mass loss. Note that the observed 
thermal phenomena in differential thermal analysis are many and varied. The majority of these peaks are endo-
thermic such as melting, evaporation, sublimation, dehydration. The remaining peaks are exothermic such as 
adsorption, crystallization and decomposition; however, the last two phenomena can also be endothermic. The 
DTA curve shows a succession of exothermic and endothermic peaks between 200˚C and 400˚C can be ex-
plained by the decomposition of the molecule. The endothermic peak observed at 199˚C is attributed to the 
melting of the anhydrous compound. 
 

 
Figure 4. Dimmer A-C. 

 

 
Figure 5. Dimmer B-B. 
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Table 4. Bond lengths (Å) and angles (˚) in the Hydrogen-bonding schemea. 

 N(O)-H(Å) H···O(Å) N(O)···O(Å) N(O)-H···O(˚) 

N1-H1N∙∙∙O10(i) 0.97 (5) 2.2298 (4) 2.7814 (4) 115.41 (3) 

N1-H1N1∙∙∙O11 0.97 (5) 1.8046 (5) 2.6553 (5) 145.81 (4) 

N1-H2N1∙∙∙O6 0.81 (5) 1.7589 (6) 2.7956 (5) 173.54 (5) 

N1-H3N1∙∙∙O3 0.80 (5) 2.0505 (5) 2.8452 (5) 177.63 (4) 

N2-H2N2∙∙∙O8(vii) 0.87 (7) 2.1151 (6) 2.9045 (5) 149.32 (5) 

N3-H1N3∙∙∙O5(iii) 1.00 (6) 1.7850 (5) 2.7562 (5) 163.01 (5) 

N3-H2N3∙∙∙O9 0.73 (5) 2.0095 (4) 2.6275 (5) 142.71 (4) 

N3-H2N3 ∙∙O9(v) 0.73 (5) 2.4115 (4) 2.9392 (5) 130.62 (4) 

N3-H3N3∙∙∙O1 1.00 (8) 1.7438 (8) 2.7449 (5) 166.81 (6) 

N4-H1N4∙∙∙O4(iv) 0.81 (5) 2.1193 (4) 2.8967 (5) 161.11 (4) 

N4-H2N4∙∙∙O3(v) 0.81 (6) 2.2504 (5) 3.0311 (5) 162.22 (4) 

N5-H1N5∙∙∙O1 0.89 (6) 1.9790 (5) 2.8361 (5) 161.91 (4) 

N5-H2N5∙∙∙O10 0.89 (6) 1.9040 (5) 2.6208 (4) 135.30 (4) 

N5-H2N5∙∙∙O11(ii) 0.90 (5) 2.1974 (5) 2.8039 (4) 124.25 (4) 

N5-H3N5∙∙∙O6(iii) 0.90(5) 1.5978 (9) 2.7287 (4) 156.46 (7) 

N6-H1N6∙∙∙O7(ii) 0.91 (5) 2.0838 (4) 2.9929 (5) 169.47 (4) 

N6-H2N6∙∙∙O5(vi) 0.91 (5) 2.2571 (4) 3.0961 (5) 153.70 (3) 

O2-HO2∙∙∙ O7 0.840 (4) 1.838 (2) 2.485 (3) 132.60 (4) 
aSymmetry operators: i) −x, y − 1/2, −z + 1/2; ii) −x, y + 1/2, −z + 1/2; iii) x − 1, y, z; iv) x, −y + 3/2, z + 1/2; v) 
−x, −y + 1, −z + 1; vi) x − 1, −y + 3/2, z − 1/2; vii) −x + 1, y − 1/2, −z + 1/2. 
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Figure 6. TG-DTA thermo grams of (C7H9N2O)3HSO4SO4. 
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Figure 7. IR Spectrum of (C7H9N2O)3HSO4SO4. 

3.3. IR Absorption Spectroscopy 
The literature study, conducted over several sulfates [16] [17] shows that specific frequencies of vibration of the 
free ion SO4, in its ideal Td symmetry are ν1 = 981 cm−1, ν2 = 451 cm−1, ν3 = 1104 cm−1 and ν4 = 614 cm−1 [18]. 
Frequently encountered in structures, SO4 tetrahedron are often distorted have low symmetry sites. The lifting of 
degeneracy and activity of inactive modes, in the ideal symmetry, multiply the number of bands in the infrared 
spectrum. The IR spectrum of compound (C7H9N2O)3HSO4SO4 is reported in Figure 7. 

An attempt to assign frequencies to different stretching vibrations and deformation of the organic cation is 
performed based on previous work [19] [20]. Bands observed in the region 2562 - 3375 cm−1 are assigned to 
symmetric and asymmetric vibrations of valence ν(NH3), ν(NH2), ν(CH) and ν(OH). The bands between 1538 - 
1681 cm−1 are attributed to deformation vibrations of bonds (NH3) and (NH2) as well as vibrations of valences 
ν(C=C) and ν(CN). Vibration symmetrical and asymmetrical deformation δs(CH) and δas(CH), occur in the area 
from 1276 to 1499 cm−1. The deformation vibrations rocking type: ρ(NH3), ρ(NH2) and ρ(CH) appear in the 721 - 
965 cm−1 region. The twists τ(NH3) and τ(NH2) appear in 514 - 560 cm−1 bands. Finally, the bands 1926 - 2369 
cm−1 domains are assigned to overtones and combination bands. The frequency bands in the region 410 - 484 
cm−1 are attributed to the symmetric deformation vibration of δs(SO4). The asymmetric deformation symmetry 
δas(SO4) was observed in the area 602 - 671 cm−1. While that connected to the symmetry of valence SO4 group is 
presented by the band 992 cm−1. Bands observed in the 992 - 1186 cm−1, on asymmetrical valence vibration 
νs(SO4)δas(SO4) region. 

3.4. Supplementary Material 
Crystallographic data for the structural analysis have been deposited at the Cambridge Crystallographic Data 
Centre, CCDC No 1000722. Copies of this information may be obtained free of charge from The Director, 
CCDC, 12 Union Road, Cambridge, CB2 IEZ, UK (fax: +44-1226-336033; e-mail: deposit@ccdc.cam). 
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