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Abstract 
We study the quantum theory of the mass-less vector fields on the Rindler space. We evaluate the 
Bogoliubov coefficients by means of a new technique based upon the use of light-front coordinates 
and Mellin transform. We briefly comment about the ensuing Unruh effect and its consequences. 
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1. Introduction 
The production, propagation and detection of real photons in a non-inertial reference frame are a highly non-
trivial subject [1] [2]. The matter is that, if one aims to describe those features in a coordinate independent way, 
i.e. local diffeomorphism invariant in the physical 3 + 1 dimensional space-time, one has to properly separate 
the physical and nonphysical polarization modes, the latter ones being necessarily present in any gauge and dif-
feomorphism invariant general formulation of the quantum theory: this becomes a hard task which has not yet 
been reached, even for a uniformly accelerated frame in a flat space-time referred to a curved coordinate system 
[3]. Actually, in the nearly whole literature on the non-inertial effects on quantum fields, just like the celebrated 
Unruh effect [4], or about quantum field theory in curved spaces, the emphasis, examples and applications are 
always centered around the real scalar field case [4]-[9] up to some few exceptions concerning the realistic elec-
tromagnetic or Proca vector fields [10]-[12] or the Dirac and Majorana spinor fields [13] [14]. Recently, a quite 
interesting attempt to investigate, both from a theoretical and operational points of view, the process of emission, 
propagation and detection of electromagnetic radiation in a uniformly accelerated reference frame has been pur-
sued in [2] in the four dimensional space-time. However, to the aim of avoiding the difficult disentanglement of 
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the physical and nonphysical polarization, the author does restrict the dynamics along the acceleration direction, 
just turning to a 2-dimensional setting and to the treatment of the radiation field in terms of a conventional 
mass-less scalar degree of freedom in a 1 + 1 dimensional Minkowskian space 1,1M . But in so doing, it turns 
out that the correct canonical quantization [15] of the radiation field is not properly taken into account so that, 
consequently, some fictitious singularities appear, which are an artifact of the too drastic simplification of the 
radiation dynamics in an accelerated reference frame hitherto employed. 

It is the aim of the present short note to fill this lack and to provide a fully consistent Lorentz and gauge inva-
riant quantum theory for the lineal, i.e. on a one dimensional spatial real line, radiation field. In so doing, thanks 
to a new method based upon the use of the Mellin transforms and the light-front system of coordinates, which 
has been recently developed by Aref’eva and Volovich [16], the Bogoliubov coefficients connecting inertial and 
accelerated reference frames are eventually and correctly obtained to be singularity free. Thanks to the present 
contribution, the quite relevant and interesting operational analysis developed in [2] is actually set on a firm and 
reliable framework and might become seminal for some future experimental verification. 

2. Rindler Space and Coordinate System 
In this Section we aim to briefly collect and recall the most useful systems of coordinates, which are utmost 
suitable to describe the field dynamics for a uniformly accelerated Observer in the Rindler space [17], a non-  
inertial flat space-time in two dimensional curved coordinate systems—many more details and useful properties, 
aspects and relevant features can be found in [18]. To this concern, consider a two dimensional Minkowskian 
space 1,1M  with coordinates1 

( ) ( )0 1, ,x x x t xµ = =  

and metric 
2 2 2d d d d d d ds g x x t x x xµ ν

µν
− += = − =                            (1) 

where ( ),g g diagµν
µν = = + −  is the metric tensor while 

x t x x t x− += − = +  

are the standard light-front coordinates. If we perform the non-inertial coordinate transformation in the restricted 
space-like region x t>  of the Minkowskian space 

{ } ( )
{ } ( )

a exp a sinh a
>

a exp a cosh a
t

x t
x

ξ η
ξ η

 =
 =

                           (2) 

with a 0>  and , ,η ξ ∈  or equivalently 

( ){ }
( ){ }

1

1

a exp a

a exp a

u x

v x

η ξ

η ξ

− −

− +

 = − − = −


= + =
                              (3) 

then the line element of Equation (1) becomes 

( )2 2a 2 2d e d ds ξ η ξ= −                                  (4) 

Moreover we can readily obtain the inversion formulæ for x t>  
2 2a ln a ln auv x tξ = = −                                (5) 

a ln lnv x t
u x t

η +
= =

−
                                   (6) 

whence we get 

{ } ( )2 2

1 exp a cosh a
a
x

t x x t
η ξ ξ η∂ ∂
= = ⋅ = −

∂ ∂ −
                         (7) 

 

 

1Throughout this note we shall use natural units 1c= =  unless explicitly stated. 
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{ } ( )2 2

1 exp a sinh a
a
t

x t x t
η ξ ξ η∂ ∂  = = − = − − ∂ ∂ − 

                      (8) 

in such a manner that if we set ( ),x µ η ξ′ =  then we find 

( )2 2

1 1x tx x t
t x ax x t

µ

ν

− ′  ∂
= >   −∂ −   

                         (9) 

{ } ( ) ( )
( ) ( )

cosh a sinh a
exp a

sinh a cosh a
η η

ξ
η η

 − 
= −  − 

                            (10) 

Finally we can readily find the transformation formulæfor the differential operators, viz. 

( ){ }( )exp a
u uη ξ η ξ
η ξ η ξ−
∂ ∂

∂ = − ∂ − ∂ = − ∂ − ∂
∂ ∂

                      (11) 

( ){ }( )exp a
v vη ξ η ξ
η ξ η ξ+
∂ ∂

∂ = ∂ + ∂ = − + ∂ + ∂
∂ ∂

                      (12) 

( )2a 2 24 4e ξ
η ξ

−
− += ∂ ∂ = ∂ − ∂                                     (13) 

The curved coordinates ( ),η ξ  cover only a quadrant of the Minkowskian space 1,1M  i.e. the Rindler re-
gion R named the right Rindler wedge [17] 

( ){ }1 1R , >t x x t+= ∈M  

Since ( )tanh a ,t x η=  lines of constant η are straight while lines of constant ξ are just hyperbolas 
2 2 2 2aa e constantx t ξ−− = =                                (14) 

the asymptotic of which are the null rays 0x± =  or , .u v= ∞ = −∞  Thus the accelerated Observers do indefi-
nitely approach the speed of light for ,η → ±∞  while the proper time τ  and the proper acceleration a  for 
the accelerated Observers are respectively given by 

a ae a aeξ ξτ η −= =                                   (15) 

in such a manner that hyperbolæ of large negative ξ, i.e. close to the Rindler horizon 0,x t= =  do represent 
strongly accelerated Observers with a short proper time τ . 

As a further quite useful example of curved coordinate system to label the two dimensional Rindler space, 
consider once again the sub-spaces R and L of the Minkowskian space 1,1M  in the curved coordinate system 
( ),η  associated to the uniformly accelerated Observer: namely, 

( )
sinh a

0, 0,
cosh a

t
a

x
η

η
η

=
> > ∈ = ±







                      (16) 

where the plus and minus signs refer to the right and left Rindler’s wedges respectively, while the line element 
takes the forms 

2 2 2 2 2 2 2d d d a d ds t x η= − = −                             (17) 

whence we obtain the metric tensors 

( )
2 21 0 a 0

0 1 0 1
g gαβ µν

  
= =   − −   


                        (18) 

so that 

( ) ( ) 1 2 2det det ag g g µν
µν

− = = = −                            (19) 

Moreover, after setting 
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( ) ( )x , x , , 0,1t xα ν η α ν= = =  

we readily get the transformation matrix 

cosh sinhx 1
sinh coshx

ν

α

τ τ
σ τ σ τσ

−   ∂
=   −∂   

                            (20) 

where a, a.τ η σ≡ ≡   Notice that, in general, the transformation matrix connecting the inertial and the accele-
rated reference frames can be written as the product of a local Lorentz transformation and the Zwei-Beine field 

( ) ( ) ( )x x X x 1,1
x

O
ν

β ν
α βα

 ∂
= Λ Λ∈ 

∂ 
                         (21) 

and specifically, for the present case of a uniformly accelerated Observer, 
0 1 0 1
0 1 1 0cosh sinhτ τΛ = Λ = Λ = Λ = −                            (22) 

( )
cosh sinh
sinh cosh

τ τ
τ

τ τ
− 

Λ =  − 
                                     (23) 

( ) 1
0 0 1 1X Xν ν ν νσ σ δ δ−= =                                    (24) 

Hence we can eventually write the following chain equality 

( ) ( ) ( )2d dx dx X X dx dx dx dxs g g gµ ν αβ µ ν µ ν α β
µν α β αβσ σ= = =  

For any contravariant vector field in the Minkowski space we can derive the corresponding vector field in the 
Rindler space, viz., 

( ) ( ) xx x
x

V V
ναν
α

 ∂
=  

∂ 
                                  (25) 

Consider for example the complete orthogonal set of the mass-less vector normal modes in the 2-dimensional 
Minkowski space 1,1M  

( ) ( ) ( )
( ) ( ),

, for
,

, for
k

A k
k

k t x A L
t x

k t x A S

α
α

α

ε ϕ
ϕ

ε ϕ∗

 == 
=

                            (26) 

where the dual pair of constant light-like polarization vectors is provided by 

( ) ( ) ( ) ( )
1 11

sgn sgn2
k k

k k
α αε ε ∗

   
= =   −   

                         (27) 

while the scalar wave functions read 

( ) ( )
1
2, 4π e ,ikx i t

k t x k kωϕ ω ω− −= = ∈                           (28) 

The Minkowskian space vector normal modes do fulfill 

( ) ( ), ,

0 1
,

1 0A k B p AB ABg k pα β
αβ ϕ ϕ η δ η

 
= − =  

 
                       (29) 

where the invariant inner product is defined by 

( ) ( ) ( ), , , ,, d , ,A k B p A k t B pg g x t x i t xα β α β
αβ αβϕ ϕ ϕ ϕ

∞

−∞
≡ ↔ ∂∫                      (30) 

The complete and orthogonal set of the mass-less vector normal modes in the right Rindler wedge R can be 
readily obtained from Equations (21) and (25). To this concern it is expedient to introduce the accelerated pola-
rization vectors 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

X ; ,
X ; ,

k k
k

k k

α β ν ν
α β

α β ν ν
α β

ε τ σ ε σ τ
ε τ σ ε σ τ∗ ∗

 Λ ≡ ∀ ∈ Λ ≡
                     (31) 

in such a manner that we eventually come to 

( ) ( ) ( )
( ) ( ),

; , , for
,

; , , for
k

A k
k

k A L
k A S

ν
ν

ν

ε η ϕ η
ϕ η

ε η ϕ η∗

 == 
=

 


 
                       (32) 

where 

( ) ( ) ( ) ( ) ( ){ }
1
2, 4π exp sinh a sgn cosh ak i kϕ η ω ω η η−= − −                    (33) 

with k ∈  and kω = . 

3. Quantization of the Lineal Radiation Field 
The manifestly covariant quantization of the free radiation field on a two dimensional Minkowskian space 1,1M  
in the non-homogeneous Lorenz gauge ( ) ( )x xA Bµ

µ ξ∂ =  can be suitably performed according to the well 
known and long standing procedure and formalism developed by Bleuler, Gupta, Lautrup and Nakanishi [15] in 
the four dimensional case. The Lagrangian is 

21 1
4 2

F F A B Bµν µ
µν µ ξ= − + ∂ +                            (34) 

where ( ),B t x  is the auxiliary scalar field, while ξ ∈  is the gauge parameter, so that the field equations 
read 

( ) ( )

( )

2 2

0 1

2 2

1

0

t x

t x

t x

A B

A A B

B

µ µξ

ξ

∂ − ∂ = − ∂

∂ + ∂ =

∂ − ∂ =

                              (35) 

It turns out that the following general canonical commutation relations hold true: namely, 

( ) ( ) ( ) ( ) ( )0, 1 x yA x A y ig D x y i x yλ ν λν λ νξ  = − + − ∂ ∂ −  E                  (36) 

( ) ( ) ( ) ( )0, x xF x A y g i g i D x yλρ ν νρ λ λν ρ  = ∂ − ∂ −                          (37) 

( ) ( ) ( )0, xB x A y i D x yν ν  = ∂ −                                        (38) 

( ) ( ) ( ) ( ), 0 , 0F x B y B x B yρλ = =                                  (39) 

where the mass-less Pauli-Jordan real and odd distribution is provided by 

( ) ( ) ( ) ( )2 2
0 0

1, lim , sgn
2mm

D t x D t x t x tθ
→

= = −                        (40) 

( ) ( ) ( ) { }
2

2
0 0 0

d, sgn exp
2π

kiD t x k k ik t ikxδ= − +∫                     (41) 

( ) ( ) ( )0 00 0
lim , 0 lim ,tt t

D t x D t x xδ
→ →

= ∂ =                        (42) 

( ) ( ) ( )0 0 0, , ,D t x D t x D t x∗= = − − −                                (43) 

whereas ( )xE  is named the mass-less dipole-ghost invariant distribution, which is defined by the property 

( ) ( ) ( )2 2
0, ,t x t x D t x∂ − ∂ =E  

an integral-differential representation being given by 
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( ) ( ) ( )

( ) ( )

0

0 20

1, 1 d ,
2

, lim ,

t

mm

t x t x x x D t x

D t x D t x
m

∞

−∞

→

′ ′ ′= ∂ − −

∂
≡ ∗ = −

∂

∫E

D

                        (44) 

An explicit expression can be obtained as follows. Let us first consider the positive and negative Wightman 
functions, i.e. the positive and negative parts of the Pauli-Jordan distribution, in the two dimensional Minkows-
kian space 1,1M  

( ) ( ) { } ( ) ( )

( ) { }

2 2 2
0

2 2
0 2 2

1, exp x d
2π

cos1 d exp
2π

mD t x ik k m k k
i

kx
k it k m

i k m

δ θ±

∞

±
≡ ± ⋅ −

±
≡ ± +

+

∫

∫
 

whence it is clear that the positive and negative parts of the Pauli-Jordan commutator are complex conjugate 
quantities 

( ) ( ) ( ) ( )*, ,m mD t x D t x±  = 
  

Consider now the integral for 0t >  

( ) { }2 2

2 2

d, expkI t x ikx it k m
k m

∞

−∞
= + +

+
∫                        (45) 

and change the variable sinh ,k m η=  so that 2 2 cosh .k m m η+ =  Then we obtain 

( ) ( ){ }, d exp cosh sinhI t x im t xη η η
∞

−∞
= +∫  

Here 0t >  so that two cases should be distinguished, i.e. 0 t x< <  and t x> . After setting 2 2t xλ ≡ −  it 
is convenient to carry out respectively the substitutions 

( )
sinh , cosh , 0

0
cosh , sinh ,

t x t x
t

t x t x

λ ξ λ ξ

λ ξ λ ξ

 = − = − < < >
= = >

 

in such a way that we can write 

( ) ( ) ( ){ }
( ) ( ){ }
( ) { }
( ) { } ( )

, d exp sinh

d exp cosh

d exp sinh

d exp cosh 0

I t x im

im

im

im t

θ λ η λ ξ η

θ λ η λ ξ η

θ λ η λ η

θ λ η λ η

∞

−∞

∞

−∞

∞

−∞

∞

−∞

= − − +

+ +

= − −

+ >

∫

∫

∫

∫

 

Now we can use the integral representations of the Bessel functions of real and imaginary arguments [19] that 
eventually yield for arbitrary t∈  and ( )( )t x t xλ = − +  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0, 2 π sgnI t K m i t J m iN mλ θ λ λ θ λ λ λ = − − + +   

and thereby 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 0 0
1, 2 π sgn )

4πmD t x i K m t J m iN mθ λ λ θ λ λ λ+  = − − − + +          (46) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 0 0
1, 2 π sgn

4πmD t x i K m t J m iN mθ λ λ θ λ λ λ−  = − − + −            (47) 

( ) ( ) ( ) ( )0
1, sgn
2mD t x t J mθ λ λ=                                               (48) 



R. Soldati, C. Specchia 
 

 
1749 

so that 

( ) ( ) ( )0
1, sgn
2

D t x tθ λ=                                (49) 

while the mass-less dipole-ghost in two space-time dimensions becomes 

( ) ( ) ( ) ( ){ } ( ) ( )10

1 1, sgn lim sgn
4 8m

t x t J m m tθ λ λ λ θ λ λ
→

= =E                (50) 

It is a simple and instructive exercise to verify the compatibility between the above general covariant canoni-
cal commutation relations and the equations of motion, for 0ξ =/ , 

( )2 2 11 0t xg Aν
µν µ νξ

  
∂ − ∂ − − ∂ ∂ =  

  
 

( )2 2 0t x B∂ − ∂ =  

A Bξ∂ ⋅ =  

together with 

( )

( )
( )

2 2

2 2

0

0 0

0

t x

t x

A B

A

B

µ µ

ξ

∂ − ∂ + ∂ =

∂ ⋅ = =

∂ − ∂ =

                          (51) 

Moreover one can readily check that the initial conditions fulfilled by the above general covariant canonical 
commutation relations are 

( ) ( ) ( ) ( ) ( )1 0, , , , , ,A t x F t y i x y A t x B t yδ   = − − =     

all the remaining equal-time commutation relations being equal to zero. The most general solution of the canon-
ical commutation relations in the non-homogeneous Lorenz gauge can be written in the form 

( ) ( ) ( ) ( ) ( )†
, , , ,

,
, d , , 1 ,A k A k A k A k

A L S
A t x k f t x f t x B t xν ν ν νϕ ϕ ξ

∞ ∗

−∞
=

 = + − − ∂ ∗ ∑ ∫ D            (52) 

( ) ( ) ( )†
, ,, d , ,S k k S k kB t x i k f t x f t xω ϕ ϕ

∞ ∗

−∞
 = − ∫                                   (53) 

where ( ), ,A kf A L S=  are the destruction operators which satisfy the canonical commutation relations 

( )†
, ,,A k B p ABf f p kδ η  = −                                (54) 

all the other commutators vanishing. The canonical commutation relations indicates that the Fock space is of 
indefinite metric, so that a physical Hilbert sub-space with semi-definite metric is selected by the subsidiary 
condition 

( ) ( ) ,, phys 0 phys 0S kB t x f− = ⇔ =                        (55) 

where 
( ) ( ) ( ),, d ,S k kiB t x k k f t xϕ

∞−

−∞
≡ ∫  

is the positive frequency part of the auxiliary scalar field operator. It follows therefrom that, for instance, the 
1-particle states †

, 0L kf  describe Lorenz lineal nonphysical photons, while the 1-particle states †
, 0S kf  do 

represent the physical lineal scalar photons, which are all of zero norm and satisfy (55) just owing to the canon-
ical commutation relations (54). 

Things greatly and neatly simplify in the Feynman gauge 1ξ =  that we shall select in what follows without 
loss of generality. Notice that if we set 

0 1A A A A± = ± =


                                   (56) 
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we can recast the covariant wave equations and the non-homogeneous Lorenz condition in the light-front form 

( ), 0A x x± − +
− +∂ ∂ =                                    (57) 

A A B− +
− +∂ + ∂ =                                      (58) 

( ), 0B x x− +
− +∂ ∂ =                                     (59) 

It turns out that the mass-less vector wave equations and gauge condition in a two dimensional Minkowskian 
space possess the set of light-like solutions 

( ) ( ) ( ) ( ) ( )( ), , , 1,sgnk L kt x k t x k kν ν νϕ ε ϕ ε= =                       (60) 

( ) ( ) ( ) ( ) ( )( ),
1, , 1, sgn
2k S kt x k t x k kν ν νϕ ε ϕ ε∗ ∗= = −                    (61) 

where ( ) ( ) ( )sgn k k kθ θ= − −  while 

( ) ( )
1
2, 4π e ,ikx i t

k t x k kωϕ ω ω− −= = ∈                        (62) 

does represent the standard orthogonal set of mass-less scalar modes. As we have 

( ) ( ) ( ) ( )0 0 ,k k k k k kµ µ µ
µ µε ε ε ω= = =                     (63) 

it follows that the Lorenz condition is satisfied only for the longitudinal normal modes, viz., 

( ) ( ) ( ), ,, 0 , ,k L k S kt x i t x t xν ν
ν νϕ ϕ ωϕ∂ = ∂ =                        (64) 

Notice that the polarization vector ( )kµε  is indeed a Minkowski bi-vector, because it can be written in the 
form 

( ) ( ) 22 , 2k k k k k k k k k
k k

µ µ µ µ
µε ω∗ ∗ ∗

∗

= = − = ⋅ =
⋅

                (65) 

the other light-like bi-vector k µ
∗  being the dual of the bi-vector ( ),k kµ ω=  labeling the energy-momentum 

carried by the normal mode 

( ) ( ) ( )2 2 2 0 2k k k k k k kε ε ε ω∗ ∗= = = ⋅ = ⋅ =  

In order to set up a complete orthogonal basis of mass-less vector modes on the Minkowskian space 1,1M ,  

one has to introduce the dual light-like polarization vector ( ) ( )1 1, sgn
2

k kνε∗ = −  such that 

( ) ( ) ( ) ( )2 0 1k k k k kε ε ε ε ω∗ ∗ ∗= ⋅ = ⋅ =                        (66) 

It turns out that all the normal modes (61) are of positive frequencies with respect to the time-like Killing 
vector ti∂ , for they fulfill 

( ), , 0, , ,t k A k Ai A L Sν νϕ ωϕ ω∂ = > =                           (67) 

It is also useful to introduce the light-front components of the light-like polarization vectors that read 

( ) ( ) ( ) ( )0 1 0 12k k k kε ε ε θ ε ε ε θ± ±
∗ ∗ ∗= ± = ± = ± =                    (68) 

The normal modes with 0k >  consist of the trigonometric functions of the light-front spatial variables 
( ) ,u x x−

+− = =  see equation (3) 

( ) ( )( ) ( )
1 1
2 2 ,4π e 2 4π ei x ikx

k Lk k uωω ε θ ϕ− −− −+ →+ += ≡ −  
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( ) ( )( ) ( )
1 1
2 2 ,4π e 4π ei x ikx

k Sk k uωω ε θ ϕ
− −− −− − − →

∗ = ≡ −  

It turns out that in the standard instant-form coordinates ( ),t x  those normal modes do represent wave fronts 
propagating from left to right along the Ox-line with unit velocity, so that we can conclude that the trigonometric 
functions of the variable u x x−

+= − = −  do describe progressive waves. 
Conversely, for 0k <  one has to deal with the trigonometric functions of the other light-front temporal va-

riables v x x+
−= =  so that 

( ) ( )( ) ( )
1 1
2 2 ,4π e 2 4π ei x ikx

k Lk k vωω ε θ ϕ− −− ←− −= − − ≡  

( ) ( )( ) ( )
1 1
2 2 ,4π e = 4π ei x ikx

k Sk k vωω ε θ ϕ
+ +− −+ ←

∗ − − ≡  

which shows that the trigonometric functions of the temporal light-front variable v x x+
−= =  actually corres-

pond, in instant-form coordinates, to regressive waves moving with unit velocity from right to left along the 
Ox-straight line. 

It is worthwhile to remark that the mass-less normal modes ( ),k t xϕ  for the auxiliary scalar field ( ),B t x  
are normalized according to the Lorentz invariant inner product 

( ) ( ) ( ) ( ), d , ,k k k t kx t x i t x k kϕ ϕ ϕ ϕ δ
∞

′ ′−∞
′= ↔ ∂ = −∫                      (69) 

while the polarized vector normal modes ( ), ,k A t xνϕ  in the Feynman gauge are normalized according to the 
Lorentz invariant inner product 

( ) ( ) ( )
( ) ( ),

, for
,

, for
k

A k
k

k t x A L
t x

k t x A S

ν
ν

ν

ε ϕ
ϕ

ε ϕ∗

 == 
=

                         (70) 

which fulfill 

( ) ( ), ,

0 1
,

1 0A k B p AB ABg k pµ ν
µν ϕ ϕ η δ η

 
= − =  

 
                    (71) 

The vector normal modes ( ), ,L k t xνϕ  do represent the wave functions of the lineal photons with definite 
momentum and polarization satisfying the Lorenz condition because ( ) 0,k kν

ν ε =  while ( ), ,S k t xνϕ  describe 
the scalar lineal photons because 

( ) ( ) ( ), ,, 0 , ,L k S k kt x i t x t xν ν
ν νϕ ϕ ωϕ∂ = ∂ =                      (72) 

Putting altogether we can write the light-front components of the Feynman gauge vector potential in the form 

( ) ( ) ( ), L SA x x A x A x+ + − + − + +≡ +                                   (73) 

( ) ( )
1

†2 , ,0
2 d 4π e eikx ikx

L L k L kA x k k f f
− −∞ −+ − − = +  ∫                      (74) 

( ) ( )
1

†2 , ,0
d 4π e eikx ikx

S S k S kA x k k f f
+ +∞ −+ + −

− −
 = +  ∫                      (75) 

together with 

( ) ( ) ( ), L SA x x A x A x− + − − + − −≡ +                                   (76) 

( ) ( )
1
2 , ,0

2 d 4π e eikx ikx
L L k L kA x k k f f

+ +∞ −− + − ∗
− −

 = +  ∫                     (77) 

( ) ( )
1

†2 , ,0
d 4π e eikx ikx

S S k S kA x k k f f
− −∞ −− − − = +  ∫                       (78) 

Moreover, from Equation (53) we get the normal mode expansion of the auxiliary scalar field 
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( ) ( ) ( )

( )

( )

( ) ( )

†
, ,

1
†2 , ,0

1
†2 , ,0

, d , ,

d 4π e e

d 4π e e

S k k S k k

ikx ikx
S k S k

ikx ikx
S k S k

B t x i k f t x f t x

i k k k f f

i k k k f f

B u B v

ω ϕ ϕ
∞ ∗

−∞

− −∞ − −

+ +∞ − −
− −

 = − 

 = −  

 − −  
= − +

∫

∫

∫
                       (79) 

It is worthwhile to remark that the above expressions manifestly satisfy both the D’Alembert wave equation 
as well as the non-homogeneous Lorenz condition because 

( ) ( ) 0L LA x A x− + + −
− +∂ = ∂ ≡                                           (80) 

( ) ( ) ( ) ( )S SA x B u A x B v− − + +
− +∂ = − ∂ =                             (81) 

while the electric field strength is provided by 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

10 1 0
01 0 1

1
π /22

0

† †
, , , ,

, , ,
1 1
2 2

d 4π e

e e e e

i

ikx ikx ikx ikx
S k S k S k S k

F t x F t x F t x A A

A A A A

B x B x kk k

f f f f

F u F v

− − + +

+ − + −
+ − + −

∞ −− + −

− −
− −

≡ = = −∂ − ∂

= − ∂ + ∂ − − ∂ − ∂ +

= − =

 × − + − 
≡ − +

∫                      (82) 

4. The Bogoliubov Coefficients 
It is very convenient to write 

( ) ( ) ( ) ( ) ( )A x x A u x A uθ θ+ − − + − += − + −                            (83) 

( ) ( ) ( ) ( ) ( )A x x A v x A vθ θ− + + − + −= + − −                            (84) 

in such a manner that one gets a representation for the solutions of the wave equations and the Feynman gauge 
subsidiary condition in the Rindler’s regions R and L, the two regions being interchanged by parity and time re-
versal symmetry. Actually, in the Rindler’s regions L and R one may adopt an alternative expansion based upon 
the Rindler’s counterparts kϕ  of the massless scalar normal modes kϕ  on the Minkowskian space 1,1M . To 
this concern, we remark that the metric (4) is conformal to the whole Minkowskian space, so that under the 
conformal transformation 2aeg gξ

µν µν
−

 , the line element reduces to 2 2d dη ξ− . Since the D’Alembert wave 
equation as well as the Lorenz condition are conformally invariant, we can recast the latter in Rindler’s coordi-
nates as 

( ) ( )2 2 , 0Aη ξ η ξ±∂ − ∂ =                                   (85) 

( ) ( ), 0Aη ξ η ξ±∂ ± ∂ =                                   (86) 

for which there exist normal mode solutions 

( ) { }
1
24π exp 0,ik i k kω ξ ωη ω− ± = > ∈                         (87) 

It follows that from Equation (3) we eventually find for ,u v +∈ , i.e. in the right Rindler wedge RM , 

( ) ( ) ( ) ( )
1 a a
2 , ,0

d 4π a ai i
L LA u g u g uω ω
ω ωω ω

∞ − −+ ∗ = + ∫                      (88) 
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( ) ( ) ( ) ( )
1 a a
2 , ,0

d 4π a ai i
L LA v g v g vω ω

ω ωω ω
∞ − −− ∗

− −
 = + ∫                     (89) 

where , ,,L Lg gω ω−  do represent the holomorphic amplitudes of the Lorenz gauge potential on the the right 
Rindler wedge RM . 

The relation between the normal modes expansions of the quantum fields in the Minkowski and Rindler 
spaces is well known [1] [4] [5] and expressed by the Bogoliubov coefficients, which satisfy a set of consistency 
conditions just provided by the canonical commutation relations. It turns out that the connection between the 
expansions of the Lorenz gauge potential in terms of the Minkowski modes (73)-(76) and of the Rindler modes 
(88)-(89) can be neatly obtained according to the method recently developed by Aref’eva and Volovich [16]. 
Actually, for any real tempered distribution ( )T S′∈   the Mellin transform of its restriction T+  to the real 
positive half-line 0v >  is defined by 

( ) ( ) 1
0

d T e > 0sF s v v v s
∞ −

+ += ℜ∫                           (90) 

which admits analytic continuation to a meromorphic function in the whole complex plane with simple poles at 
0, 1, 2, 3,s = − − −   The inversion formula reads 

( ) ( )

( )
0

T d
2π

d c.c.
2π

i

i

vv F i v

v F i v

λ
σ

λ
σ

σ λ σ

σ λ σ

−
∞ −

+ +−∞

−
∞ −

+

= +

= + +

∫

∫
                           (91) 

where v  and λ  are real positive numbers. A comparison with Equation (89) yields aσ ω=  and 0λ → , in 
such a manner that for 0, 0v σ> >  

( ) ( ) ( )
1
2

,
πi

L aT v A v F i a g
σ

σσ
σ

−

+ + + −≡ =                        (92) 

Moreover we get 

( ) ( )
1

1 1 2 , ,0 0 0
d d d 4π e es s ikv ikv

L k L kvA v v vv k k f f
∞ ∞ ∞ −− − − − ∗

− − = + ∫ ∫ ∫                  (93) 

where use has been made of the Minkowski set (76). From the relation 

( ){ } ( )1 π 2
00

lim d exp es s isv i k i v s k
+

∞ − − ±

→
± ± = Γ∫


  

we definitely obtain 

( ) ( ) 1
π 2 π 22

, ,0
d e e

2 π

s is is
L k L k

s
F s kk f f

− −∞ − ∗
+ − −

Γ
 = + ∫  

( ) ( ) 1
π 2 π 22

, ,0

1
2

, a

d e e
2 π

πa

i

L k L k

i

L

i
F i kk f f

g

σ σ σ

σ

σ

σ
σ

σ

− −∞ ∗ −
+ − −

−

−

Γ
 = + 

=

∫
                   (94) 

that eventually yields the relationships between the holomorphic amplitudes of the Lorenz gauge potential on the 
Minkowskian space 1,1M  and the right Rindler wedge RM  respectively: namely, 

a
π 2a π 2a

, , ,0

d e e
2πa a a

i

L L k L k
i k kg f f

k

ω
ω ω

ω
ω ω −

∞ ∗ −
− − −

     = Γ × +        ∫              (95) 

in full accordance with [16]. The above operator transformation (95) leads to the coefficients 
a

π 2a
, e

2πa a a

i

k
i k ω

ω
ω

ω ωα− −
  = Γ −  
  

                          (96) 
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a
π 2a

, e
2πa a a

i

k
i k ω

ω
ω

ω ωβ
−

−
− −

  = Γ  
  

                           (97) 

that yields 
2π a

2
, ,2π a

e 1
e 1k TN

ω

ω ωωα− − = = −
−

                                (98) 

2
, ,2π a

1
e 1k TNω ωωβ− − = ≡

−
                                   (99) 

which actually corresponds to Bose-Einstein thermal distributions at the equilibrium temperature Ba 2πT ck=  , 
i.e. the Unruh temperature [4], Bk  being the Boltzmann constant. A quite similar calculation drives to 

( ) ( )
1

1 1 2 , ,0 0 0
d d d 4π e es s iku iku

L k L kuA u u uu k k f f
∞ ∞ ∞ −+ − − − ∗ = + ∫ ∫ ∫                  (100) 

where use has been made of the Minkowski set (73). Hence we definitely obtain 

( ) ( ) 1
π 2 π 22

, ,0
d e e

2 π
s is is

L k L k

s
F s k k f f

− −∞+ − ∗Γ
 = + √ ∫                            (101) 

( ) ( )1 1
π 2 π 22 2

, a , ,0

πa d e e
2 π

i i

L L k L k

i
F i g k k f f

σ σ σ σ
σ

σ
σ

σ
− − −∞+ ∗ ∗ −Γ

 = = + √ ∫            (102) 

and thereby 
a

π 2a π 2a
, , ,0

d e e
2πa a a

i

L L k L k
i k kg f f

k

ω
ω ω

ω
ω ω −

∞∗ ∗ −     = Γ × +     √   ∫                  (103) 

a
π 2a

, ,e
2πa a a

i

k k
i k ω

ω
ω ω

ω ωα β
−

−
− −

  = Γ =  
  

                              (104) 

5. Conclusion 
In this short note we have presented the quantum theory of the lineal, i.e. one dimensional in space, radiation 
field in a uniformly accelerated reference frame referred to Rindler’s curved coordinates. The pair of physical 
and nonphysical radiation fields, which must be introduced in a diffeomorphism and gauge invariant quantum 
theory on a flat space-time, appear to be described by null norm quantum fields, in such a manner that a subsidi-
ary condition must be introduced to select the physical Hilbert sub-space, the quantum states of which are of 
positive semi-definite norm according to [15]. The Bogoliubov coefficients connecting the inertial and non-inertial 
Observers have been calculated by means of a new technique due to Aref’eva and Volovich [16]. The result of 
our calculations turns out to be singularity free and in full agreement with the long standing known expression 
[4], which is valid for an ordinary mass-less scalar field. This conclusion allows to set upon a solid and reliable 
framework the operational analysis of [2] concerning the emission, propagation and detection of the electro-
magnetic radiation in a non-inertial reference frame. 
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