
Open Journal of Acoustics, 2015, 5, 88-94 
Published Online September 2015 in SciRes. http://www.scirp.org/journal/oja 
http://dx.doi.org/10.4236/oja.2015.53008     

How to cite this paper: Svet, V.D. (2015) The Dispersion Method for Estimating Non-Linearity of Electro-Acoustic Systems 
in the Presence of Additive Noise. Open Journal of Acoustics, 5, 88-94. http://dx.doi.org/10.4236/oja.2015.53008  

 
 

The Dispersion Method for Estimating 
Non-Linearity of Electro-Acoustic Systems 
in the Presence of Additive Noise 
Victor D. Svet 
JSC “N. N. Andreyev Acoustical Institute”, Moscow, Russia 
Email: vsvetd@mail.ru  
 
Received 29 May 2015; accepted 14 September 2015; published 17 September 2015 

 
Copyright © 2015 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
It is shown that the estimation of nonlinear distortions in the various circuits based on the mea-
surement of the ratio of the dispersion and correlation functions does not depend on the level of 
additive noise acting on the input (or output) of nonlinear circuit. The proposed theoretical me-
thod is confirmed by experimental measurements. 
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1. Introduction 
Nonlinear distortion of signals occurs in all circuits of analog or digital form and especially in electro-acoustical 
Hi-Fi systems. Classical methods for evaluating distortion are based on the so-called harmonic factor, which is 
very convenient if harmonic signal affects circuit [1]. More sophisticated methods based on spectral analysis of 
the output signal are developed if the input signal is a wideband [2]-[5]. However, the problem of estimating the 
nonlinear distortions becomes much more complicated besides if a broadband signal additive noise affects the 
input of the nonlinear circuit. Even if the additive noise is independent, the spectrum of the output signal can 
contain not only higher frequency components and intermodulation components in the original input signal. In 
other words, all the known methods for evaluating nonlinear distortion are very sensitive to the level of additive 
noise and rather inaccurate. To increase the accuracy in these evaluations, various methods have been proposed, 
in particular methods of regularization [6], introduction of parametric feedback [7] and others. 

Below we will show that, based on the methods of regression and dispersion analysis, it is possible to estimate 
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the value of non-linear distortions which will be invariant to the level of the input additive noise. The proposed 
evaluation of the nonlinearity is valid for signals of any type and based on measurement of joint (two-dimen- 
sional) probability density functions of the input and output signals, which allows calculating the dispersion and 
regression functions and other necessary statistical parameters identifying any functional relationships of sto-
chastic signals in inertialess circuits of any type. 

2. Method 
If two random processes are related by certain non-linear dependence, which can be represented as a power se-
ries (regression), the coefficient of the linear term of this series describes the degree of linear correlation be-
tween the input and output processes. The coefficients of the terms with higher powers are expressed thru statis-
tical moments of higher orders [8]. The degree of nonlinearity of the regression equation can be derived from the 
general theory of correlation and one of such assessments based on the difference of the correlation ratio and 
cross-correlation coefficient was first obtained in [9], namely 

( ) ( ) ( )2 2
yx yxn τ η τ ρ τ= −                                    (1) 

where 
( )yxη τ —correlation ratio of output process to the input process 
( )yxρ τ —cross-correlation coefficient of the output and input processes. 

Note that the order of indices in the correlation ratio is important because this function is not symmetric, i.e. 
in general case xy yxη η≠ , The formula (1) has been applied in [9] for the study of nonlinear dynamical systems 
of automatic control and has been called “the degree of nonlinearity of the object.” Its meaning is that it contains 
the difference of two functions, one of which characterizes an arbitrary correlation connectivity of stochastic 
processes y(t) and x(t), and the other—only their linear dependence. 

Let us evaluate the applicability of (1) for measuring the non-linear distortion in the presence of additive noise. 
To do this it is necessary to consider the effect of additive noise on the coefficient of correlation ratio and cross- 
correlation coefficient. Suppose that the known signal s(t)and independent additive noise n(t) act on the input of 
inertialess nonlinear circuit. According [9] 

( )

( )
f s n s

D f s n

θ
η +=

+  
                                      (2) 

where 

( ) ( )( ) ( )( ){ }2

f s n s M M f s n s M f s nθ +
 = + − +  —non-normalized dispersion function 

( )D f s n+  —dispersion of signal on the output of nonlinear circuit. 
M—symbol of mathematical expectation 

The function f(s+n) can be decomposed into a McLaurin series (Ms = Mn = 0) and ( )f s n sθ +  can be written as 
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Expanding ( )ks n+  by the binomial theorem and performing consistently averaging, squaring and another 
averaging, we can obtain that 

( ) ( )
2 2

0 0

k k
k kf s n s

k k
M B s M B s D f sθ

∞ ∞

+
= =

     = − =             
∑ ∑                        (3) 

From (3) it follows that the non-normalized dispersion function is independent of the additive noise. Cross 
correlation coefficient between input and output processes is equal to, [5] 

( ) ( )
( )

s ss
yx

f

D f s n

σ ρ τ
ρ =

+  
                                        (4) 

where f(σs) is a factor characterizing the reduction of cross-correlation coefficient because of the nonlinear trans- 



V. D. Svet 
 

 
90 

formation, and 

( ) ( ) 2
1, ifs s sf M f aσ σ σ ε = − ≤   

( ) ( ) 2
1, ifs s sf M f aσ σ σ ε < − >   

where 2
sσ —dispersion of input process, ε—a given measure of approximation error, ρss—autocorrelation func-

tion of s(t). By substituting (3) and (4) to (1) 

( )
( ) ( ) ( )

( )

2 2 2
s ssD f s f

n
D f s n

σ ρ τ
τ

−  =
+  

                           (5) 

Equation (5) shows that the degree of nonlinearity [4] depends on the additive noise and therefore formula (1) 
is not suitable for decision of our task. Taking into account the properties of the correlation ratio and the coeffi-
cient of cross-correlation another evaluation of nonlinear distortion can be offered, namely 

( )
( )
( )

1 yx

yx

m
ρ τ

τ
η τ

= −                                          (6) 

It follows from (6) that this relative evaluation of non linearity is invariant to noise and has limits similar to 
limits of η(τ); i.e. if nonlinearity is absent then mmin = 0 and vice versa mmax = 1 if nonlinear distortions are 
maximal; in this case ( ) 0yxρ τ = . In private case if processes x(t) and y(t) are functionally related to each other 
ηyx = 1 and formula (6) can be presented as 

( ) ( )* 1 yxm τ ρ τ= −                                         (7) 

Because the equality (7) is true only at functional connection of processes x(t) and y(t), the estimate of distor-
tion is reduced to the measurement of cross-correlation coefficient and is substantially similar to the previously 
proposed methods [4]. 

Let’s discuss how to measure dispersion function and correlation ratio. The simplest way is to measure two- 
dimensional probability density function W(x, y) of input and output signals and having the estimation of W(x, y) 
then to calculate all mentioned statistical parameters. 

As an illustration the examples of two-dimensional probability density functions for some types of circuits 
and signals are shown in Figure 1(a), Figure 1(b). 

Each section of W(x, y) presents conditional probability density function W(x/y) and it is clearly seen that 
maxima of these sections, which correspond to the conditional mathematical expectations, are located along a 
certain curve which is the regression line. Note that for quadratic circuit cross correlation coefficient ρx,yy is 
equal to zero, though the random processes Y(t) and ( ) ( ) ( )S t X t N t= +  are connected functionally, not statis-
tically. The distribution on Figure 1(b) is W(y,x) for linear circuit and input signal as sum of quasi-harmonic 
signal and additive Gaussian noise. This distribution has typical “two peaks” form. Having the measured evalua-
tion of W*(y,x) all necessary statistical parameters can be calculated using standard formulas [8] [9]. 
 

 
(a)                                         (b) 

Figure 1. (a) Two-dimensional probability density function W(x, y) for quadratic nonlinearity; (b) Two- 
dimensional probability density function W(x, y) of quasi-harmonic signal and undependable Gaussian 
noise, circuit is linear.                                                                         
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3. Numerical Example 
Let’s demonstrate the application of introduced evaluation of non-linear distortion for the circuit with nonlinear-
ity of the form 

( ) ( )exp ,y f x x xα= = −∞ < < +∞                               (8) 

This type of nonlinearity is typical for many analog electronic circuits and networks. Let’s propose that input 
random process x(t) affects the input of this nonlinear circuit 

( ) ( ) ( )x t s t n t= +                                        (9) 

where s(t) and n(t) are independent and centered Gaussian signals with variances 2
sσ  and 2

nσ , s(t) is a useful 
known signal and n(t) is noise. Now let’s derive an analytical expression for the proposed evaluation of nonli-
nearity. 

Not normalized cross-correlation function is equal to 

( ) ( ) ( ), , d dsyB s f x W s x s xτ τ
∞ ∞

−∞ −∞

= ⋅∫ ∫                             (10) 

where W(s,x,τ) is the joint probability density function of s(t) and n(t). In our case ( ) ( ) ( ),W s n W s W n= ∗ . 
Introducing a new variable x s n= + , we can write 

( ) ( )2 2, expW s x D as bsx cx= − + −                              (11) 

where 
2 2

2 2 2 2
2 2

1 1 1 1π , , , ,
2 2 2 2

n s
s n s n

s n
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σ σ σ σ σ σ
σ σ

= = = = =
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Substituting Formula (11) into Formula (10) and integrating over x and s after algebraic transformations we 
obtain that 

( ) ( ) ( )
2

2 2 2exp
2sy s s n ssB ατ ασ σ σ ρ τ

 
= + ⋅ 

 
                        (12) 

Mathematical expectation is equal to 

[ ] ( ) ( ) ( )
2

2 2d exp
2 s nM y f x W x x α σ σ

∞

−∞

 
= = + 

 
∫                       (13) 

and the second initial moment is equal to 

[ ] ( ) ( ) ( )2 2 2 2
2 d exp 2 s nM y f x W x x α σ σ

∞

−∞
 = = + ∫                      (14) 

From expressions (13) and (14) the variance can be written as 

[ ] ( ) ( ){ }2 2 2 2 2 2exp exp 1s n s nD y α σ σ α σ σ   = + + −                         (15) 

Therefore cross correlation function of input and output signals will be written as 

( ) ( )
( )2 2 2exp 1

ss s
sy

y n

αρ τ σ
ρ τ

α σ σ
=

 + − 

                             (16) 

Acting similarly we obtain an expression for the correlation ratio 

( )
( )
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2 2

2 2 2
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                             (17) 

Substituting (16) and (17) into the expression (7) 
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( ) ( )
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                              (18) 

And finally according (6) we will have 

( ) ( )
( )2 2 2

1
exp 1

s ss

s ss

m
ασ ρ τ

τ
α σ ρ τ

= −
  − 

                             (19) 

From the last expression it follows that the assessment of non-linearity does not depend on the noise variance. 

4. Experimental Check 
Proposed method has been tested experimentally on a standard amplifier circuit according to the scheme shown 
in Figure 2. 

Through-amplitude characteristic of the nonlinear circuit (6) is shown in Figure 3. Analog circuit had dy-
namic range about 75 dB and 16 bit ADC was used for digitizing. The value of non-linear distortion of the cir-
cuit measured by the standard method of harmonics does not exceed 20%. All calculations have been performed 
in PC. 

Typical example of input harmonic signal and output distorted signal with additive noise is presented in Fig-
ure 4. 

The form of function W(x, y) for circuit with amplitude characteristic (8) is shown on Figure 5. Each section 
of W(x, y) presents conditional probability density function W(x/y) and it is clearly seen that maxima of these 
sections, which correspond to the conditional mathematical expectations (regression line), are located along a 
 

 
Figure 2. Scheme of experiments. 1, 2 Two generators of noise, 3, 4 Similar filters. 5. Ad-
der, 6 Nonlinear circuit, 7. ADC, 8. PC.                                                 

 

 
Figure 3. Measured amplitude characteristic of circuit and its 
approximation by function y = exp(αx).                            
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Figure 4. Input harmonic signal and distorted output signal with additive noise.          

 

 
Figure 5. Two-dimensional probability density function W(x, y) of 
input and output signals for circuit nonlinearity (8).                   

 
certain curve, the form of which is determined by the type of circuit nonlinearity (8). 

The results of measurements of cross-correlation coefficients and correlation ratio are presented in Figure 6. 
The curves (1-6) are the results of calculation of cross-correlation coefficient for different values of signal/noise 
ratio. Curve 7 is calculated on the base of the formula (18). In this formula, the coefficient α, which characteriz-
es the angle of the approximating curve, was chosen 1.1. Autocorrelation coefficient of the input signal is equal 
to one. Experimental results (green dots) are presented with confidence intervals with probability 0.68, which 
evaluation was performed on 10 independent measurements. 

Influence of nonlinearity is clear from the behavior of the curve 1 in the absence of additive noise: with an in-
crease of the level of input signal cross-correlation coefficient drops to 0.4. Impact of noise changes the behavior 
of cross-correlation coefficient. It becomes dependent both on the level of the additive noise and the degree of 
nonlinearity. These curves have extrema, whose position depends on the noise level and the degree of non-   
linearity. Therefore in the presence of noise cross-correlation coefficient gives incorrect evaluation of non-   
linearity. 

The most interesting is the behavior of the curve 7, calculated by formula (18) and this curve is in the inverse 
to curve 1, which means that measured degree of nonlinearity does not depend on the level of additive noise. 

5. Conclusion 
A comparison of theoretical calculations with experimental data leads to the conclusion about the possibility of 
the suggested evaluation of nonlinear distortion of networks in the presence of additive noise. Nevertheless a 
more rigorous mathematical analysis shows that the variance of this evaluation depends on the level of additive 
noise, although this dependence is weak for input signal/noise ratio more than 10 - 12 dB. In other words, the 
accuracy of estimation of nonlinear distortions depends on the level of additive noise. More detail analysis of 
accuracy of proposed method will be discussed in a separate article. 
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Figure 6. Comparison of calculated and measured data. Solid curves (1-5) 
—calculated dependencies of cross-correlation functions ρyx, formula (16) 
at different values of noise σn = 0; 0.1; 0.2; 0.4; 0.6. Curve 6 (blue) is ρyx 
for σs = σn. Solid curve 7 (red) is m*(τ) calculated by formula (18). Green 
dots with confidence intervals are experimental data.                        
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