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Abstract 
In this paper we study the asymptotic dynamics of the stochastic strongly damped wave equation 
with multiplicative noise under homogeneous Dirichlet boundary condition. We investigate the 
existence of a compact random attractor for the random dynamical system associated with the 
equation. 
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1. Introduction 
Consider the following stochastic strongly damped wave equation with multiplicative noise:  

( ) [ )d in 0,
dtt t t
Wu u u f u u g cu U
t

α− ∆ + + − ∆ = + × +∞                        (1.1) 

with the homogeneous Dirichlet boundary condition  

( ) [ ), 0 on 0, ,u x t U= ∂ × +∞                                    (1.2) 

and the initial value conditions  

( ) ( ) ( ) ( ) ( ) ( )1 2
0 0 1,0 , ,0 ,tu x u x H U u x u x L U= ∈ = ∈                        (1.3) 

where ∆  is the Laplacian with respect to the variable x U∈ , nU ⊂   is a bounded open set with a smooth 
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boundary U∂ ; ( ),u u x t=  is a real function of x U∈  and 0t ≥ ; 0,c ≠  0α >  are strong damping 
coefficients;   denotes the Stratonovich sense of the stochastic term; ( )2g L U∈  is a given external force; 

( )1 ,f C∈   , f ′  are uniformly bounded and there exist 0 1 2, , 0c c c ≥  such that  

( ) ( )0 1, ,  ,f u c f u c u′ ≤ ≤ ∀ ∈                               (1.4) 

( ) ( ) 2 ,  , ,f u f v c u v u v′ ′− ≤ − ∀ ∈                              (1.5) 

where ⋅  denotes the absolute value of number in  . ( )W t  is a one-dimensional two-sided real-valued 
Wiener process on probability space ( ), ,Ω  , where  

( ) ( ){ }, : 0 0 ,Cω ωΩ = ∈ =   

the Borel σ -algebra   on Ω  is generated by the compact open topology, and   is the corresponding 
Wiener measure on  . We identify ( )tω  with ( )W t , i.e., ( ) ( ) , .W t t tω= ∈  When ( ) sinf u u=  and 

0,α =  Equation (1.1) can be regarded as a stochastic perturbed model of a continuous Josephson junction [1], 
which is stochastic damped sine-Gordon equation [2]. 

A large amount of studies have been carried out toward the dynamics of a variety of systems related to 
Equation (1.1). For example, the asymptotical behavior of solutions for deterministic and stochastic wave 
equations has been studied by many authors, see, e.g. [3]-[27] and the references therein. 

In this paper we study the existence of a global random attractor for stochastic strongly damped wave 

equations with multiplicative noise 
d
d
Wcu
t

 . The coefficient c  of the noise term needs to be suitable small,  

which is different from that in stochastic strongly damped wave equations with additive noise, this is because 
the multiplicative noise depends on the state variable u  but the additive noise term is independent of u . 

This paper is organized as follows. In the next section, we recall some basic concepts and properties for 
general random dynamical systems. In Section 3, we provide some basic settings about Equation (1.1) and show 
that it generates a random dynamical system in proper function space. Section 4 is devoted to proving the 
existence of a unique random attractor of the random dynamical system. 

2. Preliminaries 
In this section, we collect some basic knowledge about general random dynamical systems (see [28] [29] for 
details). 

Let ( ), XX ⋅  be a separable Hilbert space with Borel σ -algebra ( )X . Let ( ), ,Ω   be a probability 

space as in Section 1. Define ( )t t
θ

∈  on Ω  via  

( ) ( ) ( ) , ,t t t tθ ω ω ω⋅ = ⋅+ − ∈  

then ( )( ), , , t t
θ

∈
Ω   is an ergodic metric dynamical system [28] [29]. 

In the following, a property holds for  -a.e. ω∈Ω  means that there is 0Ω ∈Ω  with ( )0 1Ω =  and 
0 0tθ Ω = Ω  for t∈ .  

Definition 2.1 A continuous random dynamical system on X over ( )( ), , , t t
θ

∈
Ω   is a mapping  

( ) ( ): , , , , ,X X t u t uϕ ω ϕ ω+ ×Ω× →   

which is ( ) ( ) ( )( ),X X+ × ×    -measurable and satisfies, for  -a.e. ω∈Ω , 

1) ( )0, ,ϕ ω ⋅  is the identity on X ; 
2) ( ) ( )( ), , , , , ,st s t sϕ ω ϕ θ ω ϕ ω+ ⋅ = ⋅  for all , 0s t ≥ ; 

3) ( ), , :t X Xϕ ω ⋅ →  is continuous for all 0t ≥ . 
Definition 2.2 (See [29]).  
1) A set-valued mapping ( ){ } ( ): 2 \ ,XD Dω ω ωΩ→ ∅   is said to be a random set if the mapping 

( )( ),d u Dω ω  is measurable for any u X∈ . If ( )D ω  is also closed (compact) for each ω∈Ω , ( ){ }D ω   
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is called a random closed (compact) set. A random set ( ){ }D ω  is said to be bounded if there exist 0u X∈  
and a random variable ( ) 0R ω >  such that  

( ) ( ){ }0: for all .XD u X u u Rω ω ω⊂ ∈ − ≤ ∈Ω  

2) A random set ( ){ }D ω  is called tempered provided for  -a.e. ω∈Ω ,  
( ){ }lim e sup : 0 for all 0.t

tXt
b b Dβ θ ω β−

−→∞
∈ = >  

3) A random set ( ){ }B ω  is said to be a random absorbing set if for any tempered random set ( ){ }D ω , and 

 -a.e. ω∈Ω , there exists ( )0t ω  such that  

( )( ) ( ) ( )0, , for all .t tt D B t tϕ θ ω θ ω ω ω− − ⊂ ≥  

4) A random set ( ){ }1B ω  is said to be a random attracting set if for any tempered random set ( ){ }D ω , and 
 -a.e. ω∈Ω , we have  

( ) ( )( )( )1lim , , , 0,H t tt
d t D Bϕ θ ω θ ω ω− −→∞

=  

where Hd  is the Hausdorff semi-distance given by ( ), sup infH u G v E Xd G F u v∈ ∈= −  for any ,G F X⊂ . 

5) A random compact set ( ){ }A ω  is said to be a random attractor if it is a random attracting set and 

( )( ) ( ), , tt A Aϕ ω ω θ ω=  for  -a.e. ω∈Ω  and all 0t ≥ .  

Theorem 2.3 (See [29]). Let ϕ  be a continuous random dynamical system on X  over ( )( ), , , t t
θ

∈
Ω  . 

If there is a tempered random compact absorbing set ( ){ }B ω  of ϕ , then ( ){ }A ω  is a compact random 
attractor of ϕ , where  

( ) ( )( )
0

, , , .
t t

A Bτ τ
τ

ω ϕ τ θ ω θ ω ω− −
> ≥

= ∈Ω


 

Moreover, ( ){ }A ω  is the unique random attractor of ϕ .  

3. Stochastic Strongly Damped Wave Equation  
In this section, we outline the basic setting of (1.1)-(1.2) and show that it generates a random dynamical system. 

Define an unbounded operator  

( ) ( ) ( ) ( )1 2 2
0: ,  .A D A H U H U L U u u≡ → −∆   

Clearly, A  is a self-adjoint, positive linear operator with the eigenvalues { }i i
λ

∈ : 
( )1 20 , .i i iλ λ λ λ< ≤ ≤ ≤ ≤ → +∞ → +∞   

It is well known that A−  generates an analytic semigroup of bounded linear operators { }
0

e At

t

−

≥
 on 

( )2L U . 

Let ( ) ( )1 2
0E H U L U= × , endowed with the usual norm  

( ) ( )1 2
0

1
2 2 2 for , ,H LY u v Y u v EΤ

×
= ∇ + = ∈                           (3.1) 

where ⋅  denotes the usual norm in ( )2L U  and Τ  stands for the transposition. 
It is convenient to reduce (1.1) to an evolution equation of the first order in time  

( )

( ) ( ) ( ) ( )0 1

d ,
d
d d ,
d d

,0 , ,0 , .

u v
t
v WAv Au v f u g cu
t t

u x u x v x u x x U

α

 =

 = − − − − + +

 = = ∈


                           (3.2) 
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For our purpose, it is convenient to convert the problems (1.1)-(1.2) into a deterministic system with a random 
parameter, and then show that it generates a random dynamical system. 

We now introduce an Ornstein-Uhlenbeck process given by the Brownian motion. Put  

( ) ( )( )0
e d , ,s

t tz s s tθ ω θ ω
−∞

= − ∈∫                               (3.3) 

which is called Ornstein-Uhlenbeck process and solves the Itô equation  

( )d d d .z z t W t+ =                                      (3.4) 

From [30] [31], it is known that the random variable ( )z ω  is tempered, and there is a tθ -invariant set 
0Ω ⊂ Ω  of full   measure such that ( )tz θ ω  is continuous in t  for every 0ω∈Ω .  
Lemma 3.1 (See [7]). For the Ornstein-Uhlenbeck process ( )tz θ ω  in Equation (3.3), we have the following 

results  

( ) ( )
0

1 1lim d ,
π

t
s st

z s z
t

θ ω θ ω
→∞

 = = ∫ E                             (3.5) 

( ) ( )2 2

0

1 1lim d ,
2

t
s st

z s z
t

θ ω θ ω
→∞

 = =  ∫ E                             (3.6) 

( ) ( )4 4

0

1 3lim d .
4

t
s st

z s z
t

θ ω θ ω
→∞

 = =  ∫ E                             (3.7) 

To show that problem (3.2) generates a random dynamical system, we let  

( )1 2,    ,tu v u cuzφ φ ε θ ω= = + −  

which ε  is a given positive number, then problems (1.1)-(1.2) can be rewritten as the equivalent system with 
random coefficients but without multiplicative noise on E ,  

( )

( ) ( )( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

1
2 1 1

2
2 1 1

1 2 1 1

1 0 2 1 0 0

d
,

d
d

1 1
d

       2 ,

,0 , ,0 , ,

t

t t t

c z
t

A A A f g
t

cA z c c z z

x u x x u x u x cu x z x U

φ
φ εφ φ θ ω

φ
ε α φ ε ε α φ φ

α φ θ ω φ εφ φ θ ω θ ω

φ φ ε ω

 = − +

 = − − − − − + − +


− − − +


= = + − ∈

                 (3.8) 

which has the following vector form  

( )

( ) ( ) ( ) ( ) ( ) ( )( )0 0 1 0 0

d = ,
d

,0 , , ,

tM F
t

x u x u x u x cu x z x U

ε ε
φ φ θ ω φ

φ ε ω
Τ

 +

 = + − ∈

                   (3.9) 

where  

( ) ( ) ( )
1

2

, ,
1 1 1

I I
M

I A I Aε

εφ
φ

ε ε εα ε αφ
−  

= =    − + − − −   
 

( ) ( )
( ) ( ) ( )( ) ( )

1

1 1 2 1 1
, .

2
t

t
t t t

c z
F

f g cA z c c z zε

φ θ ω
θ ω φ

φ α φ θ ω φ εφ φ θ ω θ ω
 

=   − + − − − + 
 

We will consider Equation (3.8) or (3.9) for 0ω∈Ω  and write 0Ω  as Ω  from now on. 
By the classical theory concerning the existence and uniqueness of the solutions [17] [32], one may show that 

under conditions (1.4)-(1.5), for each ω∈Ω , problem (3.9) has a unique solution ( )0, ,tφ ω φ  which is 
continuous with respect to 0φ  in E  for all 0t ≥ . Then the solution mapping  

( ) ( )0 0 0, : , , , for , 0 and for all .t t E tω φ φ ω φ φ ωΦ ∈ ≥ ∈Ω                     (3.10) 
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generates a continuous random dynamical system over ( )( ), , , t t
θ

∈
Ω   on E . 

Introduce the homeomorphism ( )( ) ( )( ), , ,t tT u v u v u cuzε θ ω ε θ ω
ΤΤ = + − , whose inverse homeomorphism is 

( )( ) ( )( )1 , , ,t tT u v u v u cuzε θ ω ε θ ω
ΤΤ− = − + , ( ),u v EΤ ∈ . Then the transformation  

( ) ( ) ( ) ( )1, , , , ,t tt T t Tω ε θ ω ω ε θ ω−Ψ = Φ                            (3.11) 

also generates a continuous random dynamical system associated with the problem (3.2) on E . 
Note that the two random dynamical systems Ψ  and Φ  are equivalent. By transformation (3.11), it is easy 

to see that Ψ  has a random attractor provided Φ  possesses a random attractor. Thus, we only need to 
consider the random dynamical system Φ . 

4. Random Attractor 
In this section, we study the existence of a random attractor. Throughout this section we assume that ( )ED  is 
the collection of all tempered random subsets of E  and  

( ) ( )
1

2

1 1 1 1

2
.

2
c

σ πλ µ

ε λ µ ε λ µ σπ αλ λ µ
<

+ + + + +
                          (4.1) 

For our purpose, we introduce a new norm 
E⋅  by  

1
2 21

22 ,EY A u vµ
 
 = +
 
 

                                   (4.2) 

for ( ),Y u v EΤ= ∈ , where 
1
2A = ∇  and µ  is chosen such that 

11 ,1
2

µ αε  = − ∈ 
 

 in which ( )0,1ε ∈  is a 

small positive number. It is easy to check that 
E⋅  is equivalent to the usual norm 1 2

0H L×⋅  on E  in (3.1). 

For ( ),i i iY u v EΤ= ∈ , 1, 2i = , let  
1 1
2 2

1 2 1 2 1 2, , , ,EY Y A u A u v vµ= +                               (4.3) 

where ,⋅ ⋅  denotes the inner product on ( )2L U . By the Poincaré inequality  

( )
21

2 12
1 0, ,A u u u H Uλ≥ ∀ ∈                                (4.4) 

Equation (4.3) is then positive definite. 
Now, we present a property of the operator Mε  in E  that plays an important role in this article.  
Lemma 4.1 Let ( ) ( )1

1 0E D A H U= × . There exists a small positive constant ( )0,σ ε∈  such that for any 
( ) 1,Y u v EΤ= ∈ ,  

21
2 22 1, .

2 2EEM Y Y Y A v vε
α

σ≤ − − −                            (4.5) 

The proof of Lemma 4.1 is similar to that of Lemma 1 in [24]. We hence omit it here. 
Lemma 4.2 Assume that ( )1g H U∈ , conditions (1.4), (1.5) and (4.1) hold. Then, there exists a random ball 

( ){ } ( )0B Eω ∈D  centered at 0 with random radius ( ) 0ρ ω >  such that for any ( ){ } ( )B Eω ∈ D , there is a  

( ), 0BT ω ρ >


 such that for any ( ) ( )0 t tBφ θ ω θ ω− −∈   satisfies for  -a.e. ω∈Ω  and all ( ),Bt T ω ρ≥


,  

( )( ) ( )0, , .t t E
tφ θ ω φ θ ω ρ ω− − ≤                                (4.6) 
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Proof. Take the inner product , E⋅ ⋅  of problem (3.9) with φ . By the Cauchy-Schwartz inequality and the 
Young inequality, we find that  

( ) ( )
21 1 1

2 2 2
1 1 1, ,t tcA z A cz Aµ φ θ ω φ µ θ ω φ≤ ⋅  

( ) ( ) ( )
2 21 1 1 1

22 2 2 2
1 2 1 2 1 2, ,

2 2t t tcA z cz A A cz A Aα αα φ θ ω φ α θ ω φ φ θ ω φ φ≤ ⋅ ⋅ ≤ ⋅ +  

( ) 2 22 4
1 2 1 2 1 2

1, ,
4

f c U c Uφ φ φ φ≤ ⋅ ≤ +  

2 2
2 2 2

1, ,
4

g g gφ φ φ≤ ⋅ ≤ +  

( ) ( ) 2
2 2 2, ,t tc z czφ θ ω φ θ ω φ≤ ⋅  

where U  is the volume of the set U . 
By using the Poincaré inequality (4.4), we have that  

( ) ( )
( ) ( )

1 2 1 2

1
22

1 2
1 1

2 , 2

2
,

t t

t t
E

c z c z

c z c z
A

εφ θ ω φ ε θ ω φ φ

ε θ ω ε θ ω
φ φ φ

λ λ µ

≤ ⋅ ⋅

≤ ⋅ ≤
 

( ) ( )

( ) ( )

22 2
1 2 1 2

2 21
22

1 2
1 1

,

.
2

t t

t t
E

c z cz

cz cz
A

φ θ ω φ θ ω φ φ

θ ω θ ω
φ φ φ

λ λ µ

≤ ⋅ ⋅

≤ ⋅ ≤ ⋅
 

By all the above inequalities and Lemma 4.1, we have  

( ) ( ) 22 2 2 2 24
1

1 1

d 12 2 1 2 2 .
d t tE E Ecz cz g c U
t

ε α
φ σ φ θ ω θ ω φ

µλ µ λ µ

    
 + ≤ + + + + +           

     (4.7) 

By the Gronwall lemma, we have that, for all 0≥t ,  

( )( )
( ) ( )

( )

( )
( ) ( )

2
0

1 1

2

1 1

12 2 1 d2 2
0 0

12 2 1 d
2 24

10

, , e

2 e d .

t
s s

t
s

cz cz s

EE

cz cz
t

t

g c U s
τ τ

ε ασ θ ω θ ω
µλ µ λ µ

ε ασ θ ω θ ω τ
µλ µ λ µ

φ ω φ ω φ ω

    
    − + + + +        

    
    − + + + +        

∫

∫

≤

+ +∫

            (4.8) 

By replacing ω  by tθ ω− , we get from problem (4.8) that,  

( )( )
( ) ( )

( )

( )
( ) ( )

( )

2
0

1 1

2

1 1

0

1

12 2 1 d2 2
0 0

12 2 1 d
2 24

10

2 2 1

, , e

2 e d

e

t
s t s t

t
t ts

st

cz cz s

t t t EE

cz cz
t

cz

t

g c U s
τ τ

ε ασ θ ω θ ω
µλ µ λ µ

ε ασ θ ω θ ω τ
µλ µ λ µ

ε ασ θ ω
λ µ

φ θ ω φ θ ω φ θ ω
− −

− −

−

    
    − + + + +        

− − −

    
    − + + + +        

 
 − + + + 
 

∫

∫

∫

≤

+ +

≤

∫
( )

( )

( )
( ) ( )

2

1

20

1 1

1 d
2

0

12 2 1 d
0 2 24

12 e d .

s

s

cz s

t E

cz cz

g c U s
τ τ

θ ω
µ λ µ

ε ασ θ ω θ ω τ
µλ µ λ µ

φ θ ω

  
  +    

−

    
    − + + + +        

−∞

∫
+ +∫

        (4.9) 
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By inequality (4.1), it is easy to see that  
2

1 1

11 .
4

c cε α
σ

µπ λ µ λ µ

   
+ + + <      

   
                             (4.10) 

It then follows from inequality (4.10), Lemma 3.1, ( ) ( )0 t Bφ θ ω ω− ∈   and ( ){ } ( )B Eω ∈ D  that  

( ) ( )
( )

20

1 1

12 2 1 d
2

0e 0, as .
s st cz cz s

t E
t

ε ασ θ ω θ ω
µλ µ λ µ φ θ ω

−

    
    − + + + +        

−

∫
→ →∞                   (4.11) 

By Lemma 3.1, inequality (4.10) and ( )1g H U∈ , we have  

( )
( ) ( ) 20

1 1

12 2 1 d
0 2 24

1 e d .
s cz cz

g c U s
τ τ

ε ασ θ ω θ ω τ
µλ µ λ µ

    
    − + + + +        

−∞

∫
+ ≤ +∞∫                    (4.12) 

We choose  

( ) ( )
( ) ( ) 20

1 1

12 2 1 d
0 2 22 4

14 e d .
s cz cz

g c U s
τ τ

ε ασ θ ω θ ω τ
µλ µ λ µρ ω

    
    − + + + +        

−∞

∫
= +∫                  (4.13) 

Then, for any tempered random set ( ){ } ( )B Eω ∈ D , there exists a ( ), 0BT ω ρ >


 such that for any 

( ) ( )0 t tBφ θ ω θ ω− −∈  , satisfies for  -a.e. ω∈Ω , ( ) ,Bt T ω ρ∀ ≥


,  

( )( ) ( )
2 2

0, , .t t E
tφ θ ω φ θ ω ρ ω− − ≤                                 (4.14) 

So, the proof is completed.                                                                  
We now construct a random compact attracting set for RDS Φ . For this purpose, we decompose the solution 

φ  of Equation (3.9) with the initial value ( ) ( )( )0 0 0 0 0,u v u cu zφ ω ε ω
Τ

= + −  into two parts  

( ) ( )( ), ,a b a a a b b b
tu v u u v u cuzφ φ φ ε ε θ ω

Τ Τ
= + = + + + − , satisfy, respectively  

( )0 0 0 0
d , , ,
d

a
a aM u v u

t ε
φ

φ φ ε Τ= = +                               (4.15) 

( ) ( )( )0 0
d , , 0, .
d

b
b b

tM F cu z
t ε ε
φ

φ θ ω φ φ ω
Τ

= + = −                        (4.16) 

Lemma 4.3  Assume that ( )1g H U∈ , conditions (1.4), (1.5) and (4.1) hold. Then, for any 

( ){ } ( )B Eω ∈ D , and ( ) ( )0 t tBφ θ ω θ ω− −∈  , we have for  -a.e. ω∈Ω ,  

( )0( , , 0, as ,a a
t t E

t tφ θ ω φ θ ω− − → →∞                                (4.17) 

and there exist a tempered random variable ( )1 0ρ ω >  and ( )1, 0BT ω ρ >


 such that for  -a.e. ω∈Ω  and 
all ( )1,Bt T ω ρ≥



,  

( )( ) ( )
1
2

0 1, , ,b b
t t

E

A tφ θ ω φ θ ω ρ ω− − ≤                                (4.18) 

where aφ  and bφ  satisfy Equations (4.15), (4.16).  
Proof. We first take the inner product , E⋅ ⋅  of Equation (4.15) with aφ . By Lemma 4.1, we obtain  

( )( ) ( )
2 22

0 0, , e .a a t a
t t t EE

t σφ θ ω φ θ ω φ θ ω−
− − −≤                           (4.19) 

Then by ( ) ( )0 t tBφ θ ω θ ω− −∈   and ( ){ } ( )B Eω ∈ D , we have  

( )( )0, , 0, as .a a
t t E

t tφ θ ω φ θ ω− − → →∞                             (4.20) 
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Thus, the first assertion is valid. 
Next, we take the inner product , E⋅ ⋅  of Equation (4.16) with bAφ . From the positivity of the operator A , 

we easily obtain  
2 21 1

2
2 2

2 2
1, .

2 2
b b b b b

E
E

M A A A Aε
α

φ φ σ φ φ φ≤ − − −                          (4.21) 

By the Cauchy-Schwartz inequality and the Young inequality, we find that  

( ) ( ) ( )
1 1

2
2 2

1 1 1 1 1, , ,b b b b b
t t tcA z A A cA z A cz Aµ φ θ ω φ µ φ θ ω φ µ θ ω φ= − ≤ ⋅  

( ) ( )
( ) 2

2 2

1 2 1 2 1 2, ,
2 2

tb b b b b b
t t

cz
cA z A cz A A A A

α θ ω α
α φ θ ω φ α θ ω φ φ φ φ≤ ⋅ ⋅ ≤ +  

( )
21 1

22 42 2
1 2 0 2 0 2

1, ,
4

b b b bf A c U A c U Aφ φ φ φ≤ ⋅ ≤ +  

2 21 1 1 1
2 2 2 2

2 2 2
1, ,
4

b b bg A A g A A g Aφ φ φ≤ ⋅ ≤ +  

( ) ( )
21

2
2 2 2, .b b b

t tc z A cz Aφ θ ω φ θ ω φ≤ ⋅  

By using inequality (4.4), we have that  

( ) ( ) ( )
( )

( )

1 2 1 2 1 2

1
2

1 2
1

21
2

1

2 , 2 , 2

2

,

b b b b b b
t t t

t b b

t b

E

c z A c A z cz A

cz
A A

cz
A

εφ θ ω φ ε φ θ ω φ ε θ ω φ φ

ε θ ω
φ φ

λ

ε θ ω
φ

λ µ

= ≤ ⋅ ⋅

≤ ⋅ ⋅

≤ ⋅

 

( ) ( ) ( )

( ) ( )

22 2 2 2
1 2 1 2 1 2

2 2 21 1
2 2

1 2
1 1

, ,

.
2

b b b b b b
t t t

t tb b b

E

c z A c A z cz A

cz cz
A A A

φ θ ω φ φ θ ω φ θ ω φ φ

θ ω θ ω
φ φ φ

λ λ µ

= ≤ ⋅ ⋅

≤ ⋅ ⋅ ≤ ⋅
 

Combining all the above inequalities and inequality (4.21), we have  

( ) ( )

2 21 1
2 2

2 21 1
2 242 2

0
1 1

d 2
d

12 1 2 2 .

b b

E E

b
t t

E

A A
t

cz cz A A g c U

φ σ φ

ε α
θ ω θ ω φ

µλ µ λ µ

+

    
 ≤ + + + + +           

          (4.22) 

Using the Gronwall lemma, for all 0t ≥ , we get  

( )( )
( ) ( ) 2

1 1

12 21 1 2 2 1 d
242 2

0 00
, , 2 e d .

t
s cz cz

tb b

E

A t A g c U s
τ τ

ε ασ θ ω θ ω τ
µλ µ λ µφ ω φ ω

    
    − + + + +        

∫ 
 ≤ +
 
 

∫          (4.23) 

Replacing ω  by ,tθ ω−  we get from the above that,  
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( )( )
( ) ( )

( ) ( )

2

1 1

20

1 1

12 21 1 2 2 1 d
242 2

0 00

121 2 2 1 d
0 242

0

, , 2 e d

2 e d .

t
t ts

s

cz cz
tb b

t t
E

cz cz

A t A g c U s

A g c U s

τ τ

τ τ

ε ασ θ ω θ ω τ
µλ µ λ µ

ε ασ θ ω θ ω τ
µλ µ λ µ

φ θ ω φ θ ω
− −

    
    − + + + +        

− −

    
    − + + + +        

−∞

∫

∫

 
 ≤ +
 
 

 
 ≤ +
 
 

∫

∫

     (4.24) 

By Lemma 3.1, inequality (4.10) and ( )1g H U∈ , we have  

( ) ( ) 20

1 1

121 2 2 1 d
0 242

0 e d .
s cz cz

A g c U s
τ τ

ε ασ θ ω θ ω τ
µλ µ λ µ

    
    − + + + +        

−∞

∫ 
 + ≤ +∞
 
 

∫                   (4.25) 

We can choose  

( )
( ) ( ) 20

1 1

121 2 2 1 d
0 22 42

1 04 e d ,
s cz cz

A g c U s
τ τ

ε ασ θ ω θ ω τ
µλ µ λ µρ ω

    
    − + + + +        

−∞

∫ 
 = +
 
 

∫                 (4.26) 

then the second assertion is valid.                                                               
By Lemma 4.2 and Lemma 4.3, for any ( ){ } ( )B Eω ∈ D , ( ) ( )0 t tBφ θ ω θ ω− −∈  , ( ) ( )1, ,B Bt T Tω ρ ω ρ≥ +

 

, 
and for some constant 0κ > , we have for  -a.e. ω∈Ω ,  

( )( ) ( ) ( )( )
1

0 1, , ,b b
t t E

tφ θ ω φ θ ω κ ρ ω ρ ω− − ≤ +                          (4.27) 

where ( ) ( )1
1 0E D A H U= × . Let ( ){ } ( )B Eω ∈D  be a closed ball of E :  

( ) ( ) ( ) ( ) ( )( ){ }
1

1: .
E

B Eω ρ ω ρ ω κ ρ ω ρ ω= ∈ ≤ +                        (4.28) 

Then, by the compact embedding of 1E  into E , ( ){ }B ω  is compact in E . 
Note that  

( )( ) ( )( ) ( )( )0 0 0, , , , , , .a a b b
t t t t t tt t tφ θ ω φ θ ω φ θ ω φ θ ω φ θ ω φ θ ω− − − − − −= +                  (4.29) 

Then by Lemma 4.3 and inequality (4.27), we have for  -a.e. ,ω∈Ω  

( )( ) ( )( ), , , 0  as .H t td t B B tφ θ ω θ ω ω− − → → +∞                         (4.30) 

which implies that ( ){ }B ω  is a random compact attracting set for Φ . It follows from Equations (4.13) and 
(4.26) that ( ){ }B ω  is tempered. Thus by Theorem 2.3, the main result of this section can now be stated as 
follows. 

Theorem 4.4 Assume that ( )1g H U∈ , conditions (1.4), (1.5) and (4.1) hold. Then, the random dynamical 
system Φ  has a unique compact random attractor ( )ωA  in E , where  

( ) ( )( )
0

, , , ,
t t

Bτ τ
τ

ω φ τ θ ω θ ω ω− −
> ≥

= ∈Ω


A  

in which ( ){ }B ω  is a tempered random compact attracting set for Φ . 
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