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Abstract

In the paper, perturbed stochastic Volterra Equations with noise terms driven by series of inde-
pendent scalar Wiener processes are considered. In the study, the resolvent approach to the equa-
tions under consideration is used. Sufficient conditions for the existence of strong solution to the
class of perturbed stochastic Volterra Equations of convolution type are given. Regularity of sto-
chastic convolution is supplied, as well.
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1. Introduction
Let (H,|{,) be a seperable Hilbert space and let (Q,F,(F),_,.P) denote a probability space. We consider
perturbed stochastic Volterra Equations in H of the form

t

X (t)=X, +I[a(t—1)+(ax k)(t-7)]AX (z)dr

O N @
+E[b(t—r)X(z')dr+§z[‘Pi(z’)dWi(T), t>0,

where X, is an H-valued F,-measurable random variable, kernels a, k, b are real valued and locally inte-

grable functions defined on R, and A is a closed unbounded linear operator in H with a dense domain D(A).
. . . . . 2

The domain D(A) is equipped with the graph norm |-|D(A) of A i.e. |h|D(A) ::(|h|i| +|Ah|a) .
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In our work, the Equation (1) is driven by series of scalar Wiener processes; W = (W, )f” .

are appropriate processes defined below. =

The goal of this paper is to formulate sufficient conditions for the existence and regularity of strong solutions
to the perturbed Volterra Equation driven by series of scalar Wiener processes. Previously, in [1]-[4], the sto-
chastic integral for Hilbert-Schmidt operator-valued integrands and Wiener processes with values in Hilbert
space has been constructed. Moreover, the particular series expansion of the Wiener process with respect to the
eigenvectors of its covariance operator has been used. The stochastic integral used in this paper, originally in-
troduced in [5], bases on the construction directly in terms of the sequence of independent scalar processes. In
consequence, the stochastic integral is independent of any covariance operator usually connected with a noise
process.

In the paper, we use the resolvent approach to the Equation (1). This means that a deterministic counterpart of
the Equation (1), that is, the Equation

and ¥ =(V¥,)

t t
u(t) =f (t)+j[a(t—r)+(axk)(t—r)] Au(r)dr+J'b(t—z')u(r)dz’, 2)
0 0
admits a resolvent family. In (2), the operator A and the kernel functions are the same as previously in (1) and f
is a H-valued function.
By R(t),t>0, we shall denote the family of resolvent operators corresponding to the Volterra Equation (2),
which is defined as follows.
Definition 1 A family {R(t)}t>0 of bounded linear operators in H is called resolvent for (2), if the following
conditions are satisfied: B
1) R(t) isstrongly continuouson R, and R(0)=1;
2) R(t) commutes with the operator A, thatis, R(t)(D(A))<=D(A) and AR(t)x=R(t)Ax forall
xeD(A), t>0;
3) the following resolvent equation holds

R(t)x:x+i[a(t—r)+(axk)(t—r)}AR(r)xerr.:[b(t—r)R(r)xdr, 3

forall xeD(A),t>0.

In this paper, the following result concerning convergence of resolvents for the Equation (1) will play the key
role.

As in [6], we shall assume the following hypotheses:

(H,) The solution of the Equation

a(t)=(axb)(t)+(axk)(t)+a(t), t =0,
is nonnegative, nonincreasing and convex.

(H,) The solution of the Equation (t) =1+(Axb)(t),t>0, is differentiable.

Theorem 1 ([6], Th.~3.5) Assume that A is the generator of bounded analytic semigroup of H. Suppose that
the hypotheses (H,) and (H/,) are satisfied. Then the Equation (2) admits a resolvent {R(t)} 0" Addi-
tionally, there exists bounded operators A, and corresponding resolvent families {Rn (t)}t>0 satisfying
R,(t)|<Mp(t) forall t>0,neN, suchthat )

R, (t)x—> R(t)x, gdy n — o (4)

forall xeH,t>0. Moreover, the convergence (4) is uniform in t on every compact subset of R, .
Below we give an example illustrating conditions (Ha) and (Hﬂ).
Example 1 Consider in the Equation (1) the following kernel functions

2t—2 for t<1
a(t)sl, b(t)EO, k(t)={0 for t>1

Then the functions

_ ('[—l)2 for t<1 q -1
() {O for t>1 and A1)
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fulfil conditions (H,) and (H,)

The paper is organized as follows. Section 2 constains the construction of the stochastic integral due to O. van
Gaans [5]. In Section 3, we compare mild and weak solutions and then we provide sufficient conditions for
stochastic convolution to be a strong solution to the Equation (1). Section 4 gives regularity of stochastic con-
volution arising in perturbed Volterra Equation while in Section 5 we derive the analogue of 1t6 formula to the
perturbed Volterra Equation.

2. The Stochastic Integral

In this section we recall the construction of the stochastic integral due to O. van Gaans [5].

Definition 2 A function f :[0,T]— L*(Q;H) is called piecewise uniformly continuous (PUC) if there are
0=a,<a <...<a, =T such thatfisuniformly continuouson (a, ,,a,) foreach ke{1,2,---,n

Definition 3 A function f :[0,00) > L*(€;H) is called piecewise uniformly continuous (PUC), if f|[O,T] is
uniformly continuous forall T >0.

Theorem 2 ([5]) Assume that (W, ):”:1 is a series of independent standard scalar Wiener processes with res-

pect to the filtration (}}) in F.Let (¥, )Zl be a series of piecewise uniformly continuous functions (PUC)

acting from [0,T] into L*(Q;H), adapted with respect to the filtration (%)_,. Then the following results
hold. -

t>0

1) For any ieN, the integral J"P dW( ) is well-defined as the limit of Riemann sums LZ(Q; H) of

the form

where O=7,<7, <...<7,=T.
2) For each ie N, the Itd isometry holds

‘I‘I’ dW dr.

.[E|LP |L2(Q H)
H

3)Forany i,jeN,suchthat i# j wehave

E<];‘Pi (7)dw, (z’),f[‘l’j (7)dw, (r)> =0.

0

Definition 4 By PMC([O,T]; L*(Q;H)) we shall denote the space of series ¥ = (P, ), of piecewise uni-
formly continuous functions (PUC) acting from [O,T] into L? (Q H) adapted with respect to the filtration
(F),.,» such that

J.ZE|‘P |LZQH dr <oo.

oi=1

Theorem 3 ([5]) Assume that W = (W, ) is a series of independent standard scalar Wiener processes with
respect to the filtration (%)_, in F. Let ‘{JePMC([ T (Y H)) Then the integral

{‘P(T)dW(Z’):: S, ()W, (<

i=1g
existsin L?(Q;H) and
.

[¥(r)d

0

E

J.EZHJ ||_2 QH) dz

3. The Main Results

We begin this section with definitions of solutions to the Equation (1).
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Definition 5 An H-valued predictable process X (t),te[0,T], is said to be a strong solution to (1), if X
has a version such that P(X( )eD(A))=1 foralmostall t<[0,T];forany te[0,T]

”[at T axk t T:'AX | dr <o, P-as,, (5)

”b(t—z‘)X(r)|H dr <o, P-a.s. (6)

and forany te[0,T] the Equation (1) holds P — a.s.
Let A" denote the adjoint of A with a dense domain D(A*) < H and the graph norm |~|D(A )

Definition 6 An H-valued predictable process X (t),te [O,T] , is said to be a weak solution to (1), if

o[t taebe -8 (e] <
o [bie-r)x (o), <2

and ifforall &e D(A*) andall t<[0,T] the following equation holds

(X(1).¢), = <j[at 7)+(axk)(t-7)]X(r) drA§>H
+<£b(t—z')X(r)dr,§> <zj\y )aw, (z), §> as.

i=1p

As we have already written, in the paper we assume that (2) admits a resolvent family R(t), t>0. So, we
can introduce the following idea.

Definition 7 An H-valued predictable process X (t),t e[O,T], is said to be a mild solution to the pertur-
bed stochastic Volterra Equation (1), if

t »

[XER(t-2)¥, (7)), dr <0 dla t<T
0i=1 '

and, forall te[0,T],

o t

X (t)=R(t)X,+>[R(t—7)¥,(r)dW,(r), P-as, ©)
i=1g
where {R(t)} is the resolvent for the deterministic perturbed Volterra Equation (2).
We introduce the stochastic convolution

()= ZjR(t—r)‘{q(r)olwi (r).te[0,T], (8)
i=10

where ¥ and the resolvent operators R (t) t >0, are the same as above.

Let us formulate some auxiliary results concerning the convolution W ¥ .

Proposition 4 For arbitrary process ¥ PL[C([O,T]; L*(H )) the process W™ (t), t>0, given by (8)
has a predictable version.

Proposition 5 Assume that ¥ ePUC([O,T];LZ(Q;H)). Then the process W™ (t), t>0, defined by (8)
has square integrable trajectories.

For the idea of proofs of Propositions 4 and 5, we refer to [2] or [3].

In some cases, weak solutions of Equation (1) coincides with mild solutions of (1), see e.g. [2] or [3]. In con-
sequence, having results for the convolution (8) we obtain results for weak solutions.

Proposition 6 Assume that ¥ € PMC([O,T]; L*(Q;H )) Then the stochastic convolution W™ (t), t>0, is

a weak solution to the Equation (1).
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Hence, we are able to conclude the following result.
Corollary 1 Let A be a linear bounded operator in H. If ¥ e ?UC([O,T]; L*(Q;H )) then

f[a (t—7)+(axk)(t- )]AWW(z’)dr

¢ 9)
+fb( WY dr+;j‘{’ , P-as.

The formula (9) says that the convolution W ¥ is a strong solution to (1) if the operator A is bounded.

Here we provide sufficient conditions under which the stochastic convolution W™ (t) t >0, defined by (8)
is a strong solution to the Equation (1).

Lemma 1 Assume that @ e PUC([0,T];L* (€ D(A))) and A® e PUC([0,T];L*(Q;H)). Then

[ZJ(D )€ D(A)j 1 (10)

_]_0
and
AZI ZJ'AcD ,P-as.
i=1g i=1g

Proof Because (D(A),|-|D(A)) is a Hilbert space, then the integral

T

o (t)aw (1) = Z!CD (t)dw, (t)

0
existsin L*(€Q;D(A)) by Theorem 3.
Denote by (§,)”, division of the interval [0,T], that 0=s;<s <---<s, =T,

lim max |5 S, 1| = 0. From the definition of the integral and closedness of the operator A we have

n—owiefl,-,n}

Z,[A‘D Z lim A, (s,)(W, (s,)-W; (s, )) = lim i

—lO m—oo m—oo * 1

=Alim th(b (52) (Wi (5,) Wi (s,.4)) = Alim ZI(D o

m—o = n—>w m—o
i=1g

lim A, (s, ) (W, (s,)-W; (s,))

m—o

= Azjcpi (t)dw, (t), P-as.
i=1g
Theorem 7 Let A be a closed linear unbounded operator with the dense domain D(A) equipped with the
graph norm |-|D(A) . Suppose that assumptions of Theorem 1 hold. If ¥ PZ/IC([O,T]; L (o D(A))) and
AY e PL{C([O,T]; L*(Q;H )2 then the stochastic convolution W™ is a strong solution to the perturbed sto-

chastic Volterra Equation (1).
Proof Since closed unbounded linear operator A becomes bounded in (D(A),|~|D(A)) , We have

AW * ( )e Lt ([0 T]' H) P —a.s. Then from the properties of stochastic convolution we obtain integrability of
[a +(axk)( ]AW -) and b(T —-)W™ (-). Therefore, conditions (5) and (6) from the definition

of strong solutlon to Equation (1) hoId.
It remains to show that the Equation (1) holds P — a.s., i.e.

j[a (t—7)+(axk)(t- ):|AWLP(Z')dT

t

+J.b(t -7)W¥ (7)dr +ijf‘1’i (7)dW, (z), P-as.

0 i=1g

(11)
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Because the formula (9) holds for any bounded operator, then it holds for the Yosida approximation A, of
the operator A, too. Then we have

ia +(axk)(t-7) | AW," (r)dr
!b( T)W," dz'—l-;!;‘ll . P-as.,
where
W (8):= 32JR, (t-2) ¥, ()W (1)
and

)= A D[R (t-0)¥, (£) oW, (<),

i=1¢0

To prove that (11) holds, we need to show the following convergences

lim sup E -W¥(t) =0 12

n_)th[OFT)] |\N ( | (12)
and

lim sup B|AW," (t)- AW (1) =0. (13)

N> c[0,T] H

By assumption ¥ e PL{C([O,T]; L? (Q; D(A))) c WC([O,T]; L*(Q;H )) . Because the operators R, (t) are

deterministic and bounded for any t<[0,T], neN, then R (t—-)¥(-) belong to PMC([O,T];LZ(Q;H)),
too. Hence, the difference

8, (1) =R, (t=) ¥ ()-R(t=)¥() a9
belongs to PMC([O,T];LZ(Q;H)) forevery te[0,T] and neN. This means that
t o )
[2E A (t—r)|L2(Q;H)dr<oo dla te[0,T]. (15)
From the definition of stochastic integral (Theorem 3), for te[o T] we have
jA (t—7)dw (7 jEz (=) () 47 <

By Theorem 1, the convergence of the resolvent families is uniform with respect to t on every closed intervals,
particularly on [0,T]. Then we have

jEZ[R R(T-7)]¥,(z

Summing up the above considerations, we obtain

TR, (t—)~R(t—e)]¥(c)w (¢)

0

2 dz—>0 dla n— . (16)
L*(@:H)

2

sup E

te[O T]

=supE

te[O,T]

IA t z’dW()

0

H H

ot 2 2

ZI[RH (t—z')— R(t—r)]‘?i (z’)dWi (T)

i=1o

=sup & <E

te[O T]

_IEZ[R R(T-7)]¥, (¢

gi[R”(T_T) (T-7) ] (r)dwW, (r)

H

2 dz >0
L(iH)
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as n— oo. Then, by the dominated convergence theorem the convergence (12) holds.
From the fact that ¥ e PUC([0,T];* (2 D(A))) and R(t)(D(A))=D(A) we have

R(t—)¥(-)e PUC([0.T];* (2 D(A))). Then, by Lemma 1, P(W" (t)e D(A))=1.

Forany neN, t>0, we can write

[AWY (1) = AW (1) <|AW," ()= AW™ (t)] +|AW™ (t)- AW ™ (t)] .
Then

AW, (t)- AW | <|AW," (t)-AW" | AW (t Aw““(t)|zH

+2|/-\1Wn‘"(t)— | |AnW t)— AW " ()|H

ssﬂAhWn“" t)- AW (D) +[AWY (t Aw“"(t)m.

To prove that the convergence (13) holds, we need to show that

lim supE|Anw (t)- AW ()] =0 17)
- c[0,T] H

and
lim sup E[AW ™ (t)- AW (t)]" =o. (18)
n—21eo,T] H

We shall study the term |'%an (t)-AW™ (t )||24 first. Because the operator A generates a semigroup, we can
use the following property of the Yosida approximation

Ax = J, Ax dla dowolnych x e D(A), sup||J, || < oo, (19)

where A x=nAR(n,A)x=AJ x forany xeH, J =nR(nA).
Moreover

limJ x=x forevery xeH, (20)

n—ow

lim A x= Ax for every xe D(A).

n—oo

For any bigenoughnand any xeD(A), wehave AR (t)x=R,(t)Ax.
Next, by Lemma 1 and closedness of the operator A

(1)= AR, (t) ¥, (£)w ()

_) ZAAR (t=)¥, ()W, () = Jn{giRn(t—r)A‘Pi(r)dWi(z’)}.

Analogously, we have
o t
AW (=3, STR( ), (2)ow 1) |
Using (19), we receive

19, 3[R, (t-7)-R(t-7)] A%, (r)dw, ()

i=1

|A1Wn\y (t)_ A1W~*‘ ( )|

o-_,,—«

H

R(t—7) AV, (r)dW,(r)

H

From assumption AY e PLIC([O,T]; L*(Q;H )) so the term [Rn (t--)- R(t—.)] AY (-) may be treated like
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the difference A, defined by (14).
Then, using (19) and (12), we obtain (17).

For the term |A1W‘P (t)-AW™ (t)|'24 we can repeat the proof of the convergence (12).

AW (1)- AW (1), = A]Z_[R (t-7) AZjR (t-7)¥,(z)dW, (v)
i=lg i=1lp H
o t
I ) (7)dW, (7)
=0 y
By assumption ¥, A‘PePL[C([OT L2 (% )) Because A, and R(t),t=0, are bounded, so

I
AR(t-)¥ () e PUC([0,T];L* (:H)).
Analogously, AR(t--)¥()=R(t—)A¥(-)e PUC([0,T];L* (4 H)).
Since [A,—A]R(t—)¥(-)e PUC([0,T]; LZ(Q;H)), this term can be treated like the difference A, de-
fined by (14). Hence, forany te [O,T , We may write

ot 2

ZJ ¥ (7)dW, (7)

i=10 H

B|AWY (t)- AW" (1) =

< EE?[A‘ ~AJR(T -2)¥, (r)|i2(Q:H) dr <.
Using the convergence (20), we have
j]E.Z| [A, - AJR(T —7)¥ (r)|L2( dz —0 dla n—> .
Therefore the convergence (18) holds. o

4. Continuity of Trajectories

In this section, we give sufficient conditions for the continuity of trajectories of the stochastic convolution when
the kernel function b= 0. Thus, we study the stochastic convolution corresponding to the equation

t
X (t)= X, +[[a(t-7)+(axk)(t-7) ] AX (r) dr+zj\{1 (21)
0 i=1o
where te[0,T].
Theorem 8 Let the operator A be the generator of strongly continuous bounded analytic semigroup T (t)

te[0,T]. Assume that the functions a, d,k e L ([O,T];R) , b=0 are the skalar kernel functions and con-

dition (H,) holds. If ¥ € PC([0,T];L* (%D (AY))). then the following formula holds
w*(t):cAjT(t_r){](ammaxk)(f WY (o) do+cJ"P (s)}dr+j.‘{’(r)dW(r), 22)
where te[0,T], f::a(o);eo0 is a constant and O
i‘l—’(‘r Z!T

like in Equation (1).
Proof Since formula (9) holds for any bounded operator, then it holds for the Yosida approximation A, of
operator A as well, that is

(a+axk)(t—c) AW (c)dr+ 3, (c)dw, (¢), 23)

i=1¢o

W () =

n

g-_..-.
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where

Denoting
2, (t)= [(a+a*k)(t—c)W (r)de, t<[0T] (24)

and using the Leibniz rule twice we obtain

()= [(a+a(0)k +axk)(t- ) (£)dz +a (O, (1) (25)

0

z

n

From (23) and (24), we can write
t

W, (t)=AZ, (t)+ [¥(z)dW (7), te[0,T].

0

If a(0)=0, then from (25) we have
W," (t) :—{zn, (t)—j.(a+a(0)k +ax k)(t -7)W,* (‘[)de|,
and next

Z,(t)=a(0)AZ, (t)+

(a+a(0)k +ax k)(t—f)qu' (T)dr+a(0)jT(r)dW (T), te [O,T].

0

[SY I——

For simplicity, we introduce the following term
t
W ¥ (t)= j(a+a(0)k +ax k)(t -7)W," (7)dz, te[0,T].
0

Then
Z,(t)=cAZ, (t)+|W," (t)+c[¥(r)dW (r) |, gdzie c=a(0).

Since Z,(0)=0, we can write

7, (t)= e _V\7"“(r)+cj‘}’(s)dw(s) dr, te[0,T]

0

From (23) and (24) we obtain

where J :=nR(n,A).
Then

W (1) = AT, [ WY (2) 4 (5)aW (s) |dr + [#(c)aW (2), t<[0.T]

Basing on Theorem 1, properties of Yosida approximation A, of the operator A, and dominated convergence
theorem, we have
limJ x=x, foranyxeH,

n—o0

lim A x=Ax, forany xe D(A),

n—oo

668
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lime®™x=T(y)x, foranyxeH,

n—oo

and

2

lim sup]E|W (t)- (t)|H =0.

N=%1e[0,T]

Since the operator A is closed, we can conclude that

jTt r [W +cj\y (s)}dreD(A).

Hence, passing to the limit with n — o, we obtain

W‘P(t):cA_j;T(t—r){W“’(r)+c£‘1‘(s)dW(s)}dr+j{[‘l’(r)dW(r), te[0T].
where

ja+ck+axk T— O')W‘Y(O')dO', TE[O,T]. ]
0

Lemma 2 Let the assumptions of Theorem 8 hold and a(0)=1. Thenfor te [O,T] ,

WY (t)= AY (t)+ [ (2)dW (<), (26)
where 0
Y(t)::_:[T(t—r){WW(r)+l.‘P(s)dW(s)}dr @7
and
()= [(a+k+axk)(r-0)W* (o)do, 7<[0T]
Moreover, Y eC*([0,T ),PO as. and
Y() ‘

AY (t ){V\?"‘(t)ﬂ"l’(s)dw(s)}, te[0T] (28)

0

Proof The formula (26) results from (22) and the definition (27) of the process Y . Moreover, from properties
of convolution Y € C*([0,T];D(A)),P -as.
Using the Leibniz rule and property of semigroup we obtain

Qi de(:I T{ +£‘I’ }errT( )[w*(t)@\p(s)dw(s)}

0

_AfT(t- { +qu }dr+[ W(t)+}‘P(s)dW(s)}

n 00+ )+ o e)ow ()|

where te[0,T]. O
To conclude continuity of trajectories of stochastic convolution, we use regularity of solutions for the non-
homogeneous Cauchy problem [7] to the formula (26).

Theorem 9 Suppose that the assumptions of Theorem 8 hold. If both processes Y and j;\}’(r)dw (7),
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te [O,T] , have continuous trajectories in the space D, (a,oo) , then the stochastic convolution W™ (t)

te[0,T], has continuous trajectories in D, (a,).
In the previous theorem, the space D, (a,oo) , ae (0,1) , is defined as follows. Forany « e (0,1) , We set

We denote by D, (a,oo) the Banach space of all xe H such that |x|a _, <o, endowed with the norm
1., +|{,.. - BY the interpolation theory, D, (c,) is an invariant space of T(t), t>0, and the restriction of
T(t) to D,(c,) generatesa C,-semigroupin D, (& ).

5. Analogue of the It6 Formula

In this section, we derive the analogue of the 1td formula to the perturbed Volterra Equation (1).

Proposition 10 Let the process X be a strong solution to the Equation (1) and a, &k, b,be L, ([0,T[;R).
Suppose that the function F :[O,T]x H — R and its partial derivatives F,, F,, F, are uniformly continu-
ouson [0,T]xH . Then,forany te[0,T],

t

F(tX (1) -F(0.x(0)

F (r, X (T))d‘r+j;<Fx (z’, X (r)),(a+a>< k)(0) AX (T)>H dr
+':[<FX(T,X(z’)),((a+a(0)k+axk)xAX)(z’)>H dr+i<a (£.X (7)) b(0)X (£)+ (5 X)(r))_d=
+ii‘<':x (7.X (7)), ¥ ()dw, (T)>H +%ig<FXX(T'X (0))¥ (7). ¥, (T)>H dz, P-as.

The following proposition is an example of application of the above analogue of the It formula.
Proposition 11 Let the operator A be the generator of bounded analytic semigroup in H. Suppose that
a,4k b,be i ([0.T];R), the conditions (H,) and (H,) holdand ¥ e Puc([0,T];L°(2;D(A))).
Assume that the function v:H — R satisfies the following conditions:
1) function v and its partial derivatives v,, v,  are uniformly continuous on bounded subsets of H,

2) forany X e D(A) and the constant ¢ >0

|V(x)|+|X|H VX(X)|H +|X|I2-| VXX(X)|H SC|X|l2—|’

3)forany X e D(A) and the constant a e R
av(X)£—<vX(X),(a+axk)(0)AX (t)+((a+a(0)k+axk)xAX)(t)+b(O)X(t)+(bxX)(t)>
-5 200 (X)), (1),

Then the stochastic convolution WY satisfies the following inequality
EV(W\P (t)) <ev(0).

H

The idea of the proof bases on Ichikawa’s scheme, see ([8], Theorem 3.1), and on Theorem 1 and Proposition
10. It seems to be a good starting point in the study of stability of mild solution to perturbed Volterra Equation

Q).
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