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Abstract 
The author of the presented paper is trying to develop and implement the model that can mimic 
the state of the art models of operational risk in insurance. It implements generalized Pareto dis-
tribution and Monte Carlo simulation and tries to mimic and construct operational risk models in 
insurance. At the same time, it compares lognormal, Weibull and loglogistic distribution and their 
application in insurance industry. It is known that operational risk models in insurance are cha-
racterized by extreme tails, therefore the following analysis should be conducted: the body of dis-
tribution should be analyzed separately from the tail of the distribution. Afterwards the convolu-
tion method can be used to put together the annual loss distribution by combining the body and 
tail of the distribution. Monte Carlo method of convolution is utilized. Loss frequency in opera-
tional risk in insurance and overall loss distribution based on copula function, in that manner us-
ing student-t copula and Monte Carlo method are analysed. The aforementioned approach repre- 
sents another aspect of observing operational risk models in insurance. This paper introduces: 1) 
Tools needed for operational risk models; 2) Application of R code in operational risk modeling;3) 
Distributions used in operational risk models, specializing in insurance; 4) Construction of opera- 
tional risk models. 
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1. Introduction 
Operational risk is defined according to Basel II (Nicolas & Firzli, 2011) as well as according to European Sol-
vency II which adopted for insurance industry is defined in the following way (Nicolas & Firzli, 2011). 

Operational risk is the risk of change in value caused by the fact that actual losses, incurred for inadequate or 
failed internal processes, people and systems, or from external events (including legal risk), and differs from the 
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expected losses. 
In order to analyse operational risk in insurance, Solvency II Directive (Mittnik, 2011) must be discussed. 

Solvency II Directive is an EU Directive that codifies and harmonises the EU insurance regulation. This con-
cerns the amount of capital that EU insurance companies must hold to reduce the risk of insolvency. Solvency II 
(Mittnik, 2011) is called “Basel for insurers” (Nicolas & Firzli, 2011). Solvency II is somewhat similar to the 
banking regulations of Basel II. The proposed Solvency II framework has three main areas (pillars) (Accords, 
2006): 
• Pillar 1—quantitative requirements 
• Pillar 2—requirements for the governance and risk management of insurers and their supervision 
• Pillar 3—disclosure and transparency requirements 

In order to analyse the operational risk in insurance (CEA—Groupe Consultatif, 2005), the attention to-
wards pillar 2 and pillar 1 should be directed. Ernst &Young reports that most of the insurance companies in 
2016 will manage to implement the Solvency II requirement until January 2016 (PWC Financial Services 
Regulatory Practice, 2014). One of the major new features of Solvency II is that insurance companies must 
now devote a portion of their equity to covering their exposure to operational risks. There are approaches to 
calculate the capital requirement: a standard and more advance approach. The advanced approach uses an in-
ternal model of risk that corresponds to the company’s real situation. Quantitative impact study (QIS 5) has 
encouraged insurance companies to adopt the internal model by structuring the standard approach such that it 
uses up much more equity (Solvency—European Commission, 2012). In order to analyse the operational risk 
in this frame, the following assumption will be made: risk will be divided between frequency and severity risk 
(Doerig, 2000). They will be modeled by Loss Distribution approach (Power, 2005). Severity risk represents 
the risk of large but rare losses. Bayesian networks are used to model severity risk. 

1.1. Bayesian Networks 
Bayesian networks are defined as a probabilistic graphical model that represents a set of random variables and 
their conditional dependencies via a directed acyclic graph (DAG). For example, a Bayesian network could 
represent the probabilistic relationships between the cause and result. If we are aware of the causes, the proba-
bilities of results can be calculated. 

In order to define the Bayesian network, the following definition will be used. X  is a Bayesian network with 
respect to G  if its joint probability density function (with respect to a product measure) can be written as a 
product of the individual density functions, conditional on their parent variables: 

( ) ( )( )v pa v
v V

p x p x x
∈

=∏                                (1) 

where ( )pa v  is the set of parents of v . 
The probability of any member of a joint distribution can be calculated from the conditional probabilities us-

ing the chain rule, taking into consideration at the same topological ordering of X. 

( ) ( )1 1 1 1
1

, , , ,
n

n n v v v v n n
v

P X x X x P X x X x X x+ +
=

= = = = = =∏                   (2) 

Equation (2) can be written as: 

( ) ( )1 1
1

, ,
n

n n v v j j
v

P X x X x P X x X x
=

= = = = =∏                       (3) 

(for each jX  which is a parent of vX ). 
X  is a Bayesian network with respect to G  if it satisfies the local Markov property, each variable is condi-

tionally independent of its non-descendants given its parent variables. 

 
( ) ( )\ for allv V de v pa vX X X v V∈                                  (4) 

where ( )de v  is the set of descendants and ( )\V de v  is the set of non-descendants of v . 
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The aforementioned thing can also be expressed in terms similar to the first definition, as: 

( )v v i iP X x X x= =                                    (5) 

For each iX  which is not a descendant of vX  is 

( )v v j jP X x X x= =  For each jX  which is a parent of vX . 

Note that the set of parents is a subset of the set of non-descendants because the graph is acyclic. 

1.2. Developing Bayesian Networks 
To develop a Bayesian network, we often first develop a DAG  (directed acyclic graph) G  such that we be-
lieve X  satisfies the local Markov property with respect to G . Sometimes this is done by creating a casual 
DAG . We then ascertain the conditional probability distribution of each variable given its parents in G . In 
many cases and in particular in the case where the variables are discrete, we define the joint distribution of X  
to be the product of these conditional distributions, then X is a Bayesian network with respect to G . 

In order to model loss severity, since it can be difficult to model operational risk losses of a risk class using 
only one probability distribution, we analyse severity at two levels: body and tail of the distribution delimited by 
a high threshold value u . 

The central body can be modeled by using a parametric distribution. One of the distributions that can be used 
is lognormal. Body is usually estimated on internal data, since the sample size is sufficient below the threshold 
u . 

Figure 1 demonstrates the body of the distribution, it is assumed that the body of the distribution embraces 
lognormal value, therefore we assume the lognormal distribution. In order to analyse the tail, it can be mod-
eled applying extreme value theory (Embrechts, Kluppelberg, & Mikosch, 1997) the distribution above the 
threshold, we are talking about Generalized Pareto distribution (GPD). Tail is usually estimated on internal 
data integrated with external data and scenario generated data above u . Data are real scarce above threshold 
u . 

Generalized Pareto distribution is used to capture the tail of severity distribution. Figure 2 shows the Genera- 
 

 
Figure 1. Lognormal distribution.                         

 

 
Figure 2. Generalized Pareto distribution.                    
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lized Pareto distribution, its density as well as its cumulative function. 
The commonly used approach to quantify operational risk is the Loss Distribution Approach (Embrechts, 

Kluppelberg, & Mikosch, 1997) where frequency and severity of operational risk losses are modeled separately. 
The yearly potential loss S  is based on the sum of the yearly losses jS  related to the J  risk classes. 

The yearly potential loss jS  related to risk class j , is affected by two sources of uncertainty: 
• The number of losses jN  in one year time horizon 
• The impact of each single loss ijX  

If the following procedure is to be applied to mathematical modeling of operational risk in insurance, the only 
thing that should be changed is the distribution that it is to be used. Therefore, the methods of copula and con-
volution will be explained as well as the possible distribution that could be applied in insurance. 

1.3. Convolution 
In mathematics, convolution is a mathematical operation on two functions f  and g , producing a third func-
tion that is typically viewed as a modified version of one of the original functions, giving the area overlap be-
tween the two functions as a function of the amount that one of the original functions is translated (Bracewell, 
1986; Damelin & Miller, 2011). Convolution is presented in the following manner: 

It is defined as the integral of the product of the two functions after one is reversed and shifted. It is a particu-
lar kind of integral transform: 

( )( ) ( ) ( ) ( ) ( )
def

d d .f g t f g t f t gτ τ τ τ τ τ
∞ ∞

−∞ −∞
∗ = − = −∫ ∫                      (6) 

Although the symbol t  is used above, it need not represent the time domain. However formula can be inter-
preted as a weighted average of the function ( )f τ  at the moment t  where the weighting is given by ( )g τ−  
simply shifted by amount t . As t  changes, the weighting function emphasizes different part of the input 
function (Bracewell, 1986; Damelin & Miller, 2011). 

1.4. Copula 
A copula is a multivariate probability distribution for which the marginal probability distribution of each varia-
ble is uniform. Copulas are used to describe the dependence between random variables. 

One important theorem for copulas is Sklar’s theorem. We will now define the copula: 
Copula (Nelsen, 1999) is a multivariate distribution function, C , with marginal functions distributed un-

iformly in [0,1] (U(0,1)) such that 
1) [ ] [ ]: 00,1 ,1nC →  
2) C  has marginal functions iC  such that ( ) ( )1, ,1, ,1, ,1iC u C u u= =   [ ]0,1u∀ ∈  

Sklar’s theorem (Sklar, 1959) provides the theoretical foundation for the application of copula. Sklar’s theo-
rem states that every multivariate cumulative distribution function 

( ) [ ]1 1 1, , , ,d d dH x x X x X x= ≤ ≤                                 (7) 

Of a random vector ( )1 2, , , dX X X  with marginal ( ) [ ]i iF x X x= ≤  and it can be written as: 

( ) ( ) ( )( )1 1 1, , , ,d d dH x x C F x F x=                                (8) 
where C  is copula. 

The copula that will be used is Gaussian copula and Gumbel copula. They will be presented shortly. 
The Gaussian copula: 
Gaussian copula (Nelsen, 1999) is a distribution over the unit cube [ ]0,1 d . It is constructed from a multiva-

riate normal distribution over dR  using the probability integral form. 
The Gaussian copula for d dR R ×∈ , it can be written with parameter matrix R  can be written as: 

( ) ( ) ( )( )Gauss 1 1
1 , ,R R dC u u u− −= Φ Φ Φ                                 (9) 

where 1−Φ  is the inverse cumulative distribution function of a standard normal and RΦ  is the joint cumula-
tive distribution function of a multivariate normal distribution with mean vector zero and covariance matrix 
equal to the correlation matrix R . 
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The density matrix can be written as 

( )
( )

( )
( )

( )

( )

T1 1
1 1

Gauss 1

1 1

1 1exp
2detR

d d

u u
c u R I

R u u

− −

−

− −

    Φ Φ    
 = − ⋅ − ⋅   
    Φ Φ     

 
              (10) 

where I  is the identity matrix. 
Other famous copulas are Archimedean copulas. 

1.5. Archimedean Copulas 

Archimedean copulas (Nelsen, 1999) are an associative class of copulas. Archimedean copulas are popular be-
cause they allow modeling dependence in arbitrarily high dimensions with only one parameter, governing the 
strength of dependence. 

A copula C  is called Archimedean if it admits the representation 

( ) [ ] ( ) ( )( )1
1 1, , ; ; ; ;d dC u u u uθ ψ ψ θ ψ θ θ−= + +                         (11) 

where [ ] [ ): 0,1 0,ψ ×Θ→ ∞  is a continuous, strictly decreasing and convex function such that ( )1; 0ψ θ = . θ  
is a parameter within some parameter space θ . ψ  is the so-called generator function and [ ]1ψ −  is the pseu-
do-inverse defined by: 

[ ] ( ) ( ) ( )
( )

1
1 ; if 0 0;

;
0 if 0;

t t
t

t
ψ θ ψ θ

ψ θ
ψ θ

−
−  ≤ ≤= 

≤ ≤ ∞
                       (12) 

Moreover, the above formula for C yields a copula for 1ψ −  if and only if 1ψ −  is d-monotone on [ )0,∞ . 
That is, if it is 2d −  times differentiable and the derivatives satisfy 

( ) ( ) ( )1,1 ; 0k k tψ θ−− ≥                                 (13) 

for all 0t ≥  and 0,1, , 2k d= −  and ( ) ( ) ( )2 1, 21 ;d d tψ θ− − −−  is nonincreasing and convex. 
The copula that we will also introduce is Gumbel copula. 
It has the following bivariate form: 

( ) ( )( ) ( )( )( )1, : exp log logC u v u v
θθ θ

θ
 − − + − 
 

                        (14) 

After giving the definition of two most important techniques of aggregating operational risk, we will intro-
duce the distributions that we will be using as well as the definition of value at risk and expected shortfall. 

1.6. Statistical Distributions 
To analyse severity in that sense pertaining to body of the distribution, following distributions can be used, giv-
en their densities: 

Lognormal distribution density (Hazewinkel, 2001): 

( )
( )2

2
ln

21; , e , 0
2π

x

Xf x x
x

µ

σµ σ
σ

−
−

= >                       (15) 

Weibull density distribution: 
The probability density function of a Weibull random variable (Hazewinkel, 2001) is:  

( )
( )

1

e 0,; ,
0 0,

k
k

xk x xf x k
x

λ

λ λ λ

−
−   ≥  =   

 <

                      (16) 

where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution. Its complementary cu-
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mulative distribution function is a stretched exponential function. The Weibull distribution is related to a num-
ber of other probability distributions; in particular, it interpolates between the exponential distribution (k = 1)  

and the Rayleigh distribution (k = 2 and 2
k

λ = ) 

Loglogistic probability density function is defined in the following way: 

( ) ( )( )
( )( )

1

2; ,
1

x
f x

x

β

β

β α α
α β

α

−

=
+

                             (17) 

The parameter 0α >  is a scale parameter and is also the median of the distribution. The parameter 0β >  
is a shape parameter. The distribution is unimodal when 1β >  and its dispersion decreases as β  increases. 

The following functions are shown in the graphs below:  
Figure 3 shows probability density functions of Loglogistic, Weibull and lognormal distributions. 
At the same time, we will introduce Champernowne distribution (Hazewinkel, 2001) that we will also be us-

ing, its probability density function is given in the graph below: 

( )
( )0

0

; , , ,
cosh

nf y y y
y y

α λ
α λ

= −∞ < < ∞
 − + 

                      (18) 

where 0, , yα λ  are positive parameters, and n is the normalizing constant, which depends on the parame-
ters. 
 

 
(a) 

   
(b)                                                           (c) 

Figure 3. Loglogistic, Weibull and lognormal probability density functions respectively.                               
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When obtaining copula, Monte Carlo method will be used, so we will introduce it shortly. 
One is interested in the expectation of a response function : dg R R→  applied to some random vector 

( )1, , dX X . If we denoted the cumulative distribution function of this random vector with H , the quantity of 
interest can thus be written as: 

( ) ( ) ( )1 1 1,, , , , d ,dd d dg X X g x x H x x  =  ∫


                         (19) 

If H  is given by a copula model, example: 

( ) ( ) ( )( )1 1 1, , , ,d d dH x x C F x F x=                               (20) 

Then expectation can be written as: 

( ) [ ] ( ) ( )( ) ( )1 1
1 1 1 10,1
, , , , d , , .dd d d dg X X g F u F u C u u− −  =  ∫                (21) 

In case the copula C  is absolutely continuous, C  has density c, the equation can be written as 

( ) [ ] ( ) ( )( ) ( )1 1
1 1 1 1 10,1
, , , , , , d ddd d d d dg X X g F u F u c u u u u− −  =  ∫               (22) 

If copula and margins are known (or if they have been estimated), then the following Monte Carlo algorithm 
can be used: 
1) Draw a sample ( ) ( )1 , , ~ , 1, ,k k

dU U C k n=   of size n from the copula C 

2) By applying the inverse marginal cdf’s, produce a sample of ( )1, , dX X  by setting 

( ) ( ) ( )( ) ( )1 1
1 1 1, , , , ~ 1 ,, ,k k k k

d d dX X F U F U H k n− −= =    

3) Approximate ( )1, , dg X X    by its empirical value: 

( ) ( )1 1
1

1, , , ,
n

k k
d d

k
g X X g X X

n =

  ≈  ∑                            (23) 

1.7. VAR and Expected Shortfall 

After having introduced all the necessary tools for operational risk model in insurance, we will just provide the 
VAR and expected shortfall definition (Longin, 1997) and then we are going to present the modeling results. 

( ) ( ){ } ( ){ }VaR inf : 1 inf : LL l P L l l F lα α α= ∈ > ≤ − = ∈ ≥                 (24) 

Confidence level ( )0,1α ∈ , the VaR (Longin, 1997) of the portfolio at the confidence level α  is given by 
the smallest number l  such that the probability that the loss L  exceeds l  is at most ( )1 α− . Mathemati-
cally, if L  is the loss of a portfolio, then ( )VaR Lα  is the level α  quantile. 

In order to model tails, Generalized Pareto distribution will be used. 
The standard cumulative distribution function (cdf) of the GPD is defined by 

( ) ( ) 11 1 for 0,
1 e for 0.z

zF z
ξ

ξ
ξ ξ

ξ

−

−

 − + ≠= 
− =

                                (25) 

where the support is 0z ≥  for 0ξ ≥  and 0 1z ξ≤ ≤ −  for 0ξ < . 

( ) ( )
1

1 for 0,
e for 0.z

zf z
ξ
ξ

ξ
ξ ξ

ξ

+
−

−

 + ≠= 
=

                                (26) 

Expected shortfall 
Expected shortfall is defined as  

( )
0

1 dES VaR X
α

α γ γ
α

= ∫                                     (27) 
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Or equivalently can be written as: 

{ } [ ]( )( )1 1 X xES E X x P X x
αα α αα

α ≤
 + −
= − ≤                           (28) 

where  

( ){ }inf :x x P X xα α= ∈ ≤ ≥                                (29) 

is the lower -quantileα  and ( )
1 if 

1
0 elseA

x A
x

∈
= 


 is the indicator function. 

2. Experimental Results 
After having introduced all the necessary tools, the experimental results will be presented. As we are consider-
ing operational risk models in insurance, we will use the following tools. The procedure is the following. As we 
don’t have enough data, we will use random number generator, let it simulate the events, but at the same defin-
ing that extreme events don’t occur frequently. Afterwards we will implement the distribution for body and tail 
of the severity of distribution. Frequency of events was modeled by using Poisson distribution. A standard 
choice to estimate annual frequency of operational risk loss is performed by using Poisson distribution. On the 
basis of extreme value theory, the distribution function of loss data above a high threshold u  is supposed to 
follow a Generalized Pareto distribution. Lognormal distribution will be used for modeling body of severity dis-
tribution. Afterwards, we use the convolution method using frequency and severity distribution and we obtain 
annual loss distribution. Convolution is performed by using Monte-Carlo method.  

Following steps are performed: 
1) Extract one random number ( )jn  from frequency distribution 
2) Extract jn  random numbers ( )ijx  from severity distribution 
3) Obtain a possible figure of yearly op. loss j ijjs x= ∑  

Repeat n  times and we obtain annual loss distribution. In order to obtain overall annual loss distribution, we 
use the following procedure: 
• Extract one random value ( )1, , Ju u u=   from copula function 
• Extract n random numbers from loss distributions related to J  risk classes 
• Sum yearly losses to obtain overall annual loss distribution 

If the real data is used, then to estimate the parameters maximum likelihood, method of moments, probability 
weighted method of moments should be used. 

The simulation results are given below: 
 

 
 
The body of distribution is considered to be lognormal. The first fit value is the mean and the other one is 

standard deviation. The gradient of the function demonstrates where the function is 0. 
In Figure 4, optimisation values are given for different theta 1 and theta 2 that represent optimal values. 
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Goodness of fit can also be performed, if the real data is used. Figure 7 shows negative log-likelihood method 
for fitting log-normal distribution. In that direction, Kolmogorov-Smirnov and Anderson-Darling test statistics 
are used, but this is left for further research. 

To estimate the tail of the severity distribution, we have to set a high threshold u : the parameters are estimated 
on excess over threshold using probability weighted moments, maximum likelihood method etc. Mean excess 
function is defined in the following way: 

( ) ( ) ( )
1

ue u E x u X u e u β ξ
ξ

+
= − > → =

−
                            (30) 

What should be noticed is that if the mean excess function for Generalized Pareto distribution is a linear function 
of u, if the empirical mean excess function is a straight line above a threshold, it is an indication that the excess 
over u  follows a generalized Pareto distribution, which is shown in the Figure 8. 

It is obvious that Figure 5 demonstrates that the tail of severity distribution is following Generalized Pareto 
distribution. QQ plots of the Generalized Pareto distribution using maximum likelihood method and probability 
weighted method of moments. 

Q-Q plots in Figure 6 demonstrate that the tail of severity distribution is characterised by generalized Pareto 
distribution. Results are the following. Using the aforementioned methods, the following results are obtained: 

 

 
 

 
Figure 4. Neg-log likelihood for fitting log-normal distribu-
tion with random number generator.                         

 

 
Figure 5. Mean excess function.                          
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To analyse the loss frequency, we assume Poisson process and obtain the following results: 
Figure 7 shows loss frequency distribution for Poisson case. 
After having introduced the severity and loss frequency distribution, we use the convolution method to obtain 

annual loss distribution. The code will be given in the appendix, so that the calculation can be performed. 
The annual loss distributions are obtained in Figure 8. 
Figure 8 shows annual loss distribution as a result of convolution method, it is the combination of lognormal 

and generalized Pareto distribution. 
It is the combination of lognormal and generalized Pareto distribution, therefore because they differ and vary 

from sample to sample, the copula method should be used to obtain overall annual loss distribution (Hazewinkel, 
2001). 

Using Student t-copula, overall loss distribution is calculated and code that can be replicated is given, together 
with the VaR (Longin, 1997) results which are shown in Figure 9. 

The code given in appendix demonstrates how to calculate VaR and copula for overall loss distribution. At 
the same time, some results are given for Value at Risk, expected loss and capital requirements. The given cal-
culations and results demonstrate how to model risk in insurance by using lognormal and generalized Pareto dis-
tribution. At the same time distribution can be changed depending of the situation. This approach introduces 
modeling of operational risk in insurance and financial institutions and represents a review of the state of art 
techniques. 

3. Conclusion 
This paper introduces the state of the art techniques in operational risk modeling. It begins by presenting Sol-
vency II and Basel II criteria. Afterwards it introduces statistical and mathematical techniques. Consequently, it 
presents modeling techniques by introducing Generalized Pareto distribution which is used in operational risk 
models in insurance and banking. The aforementioned paper represents a review in operational risk models in 
 

 
(a)                                                           (b) 

Figure 6. QQ plots with maximum likelihood method and probability weighted moments.                               
 

 
Figure 7. Loss frequency distribution Results: lambda Sample 
532 > lambda 791.7354.                                



O. Vukovic 
 

 
121 

 
Figure 8. Annual loss distribution.                 

 

 
Figure 9. Copula method for obtaining overall annual loss distribution.        

 
insurance. It introduces techniques that can be used in modeling operational risk in insurance and banking, and it 
can be immediately applied. Hopefully, this review will provide further research in risk models and provide new 
ideas that can be applied to operational risk in whole. 
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Appendix 
Convolution Method Code in R to Obtain Overall Annual Loss Distribution 
install.packages(‘evir’) 
library(evir) 
# Quantile function of lognormal-GPD severity distribution 
qlnorm.gpd = function(p, theta, theta.gpd, u) 
{ 
  Fu = plnorm(u, meanlog=theta[1], sdlog=theta[2]) 
  x = ifelse(p<Fu, 
             qlnorm( p=p, meanlog=theta[1], sdlog=theta[2] ), 
             qgpd( p=(p - Fu) / (1 - Fu) , xi=theta.gpd[1], mu=theta.gpd[2], beta=theta.gpd[3]) ) 
  return(x) 
} 
# Random sampling function of lognormal-GPD severity distribution 
rlnorm.gpd = function(n, theta, theta.gpd, u) 
{ r = qlnorm.gpd(runif(n), theta, theta.gpd, u)} 
 
set.seed(1000) 
nSim = 10000# Number of simulated annual losses 
H = 1500 # Threshold body-tail 
lambda = 791.7354 # Parameter of Poisson body 
theta1 = 2.5 # Parameter mu of lognormal (body) 
theta2 = 2 # Parameter sigma of lognormal (body) 
theta1.tail = 0.5 # Shape parameter of GPD (tail) 
theta2.tail = H # Location parameter of GPD (tail) 
theta3.tail = 1000 # Scale parameter of GPD (tail) 
sj = rep(0,nSim) # Annual loss distribution inizialization 
freq = rpois(nSim, lambda) # Random sampling from Poisson 
for(i in 1:nSim) # Convolution with Monte Carlo method 
sj[i] = sum(rlnorm.gpd(n=freq[i], theta=c(theta1,theta2), theta.gpd=c(theta1.tail, theta2.tail, theta3.tail), u=H)) 
sj[i] 
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Code to Calculate Overall Loss Distribution with VAR Results 
>library(QRM) 
>set.seed(1000) 
>nSim = 1000000 # Number of simulated overall annual losses 
>s1 = rlnorm(n=nSim, meanlog=4.5, sdlog=2.3) # Loss distribution risk class 1 
>s2 = rlnorm(n=nSim, meanlog=5, sdlog=2.5) # Loss distribution risk class 2 
>VaR.s1 = quantile(s1, 0.999) # VaR risk class 1 
>VaR.s2 = quantile(s2, 0.999) # VaR risk class 2 
>corr = 0.6 # Correlation among risk classes 
>corrMatrix = matrix(data=c(1,corr,corr,1), nrow=2) # correlation matrix 
>dof = 5 # degrees of freedom 
>simCopulaT = rcopula.t(n=nSim, df=dof, Sigma=corrMatrix) # Simulations from Student-t copula 
>s = quantile(s1, simCopulaT[,1]) + quantile(s2, simCopulaT[,2]) # overall annual loss distribution 
>VaR.s = quantile(s, 0.999) 
>divEff = (VaR.s1+VaR.s-VaR.s)/(VaR.s1+VaR.s) # diversification effect 
>EL = quantile(s, 0.5) # Expected loss 
>capReq = VaR.s - EL # Capital requirement 
>VaR.s1; VaR.s2; VaR.s; divEff; EL; capReq 
   99.9%  
111300.8  
   99.9%  
339577.2  
   99.9%  
410748.6  
    99.9%  
0.2131997  
     50%  
355.3662  
   99.9%  
410393.2 
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