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Abstract 
In this paper we present a new subspace iteration for calculating eigenvalues of symmetric ma-
trices. The method is designed to compute a cluster of k exterior eigenvalues. For example, k ei-
genvalues with the largest absolute values, the k algebraically largest eigenvalues, or the k alge-
braically smallest eigenvalues. The new iteration applies a Restarted Krylov method to collect in-
formation on the desired cluster. It is shown that the estimated eigenvalues proceed monotoni-
cally toward their limits. Another innovation regards the choice of starting points for the Krylov 
subspaces, which leads to fast rate of convergence. Numerical experiments illustrate the viability 
of the proposed ideas. 
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1. Introduction 
In this paper we present a new subspace iteration for calculating a cluster of k exterior eigenvalues of a given 
symmetric matrix, n nG ×∈ . Other names for such eigenvalues are “peripheral eigenvalues” and “extreme ei-
genvalues”. As with other subspace iterations, the method is best suited for handling large sparse matrices in 
which a matrix-vector product needs only ( )0 n  flops. Another underlying assumption is that 2k  is consider-
ably smaller than n. Basically there are two types of subspace iterations for solving such problems. The first 
category regards “block” versions of the Power method that use frequent orthogonalizations. The eigenvalues 
are extracted with the Rayleigh-Ritz procedure. This kind of method is also called “orthogonal iterations” and 
“simultaneous iterations”. The second category uses the Rayleigh-Ritz process to achieve approximation from a 
Krylov subspace. The Restarted Lanczos method turns this approach into a powerful tool. For detailed discus-
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sions of these topics see, for example, [1]-[19]. 
The new iteration applies a Krylov subspace method to collect information on the desired cluster. Yet it has 

an additional flavor: it uses an interlacing theorem to improve the current estimates of the eigenvalues. This 
enables the method to gain speed and accuracy. 

If G happens to be a singular matrix, then it has zero eigenvalues, and any orthonormal basis of Null (G) gives 
the corresponding eigenvectors. However, in many practical problems we are interested only in non-zero eigen-
values. For this reason the coming definitions of the term “a cluster of k exterior eigenvalues” do not include 
zero eigenvalues. Let r denote the rank of G and assume that k < r. Then G has r non-zero eigenvalues that can 
be ordered to satisfy 

1 2
ˆ ˆ ˆ 0rλ λ λ≥ ≥ ≥ >�                                (1.1) 

or 

1 2 .rλ λ λ≥ ≥ ≥� � ��                                   (1.2) 

The new algorithm is built to compute one of the following four types of target clusters that contain k ex-
treme eigenvalues. 

A dominant cluster 

{ }1̂
ˆ, , .kλ λ�                                     (1.3) 

A right-side cluster 

{ }1, , .kλ λ� ��                                     (1.4) 

A left-side cluster 

{ }1 1, , , .r k r rλ λ λ+ − −
� � ��                                 (1.5) 

A two-side cluster is a union of a right-side cluster and a left-side cluster. For example, { } { }1 1 2, , , ,r rλ λ λ λ λ� � � � � , 
and so forth. 

Note that although the above definitions refer to clusters of eigenvalues, the algorithm is carried out by com-
puting the corresponding k eigenvectors of G. The subspace that is spanned by these eigenvectors is called the  
target space. The restriction of the target cluster to include only non-zero eigenvalues means that the target 
space is contained in Range(G). For this reason the search for the target space is restricted to Range(G). 

Let us turn now to describe the basic iteration of the new method. The qth iteration, 1, 2,q = � , is composed 
of the following five steps. The first step starts with a matrix n k

qV ×∈  that contains “old” information on the 
target space, a matrix n

qY ×∈ �  that contains “new” information, and a matrix ( ), n k
q q qX V Y × + = ∈ 

�  that 
includes all the known information. The matrix Xq has p k= + �  orthonormal columns. That is 

T .p p
q qX X I ×= ∈  

(Typical values for �  are 2k=�  or 3k=� .) 
Step 1: Eigenvalues extraction. First compute the Rayleigh quotient matrix 

T .q q qS X GX=  

Then compute k eigenpairs of Sq which correspond to the target cluster. (For example, if it is desired to compute 
a right-side cluster of G, then compute a right-side cluster of Sq.) The corresponding k eigenvectors of Sq are 
assembled into a matrix 

T, ,p k k k
q q qU U U I× ×∈ = ∈   

which is used to compute the related matrix of Ritz vectors, 

1 .q q qV X U+ =  

Step 2: Collecting new information. Compute a matrix n
qB ×∈ �  that contains new information on the target 

space. The columns of Bq are forced to stay in Range(G). 
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Step 3: Discard redundant information. Orthogonalize the columns of Bq against the columns of 1qV + . There 
are several ways to achieve this task. In exact arithmetic the resulting matrix, Zq, satisfies the Gram-Schmidt 
formula 

( )T
1 1 .q q q q qZ B V V B+ += −  

Step 4: Build an orthonormal basis. Compute a matrix, 
T

1 1 1, ,n
q q qY Y Y I× ×
+ + +∈ = ∈� � �   

whose columns form an orthonormal basis of ( )Range qZ . This can be done by a QR factorization of Zq (if 
( )rank qZ  is smaller than � , then �  is redefined as ( )rank qZ ). 

Step 5: Define 1qX +  by the rule 

1 1 1, ,q q qX V Y+ + + =    

which ensures that 
T

1 1 .p p
q qX X I ×
+ + = ∈  

The above description is aimed to clarify the purpose of each step. Yet there might be better ways to carry out 
the basic iteration. The restriction of the search to Range(G) is important when handling low-rank matrices. 
However, if G is known to be a non-singular matrix, then there is no need to impose this restriction. 

The plan of the paper is as follows. The interlacing theorems that support the new method are given in the 
next section. Let ( ) , 1, ,q

j j kλ = � , and denote the Ritz values which are computed at Step 1 of the qth iteration. 
Then it is shown that each iteration gives a better approximation of the target cluster. Moreover, the sequence 

( ) , 1, 2,q
j qλ = �  proceeds monotonously toward the desired eigenvalue of G. The rate of convergence depends 

on the information matrix Bq. Roughly speaking, the better information we get, the faster the convergence is. 
Indeed, the heart of the algorithm is the computation of Bq. It is well-known that a Krylov subspace which is 
generated by G gives valuable information on peripheral eigenvalues of G, e.g., [4] [5] [7] [13] [15]. The basic 
scheme of the new method uses this observation to define Bq, see Section 3. Difficulties that arise in the compu-
tation of non-peripheral clusters are discussed in Section 4. The fifth section considers the use of acceleration 
techniques; most of them are borrowed from orthogonal iterations. Another related iteration is the Restarted 
Lanczos method. The links with these methods are discussed in Sections 6 and 7. The paper ends with numerical 
experiments that illustrate the behavior of the proposed method. 

2. Interlacing Theorems 
In this section we establish a useful property of the proposed method. We start with two well-known interlacing 
theorems, e.g., [6] [7] [19]. 
Theorem 1 (Cauchy interlace theorem) Let n nG ×∈  be a symmetric matrix with eigenvalues 

1 2 .nλ λ λ≥ ≥ ≥�                                (2.1) 

Let the symmetric matrix k kH ×∈  be obtained from G by deleting n k−  rows and the corresponding n k−  
columns. Let 

1 2 kη η η≥ ≥ ≥�                                (2.2) 

denote the eigenvalues of H. Then 
for 1, , ,j j j kλ η≥ = �                             (2.3) 

and 

1 1 for 1, , .k i n i i kη λ+ − + −≥ = �                           (2.4) 

In particular, for 1k n= −  we have the interlacing relations 

1 1 2 2 3 1 1 .n n nλ η λ η λ λ η λ− −≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥�                     (2.5) 

Corollary 2 (Poincaré separation theorem) Let the matrix n kV ×∈  have k orthonormal columns. That is 



A. Dax 
 

 
79 

T k kV V I ×= ∈ . Let the matrix TH V GV=  have the eigenvalues (2.2). Then the eigenvalues of H and G sa-
tisfy (2.3) and (2.4). 
The next theorem seems to be new. It sharpens the above results by removing zero eigenvalues. 
Theorem 3 Assume that the non-zero eigenvalues of G satisfy (1.2) where ( )rankr G= . Let the matrix 

n kV ×∈  satisfy 

( ) ( )T, , and Range Range .k kk r V V I V G×< = ∈ ⊆                   (2.6) 

Let the matrix TH V GV=  has the eigenvalues (2.2). Then the eigenvalues of G and H satisfy the inequalities 

for 1, , ,j j j kλ η≥ =� �                               (2.7) 

and 

1 1 for 1, , .k i r i i kη λ+ − + −≥ =� �                             (2.8) 

Proof. Let the matrix n rY ×∈  be obtained by completing the columns of V to be an orthonormal basis of 
( )Range G . Then TY GY  is a full rank symmetric matrix whose eigenvalues are the non-zero eigenvalues of 

G  which are given in (1.2). Since the first k columns of Y are the columns of V, the matrix TV GV  is obtained 
by deleting from TY GY  the last r k−  rows and the last r k−  columns. Hence the inequalities (2.7) and (2.8) 
are direct corollary of Cauchy interlace theorem.                                                   

Let us return now to consider the qth iteration of the new method, 1, 2,3,q = � . Assume first that the 
algorithm is aimed at computing a cluster of k right-side eigenvalues of G, 

{ }1 2, , , ,kλ λ λ� � ��  

and let the eigenvalues of the matrix 
TT , ,q q q q q q qS X GX V Y G V Y   = =      

be denoted as 
( ) ( ) ( ) ( )

1 2 .q q q q
k pλ λ λ λ≥ ≥ ≥ ≥ ≥� �  

Then the Ritz values which are computed at Step 1 are 
( ) ( ) ( )

1 2 ,q q q
kλ λ λ≥ ≥ ≥�  

and these values are the eigenvalues of the matrix 
T

1 1.q qV GV+ +  

Similarly, 
( ) ( ) ( )1 1 1

1 2 ,q q q
kλ λ λ− − −≥ ≥ ≥�  

are the eigenvalues of the matrix 
T .q qV GV  

Therefore, since the columns of qV  are the first k columns of qX , 
( ) ( )1 for 1, , .q q
j j j kλ λ −≥ = �  

On the other hand from Theorem 3 we obtain that 
( ) for 1, , .q

j j j kλ λ≥ =� �  

Hence by combining these relations we see that 
( ) ( )1q q

j j jλ λ λ −≥ ≥�                                   (2.9) 

for 1, ,j k= �  and 2,3,q = � . 
Assume now that the algorithm is aimed at computing a cluster of k left-side eigenvalues of G, 
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{ }1 1, , , .r k r rλ λ λ+ − −
� � ��  

Then similar arguments show that 
( ) ( )1

1 1 1
q q

p i p i r iλ λ λ−
+ − + − + −≥ ≥ �                                (2.10) 

for 1, ,i k= � , and 2,3,q = � . 
Recall that a two-sides cluster is the union of a right-side cluster and a left-side one. In this case the eigenva-

lues of Sq that correspond to the right-side satisfy (2.9) while eigenvalues of Sq that correspond to the left-side 
satisfy (2.10). A similar situation occurs in the computation of a dominant cluster, since a dominant cluster is 
either a right-side cluster, a left-side cluster, or a two-sides cluster. 

3. The Krylov Information Matrix 
It is left to explain how the information matrices are computed. The first question to answer is how to define the 
starting matrix X1. For this purpose we consider a Krylov subspace that is generated by the vectors 

2 3, , , , ,pG G G Gr r r r�                                (3.1) 

where r  is a “random” vector. That is, a vector whose entries are uniformly distributed between −1 and 1. 
Then X1 is defined to be a matrix whose columns provide an orthonormal basis for that space. This definition 
ensures that ( )1range X  is contained in range(G). The actual computation of X1 can be done in a number of 
ways. 

The main question is how to define the information matrix 

[ ]1 2, , , n
qB ×= ∈b b b �

��                               (3.2) 

which is needed in Step 2. Following the Krylov subspace approach, the columns of qB  are defined by the rule 

1 1 , 1, , ,j j jG G j− −= =b b b � �                           (3.3) 

where ⋅  is some vector norm. In this way qB  is determined by the starting vector 0b . 
The ability of a Krylov subspace to approximate a dominant subspace is characterized by the Kaniel-Paige- 

Saad (K-P-S) bounds. See, for example, ([5], pp. 552-554), ([7], pp. 242-247), ([13], pp. 272-274), and the ref-
erences therein. One consequence of these bounds regards the angle between 1b  and the dominant subspace: 
The smaller the angle, the better approximation we get. This suggests that 0b  should be defined as the sum of 
the current Ritz vectors. That is, 

0 1qV +=b e                                   (3.4) 

where vector of ones. 
Another consequence of the K-P-S bounds is that a larger Krylov subspace gives better approximations. This 

suggests that using (3.2)-(3.3) with a larger �  is expected to result in faster convergence, since 

( ) ( )1Range Range .q qB X +⊆                           (3.5) 

A different argument that supports the last observation comes from the interlacing theorems: Consider the use 
of (3.2)-(3.3) with two values of �  say ˆ<�� � , and let 1qX +

�  and 1
ˆ

qX +  denote the corresponding orthonormal 
matrices. Then the first ��  columns of 1

ˆ
qX +  can be obtained from the columns of 1qX +

� . Therefore, a larger 
value of �  is likely to give better approximations. However, the use of the above arguments to assess the ex-
pected rate of convergence is not straightforward. 

4. Treating a Non-Peripheral Cluster 
A cluster of eigenvalues is called peripheral if there exists a real number, α , for which the corresponding ei-
genvalues of the shifted matrix, G Iα− , turn out to be a dominant cluster. The theory developed in Section 2 
suggests that the algorithm can be used to compute certain types of non-peripheral clusters (see the coming ex-
ample). However, in this case it faces some difficulties. One difficulty regards the rate of convergence, as the 
K-P-S bounds tell us that approximations of peripheral eigenvalues are better than those of internal eigenvalues. 
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Hence when treating a non-peripheral cluster we expect a slower rate of convergence. 
A second difficulty comes from the following phenomenon. To simplify the discussion we concentrate on a 

left-side cluster of a positive semi-definite matrix that has several zero eigenvalues. In this case the target cluster 
is composed from the k smallest non-zero eigenvalues of G. Then, once the columns of 1qV +  become close to 
eigenvectors of G, the matrices Bq and Zq turn out to be ill-conditioned. This makes 1qY +  vulnerable to round-
ing errors in the following manner. The orthogonality of 1qY +  is kept, but now ( )1Range qY +  may fail to stay in 
Range(G). The same remark applies to 1qX + , since 1qY +  is part of 1qX + . In this case, when ( )1Range qX +  
contains some vectors from Null(G), the smallest eigenvalues of the matrix T

1 1q qX GX+ +  may be smaller than the 
smallest non-zero eigenvalue of G. Consequently the algorithm may converge toward zero eigenvalues of G. 
Hence it is necessary to take a precaution to prevent this possibility. (Similar ill-conditioning occurs when cal-
culating a peripheral cluster, but in this case it does no harm.) 

One way to overcome the last difficulty is to force ( )Range qZ  to stay inside Range(G). This can be done by 
the following modification of Step 3. 
Step 3*: As before, the step starts by orthogonalizing the columns of qB  against the current Ritz vectors (the 
columns of 1qV + ). This gives us an n×�  matrix qZ� . Then the matrix qGZ�  is orthogonalized against the Ritz 
vectors, giving qZ . 

A second possible remedy is to force ( )1Range qX +  to stay inside Range(G). This can be done by correcting 
Step 5 in the following way. 
Step 5*: Compute the matrices 1 1 1,q q qX V Y+ + + =  

�  and 1 1
ˆ

q qX GX+ += � . Then 1qX +  is defined to be a matrix  
whose columns form an orthonormal basis of ( )1

ˆRange qX + . This can be done by a QR factorization of 1
ˆ

qX + . 

In the experiments of Section 8, we have used Step 3* to compute a left-side cluster of Problem B, and Step 5* 
was used to compute a left-side cluster of Problem C. However the above modifications are not always helpful, 
and there might be better ways to correct the algorithm. 

5. Acceleration Techniques 
In this section we outline some possible ways to accelerate the rate of convergence. The acceleration is carried 
out in Step 2 of the basic iteration, by providing a “better” information matrix, qB . All the other steps remain 
unchanged. 

5.1. Power Acceleration 
In this approach the columns of qB  are generated by replacing (3.3) with the rule 

1 1 , 1, , ,m m
j j jG G j− −= =b b b � �                         (5.1) 

where 2m ≥  is a small integer. Of course in practice the matrix mG  is never computed. Instead jb  is com-
puted by a sequence of m matrix-vector multiplications and normalizations. The above acceleration is suitable 
for calculating a dominant cluster. In other exterior clusters it can be used with a shift. The main benefit of (5.1) 
is in reducing the portion of time that is spent on orthogonalizations and the Rayleigh-Ritz procedure (see Table 
4). 

5.2. Using a Shift 
The shift operation is carried out by replacing (5.1) with 

( ) ( )1 1 , 1, , ,m m
j j jG I G I jα α− −= − − =b b b � �                  (5.2) 

where α  is a real number. It is well known that Krylov subspaces are invariant under the shift operation. That 
is, for 1m =  the Krylov space that is generated by (5.2) equals that of (3.3), e.g., ([7], p. 238). Hence the shift 
operation does not accelerate the rate of convergence. Yet, it helps to reduce the deteriorating effects of round-
ing errors. 

Assume first that G is a positive definite matrix and that we want to compute a left-side cluster (a cluster of 
the smallest eigenvalues). Then (5.1) is replaced by (5.2), where α  is an estimate for the largest eigenvalue of 
G. Observe that the required estimate can be derived from the eigenvalues of the matrices qS . 
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A similar tactic is used for calculating a two-sides cluster. In this case the shift is computed by the rule 
( ) ( )( )1 2.q qα λ λ= + �  

In other words, the shift estimates the average value of the largest and the smallest (algebraically) eigenvalues of 
G. A more sophisticated way to implement the above ideas is outlined below. 

5.3. Polynomial Acceleration 
Let the eigenvalues of G satisfy (2.1) and let the real numbers 

1 2 mα α α≥ ≥ ≥�  

define the monic polynomial 

( ) ( )( ) ( )1 2 .mθ θ α θ α θ αΦ = − − −�  

Then the eigenvalues of the matrix polynomial 

( ) ( )( ) ( )1 2 mG G I G I G Iα α αΦ = − − −�  

are determined by the relations 

( ) , 1, , .j j j nϕ λ= Φ = �  

Moreover, the matrices G and ( )GΦ  share the same eigenvectors: An eigenvector of G that corresponds to jλ  
is an eigenvector of ( )GΦ  that corresponds to jϕ , and vice versa. In polynomial acceleration the basic 
scheme (3.3) is replaced with 

( ) ( )1 1 , 1, , .j j jG G j− −= Φ Φ =b b b � �                        (5.3) 

The idea here is to choose the points 1, , mα α�  in a way that enlarges the size of jϕ  when jλ  belongs to the 
target cluster, and/or diminishes jϕ  when jλ  is outside the target cluster. 

As with orthogonal iterations, the use of Chebyshev polynomials enables effective implementation of this idea. 
In this method there is no need in the numbers 1, , mα α� . Instead we have to supply the end points of the dimi-
nishing interval. Then the matrix-vector product ( ) 1jG −Φ b  is carried out by the Chebyshev recursion formula. 
See ([7], p. 294) for details. In our iteration the end points of the diminishing interval can be derived from the 
current Ritz values (the eigenvalues of qS ). 

5.4. Inverse Iterations 
This approach is possible only in certain cases, when G is invertible and the matrix-vector product 1

jG− b  can 
be computed in ( )0 n  flops. In this case (3.3) is replaced with 

1 1
1 1 , 1, , .j j jG G j− −
− −= =b b b � �                         (5.4) 

In practice 1G−  is almost never computed. Instead the linear system 1jG −=x b  is solved for x . For this pur-
pose we need an appropriate factorization of G. 

The use of (5.4) is helpful for calculating small eigenvalues of a positive definite matrix. If other clusters are 
needed then 1G−  should be replaced with ( ) 1G Iα −− , where α  is a suitable shift. This is possible when the 
shifted system ( ) 1jG Iα −− =x b  is easily solved, as with band matrices. 

6. Orthogonal Iterations 
In this section we briefly examine the similarity and the difference between the new method and the Orthogonal 
Iterations method. The last method is also called Subspace Iterations and Simultaneous Iterations, e.g., [1] [4] [5] 
[7]-[10] [13]-[15]. It is aimed at computing a cluster of k dominant eigenvalues, as defined in (1.3). The simplest 
way to achieve this goal is, perhaps, to apply a “block” version of the Power method on an n k×  matrix. In this 
way the Power method is simultaneously applied on each column of the matrix. The Orthogonal Iterations me-
thod modifies this idea in a number of ways. First, as its name says, it orthogonalizes the iteration matrix, which 
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keeps it a full rank well-conditioned matrix. Second, although we are interested in k eigenpairs, the iteration is 
applied on a larger matrix that has p columns, where p k> . This leads to faster convergence (see below). As 
before, 

p k= + �  

where �  is a small multiple of k. The qth iteration of the resulting method, 0,1, 2,q = � , is composed of the 
following three steps. It starts with a matrix n p

qX ×∈  that has orthonormal columns. 
Step 1: Compute the product matrix 

.q qY GX=  

Step 2: Compute the Rayleigh quotient matrix 
T T ,p p

q q q q qS X Y X GX ×= = ∈  

and its k dominant eigenvalues 
( ) ( ) ( )

1 2 .q q q
kλ λ λ≥ ≥ ≥�  

Step 3: Compute a matrix 1qX +  whose columns provide an orthonormal basis of ( )Range qY . This can be 
done by a QR factorization of qY . 

Let the eigenvalues of G satisfy (1.1). Then for 1, ,j k= �  the sequence ( ) ˆ , 1, 2,q
j j qλ λ− = � , converges 

to zero at the same asymptotic rate as the sequence 1
ˆ ˆ , 1, 2,

q

p j qλ λ+ = � . See, for example, ([4], p. 157) or 
([5], p. 368). Therefore, the larger p is, the faster is the convergence. Moreover, let the spectral decomposition of 

qS  have the form 
T

q q q qS V D V=  

where 
( ) ( ){ } ( ) ( ) ( )T

1 1 2, diag , , , and .q q q q qp p
q q q p pV V I D λ λ λ λ λ×= ∈ = ≥ ≥ ≥� �  

If at the end of Step 2 the matrix qY  is replaced with q qY V  then the columns of qX  converge toward the 
corresponding eigenvectors of G. However, in exact arithmetic both versions generate the same sequence of Ritz 
values. Hence the retrieval of eigenvectors can wait to the final stage. The practical implementation of ortho-
gonal iterations includes several further modifications, such as skipping Steps 2 - 3 and “locking”. For detailed 
discussions of these options, see [1] [7]-[10]. 

A comparison of the above orthogonal iteration with the new iteration shows that both methods need about 
the same amount of computer storage, but the new method doubles the computational effort per iteration. The 
adaptation of orthogonal iterations to handle other peripheral clusters requires the shift operation. Another dif-
ference regards the rate of convergence. In orthogonal iterations the rate is determined by the ratio 1p kλ λ+ . 
The theory behind the new method is not that decisive, but our experiments suggest that it is quite faster. 

7. Restarted Lanczos Methods 
The current presentation of the new method is carried out by applying the Krylov information matrix (3.2)-(3.4). 
This version can be viewed as a “Restarted Krylov method”. The Restarted Lanczos method is a sophisticated 
implementation of this approach that harnesses the Lanczos algorithm to reduce the computational effort per 
iteration. As before, the method is aimed at computing a cluster of k  exterior eigenpairs, new information is 
gained from an � -dimensional Krylov subspace, and 

.p k= + �  

The qth iteration, 1, 2,q = � , of the Implicitly Restarted Lanczos method (IRLM) is composed of the 
following four steps. It starts with a tridiagonal matrix, p p

qT ×∈ , and the related matrix of Lanczos vectors, 
T, ,n p p p

q q qL L L I× ×∈ = ∈   

which have been obtained by applying p  steps of Lanczos method on G. 
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Step 1: Compute the eigenvalues of qT . Let 
( ) ( ) ( ) ( )

1 1, , , , , ,q q q q
k k pλ λ λ λ+� �  

denote the computed eigenvalues, where the first k  eigenvalues correspond to the target cluster. 
Step 2: Compute a p k×  matrix with orthonormal columns, 

T, ,p k k k
q q qV V V I× ×∈ = ∈   

such that ( )Range qV  equals an invariant subspace of qT  which corresponds to ( ) ( )
1 , , .q q

kλ λ�  The computa-
tion of qV  is carried out by conducting a QR factorization of the product matrix 

( )( ) ( )( )1 .q q
q k q pT I T Iλ λ+− −�  

Step 3: The above QR factorization is used to build a new k k×  tridiagonal matrix, k k
qT ×∈�  , and the matrix 

.n k
q q qL L V ×= ∈� �  

This pair of matrices has the property that it can be obtained by applying k  steps of Lanczos algorithm on G , 
starting from some (unknown) vector. 
Step 4: Continue �  additional steps of Lanczos algorithm to obtain 1qT +  and 1qL + . 

The IRLM iterations are due to Sorensen [11]. The name “Implicitly restarted” refers to the fact that the start-
ing vector (which initiates the restarted Lanczos process) is not computed. For detailed description of this itera-
tion, see ([1], pp. 67-73), and [11]. See also [13] [15]. 

A different implementation of the Restarted Lanczos idea, the Thick-Restarted Lanczos (TRLan) method, 
was proposed by Wu and Simon [17]. The qth iteration, 1, 2,q = � , of this method is composed of the follow-
ing five steps, starting with qT  and qL  as above. 
Step 1: Compute k  eigenpairs of qT  which correspond to the target cluster. The corresponding k  eigen-
vectors of qT  are assembled into a matrix 

T, ,p k k k
q q qU U U I× ×∈ = ∈   

which is used to compute the related matrix of Ritz vectors, 

.n k
q q qX L U ×= ∈  

Step 2: Let ( ) ( )
1 , ,q q

kλ λ� , and ( ) ( )
1 , , ,q p

kx x�  denote the computed Ritz pairs. The algorithm uses these pairs to 
compute a vector n

q ∈r   and scalars, 1, , kσ σ� , that satisfy the equalities 
( ) ( ) , for 1, , ,q q
j j j j qG j kλ σ− = =x x r �  

and 
T .q qX =r o  

Step 3: The vector ( )
1 2

q
q q=y r r  is used to initiate a new sequence of Lanczos vectors. The second vector, 

( )
2
qy , is obtained by orthogonalizing the vector 1Gy  against 1y  and the columns of qX . 

Step 4: Continue 2−�  additional steps of the Lanczos process that generate 3 , ,y y�� . At the end of this 
process we obtain an n p×  matrix 

( ) ( ) ( ) ( ) ( )
1 1 2, , , , , , ,q q q q q

q kL  =  x x y y y�� � �  

that has mutually orthonormal columns and satisfy 
T ,q q qL GL T=� � �  

where qT�  is nearly tridiagonal: The ( ) ( )1 1k k+ × +  principal submatrix of qT�  has an “arrow-head” shape,  
with ( ) ( )

1 , ,q q
kλ λ� , on the diagonal, and 1, , kσ σ� , on the sides. 

Step 5: Use a sequence of Givens rotations to complete the reduction of qT�  into a p p×  tridiagonal matrix 
1qT + . Similarly qL�  is updated to give 1qL + . 

For detailed description of the above iteration see [17] [18]. Both IRLM and TRLan are carried out with reor-
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thogonalization of the Lanczos vectors. The TRLan method computes the Ritz vectors while IRLM avoids this 
computation. Yet the two methods are known to be mathematically equivalent. 

One difference between the new method and the Restarted Lanczos approach lies in the computation of the 
Rayleigh quotient matrix. In our method this computation requires additional p  matrix-vector products, which 
doubles the computational effort per iteration. 

A second difference lies in the starting vector of the �  dimensional Krylov subspace that is newly generated 
at each iteration. In our method this vector is defined by (3.4). In TRLan this vector is qr . Yet it is difficult to 
reckon how this difference effects the rate of convergence. 

A third difference arises when using acceleration techniques. Let us consider for example the use of power 
acceleration with mG  replacing G . In this case the Restarted Lanczos methods compute a tridiagonal reduc-
tion of mG , and Ritz values of mG , while our method computes Ritz eigenpairs of G . (Power acceleration 
allows us to use smaller �  and reduces the portion of time that is spent on the Rayleigh-Ritz procedure. See the 
next section.) A similar remark applies to the use of Polynomial acceleration. 

The new method can be viewed as generalization of the Restarted Lanczos approach. The generalization is 
carried out by replacing the Lanczos process with standard orthogonalization. This simplifies the algorithm and 
clarifies the main reasons that lead to fast rate of convergence. One reason is that each iteration builds a new 
Krylov subspace, using an improved starting vector. A second reason comes from the orthogonality requirement: 
The new Krylov subspace is orthogonalized against the current Ritz vectors. It is this orthogonalization that en-
sures successive improvement. (The Restarted Lanczos algorithms achieve these tasks in implicit ways.) 

8. Numerical Experiments 
In this section we describe some experiments that illustrate the behavior of the proposed method. The test ma-
trices have the form 

T ,n nG VDV ×= ∈                               (8.1) 

where n nV ×∈  is a random orthonormal matrix, TV V I= , and D  is a diagonal matrix, 

{ }1diag , , .n n
nD d d ×= ∈�                            (8.2) 

The term “random orthonormal” means that V  is obtained by orthonormalizing the columns of a random ma-
trix, n nR ×∈ , whose entries are random numbers from the interval [ ]1,1− . The random numbers generator is 
of uniform distribution. All the experiments were carried out with 200n =  and 6k = . The values of �  
are specified in the coming tables. (The diagonal entries of D  are the eigenvalues of G . Hence the structure 
of D  is the major factor that effects convergence. Other factors, like the size of the matrix or the sparsity pat-
tern, have minor effects.) The computations were carried out with MATLAB. We have used the following four 
types of test matrices: 
Type A matrices, where 

201 for 1, , 200.jd j j= − = �                         (8.3) 

Type B matrices, where 

101 for 1, ,100, and 0 for 101, , 200.j jd j j d j= − = = =� �          (8.4) 

Type C matrices, where 

1 101 for 1, ,50, and 0 for 51, , 200.jd j j d j= − = = =� �            (8.5) 

Type D matrices, where 

( )2 1 251 , 51 , for 1, ,50,j jd j d j j− = − = − − = �                (8.6a) 

and 

0 for 101, , 200.jd j= = �                      (8.6b) 

The difference between the computed Ritz values and the desired eigenvalues of G  is computed as follows. 
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Let 1, , kλ λ�  denote the k  eigenvalues of G  which constitute the desired cluster. Let ( ) ( )
1 , ,q q

kλ λ� , denote 
the corresponding Ritz values which are computed at the qth iteration, 0,1, 2,q = � . Then the average differ-
ence between the corresponding eigenvalues is 

( )

1
, 0,1, 2, .

k
q

q j j
j

k qη λ λ
=

 
= − = 
 
∑ �                      (8.7) 

The figures in Tables 1-4 provide the values of qη . They illustrate the way qη  converges to zero as q  
increases. 

The new method is implemented as described in Section 3. It starts by orthonormalizing a random Krylov 
matrix of the form (3.1). The information matrix, qB , is defined by (3.2)-(3.4). The Orthogonal iterations me-
thod is implemented as in Section 6. It starts from a random orthonormal matrix, which is a common default op-
tion, e.g., ([1], p. 55) and ([13], p. 60). 

 
Table 1. Computing a dominant cluster with the new iteration. 

Iter. 
No. 

Type A Type B Type C Type D 

ℓ = 12 ℓ = 18 ℓ = 12 ℓ = 18 ℓ = 12 ℓ = 18 ℓ = 12 ℓ = 18 

0 1.39E1 9.91E0 6.18E0 3.91E0 4.58E0 3.99E0 1.53E0 2.41E−1 

1 4.28E0 1.96E0 1.12E0 4.35E−1 9.85E−1 6.11E−1 4.09E−2 3.02E−4 

2 1.15E0 2.93E−1 6.66E−2 6.95E−4 1.14E−1 1.22E−2 6.82E−4 3.45E−7 

3 4.10E−1 1.18E−1 8.36E−4 2.10E−6 3.28E−3 8.04E−6 1.78E−5 1.20E−9 

4 1.69E−1 4.72E−3 1.76E−5 3.23E−8 1.36E−5 1.46E−7 4.71E−7 4.29E−12 

5 5.07E−2 1.17E−4 1.47E−6 3.86E−10 2.74E−7 5.19E−9 2.19E−8 1.52E−13 

6 1.61E−3 4.93E−6 3.50E−8 4.52E−11 2.60E−9 7.70E−11 3.92E−10  

7 3.42E−4 5.13E−7 3.68E−9 7.53E−12 5.75E−11 2.12E−12 3.94E−11  

8 4.82E−5 1.10E−8 9.13E−11 1.25E−12 1.67E−11 2.82E−13 4.72E−12  

10 2.25E−6 3.11E−10 6.21E−13  3.98E−13  9.00E−14  

12 1.49E−7 1.31E−11       

14 8.21E−9 1.13E−12       

 
Table 2. Computing a dominant cluster with orthogonal iterations. 

Iter. 
No. 

Type A Type B Type C Type D 

ℓ = 18 ℓ = 30 ℓ = 18 ℓ = 30 ℓ = 18 ℓ = 30 ℓ = 18 ℓ = 30 

0 7.93E1 6.52E1 5.79E1 5.13E1 6.63E1 5.80E1 3.99E1 3.52E1 

1 3.55E1 2.95E1 1.43E1 9.30E0 8.20E0 3.88E0 2.84E1 1.16E1 

2 2.18E1 1.74E1 8.01E0 4.18E0 5.96E0 2.66E0 1.39E1 1.96E1 

4 1.16E1 8.07E0 3.26E0 1.00E0 3.23E0 1.07E0 6.49E0 1.77E0 

8 4.83E0 2.41E0 7.44E−1 8.19E−2 8.84E−1 1.39E−1 1.59E0 2.16E−1 

12 2.54E0 8.20E−1 1.69E−1 1.05E−2 3.23E−1 1.44E−2 4.80E−1 1.91E−2 

16 1.55E0 2.56E−1 3.57E−2 1.38E−3 9.38E−2 1.34E−3 1.30E−1 1.48E−3 

20 9.95E−1 7.75E−2 7.61E−3 1.50E−4 2.70E−2 1.28E−4 3.73E−2 1.12E−4 

24 6.43E−1 2.33E−2 1.69E−3 1.41E−5 7.92E−3 1.29E−5 1.11E−2 8.75E−6 
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Table 3. Computing a left-side cluster with the new iteration. 

Iter. 
No. 

Type A Type B Type C Type D 

ℓ = 12 ℓ = 18 ℓ = 12 ℓ = 18 ℓ = 12 ℓ = 18 ℓ = 12 ℓ = 18 

0 3.19E1 2.94E1 1.11E1 9.97E0 4.99E0 4.70E0 6.29E0 2.55E0 

1 1.30E1 7.68E0 4.93E0 2.83E0 7.45E−1 3.61E−1 1.17E0 5.72E−2 

2 7.17E0 3.00E0 2.64E0 6.89E−1 4.49E−3 4.15E−5 7.38E−2 2.81E−5 

3 3.13E0 8.79E−1 1.45E0 1.80E−1 4.52E−5 2.31E−7 9.17E−4 2.32E−8 

4 1.37E0 1.28E−1 1.14E0 5.63E−2 4.03E−6 8.06E−9 1.69E−5 2.13E−11 

5 6.58E−1 1.67E−2 4.80E−1 1.87E−3 1.80E−8 3.60E−10 3.68E−7 1.67E−13 

6 1.05E−1 2.36E−4 6.56E−2 2.87E−4 9.35E−10 5.66E−11 8.31E−9 5.33E−14 

7 1.30E−2 5.73E−6 2.69E−3 9.09E−5 3.65E−11 2.74E−12 1.91E−10  

8 7.44E−4 5.95E−7 9.73E−4 2.06E−5 3.14E−12 7.61E−13 4.54E−12  

10 3.67E−5 4.74E−10 2.14E−4 2.98E−6 2.75E−13  8.41E−14  

12 6.94E−7 9.70E−12 5.66E−5 5.84E−7     

14 2.09E−8 2.47E−13 1.82E−5 2.72E−7     

 
Table 4. The use of Power acceleration to compute a dominant cluster of Type A matrix. 

Iter. 
No. 

ℓ = 6 ℓ = 12 ℓ = 18 

m = 2 m = 4 m = 2 m = 3 m = 4 m = 2 m = 3 

0 1.68E1 7.82E0 6.41E0 3.80E0 2.43E0 4.34E0 2.39E0 

1 8.52E0 2.46E0 1.09E0 5.05E−1 1.84E−1 3.37E−1 1.62E−1 

2 3.84E0 8.78E−1 1.94E−1 1.16E−1 1.38E−3 1.64E−2 1.30E−4 

3 1.99E0 2.21E−1 3.14E−2 3.48E−3 6.72E−7 7.73E−5 2.11E−8 

4 9.03E−1 1.55E−1 2.78E−4 5.04E−5 1.86E−8 7.46E−7 2.46E−10 

5 3.51E−1 3.48E−2 8.74E−6 4.82E−7 1.49E−10 1.66E−8 2.96E−11 

6 1.79E−1 1.83E−3 1.24E−6 3.41E−8 2.66E−11 1.71E−9 3.36E−13 

7 1.59E−1 1.46E−4 2.33E−8 1.78E−10 3.21E−12 5.29E−11  

8 1.09E−1 1.34E−5 3.25E−9 3.24E−11 3.13E−13 1.61E−11  

10 1.33E−2 8.13E−7 9.34E−11 4.64E−13  3.93E−13  

12 2.28E−3 7.93E−8 2.42E−12     

14 2.76E−4 1.47E−9 2.61E−13     

18 8.14E−6 2.32E−11      

 
Table 1 describes the computation of dominant clusters with the new method. The reading of this table is 

simple: We see, for example, that after performing 6 iterations on a Type B matrix, 6 3.50 8Eη = −  for 12=� , 
and 6 4.52 11Eη = −  for 18=� . (The corresponding values of p  are 18p =  and 24p = , respectively.) 
Table 2 describes the computation of the same dominant clusters with orthogonal iterations. A comparison of 
the two tables suggests that the new method is considerably faster than Orthogonal iterations. 

Another observation stems from the first rows of these tables: We see that a random Krylov matrix gives a 
better start than a random starting matrix. 



A. Dax 
 

 
88 

The ability of the new method to compute a left-side cluster is illustrated in Table 3. Note that the Type B 
matrix and the Type C matrix are positive semidefinite matrices, in which the left-side cluster is composed from 
the smaller non-zero eigenvalues of G . Both matrices have several zero eigenvalues. In the Type B matrix the 
eigenvalues in the left-side cluster are much smaller than the dominant eigenvalues, but the new method is able 
to distinguish these eigenvalues from zero eigenvalues. 

The merits of Power acceleration are demonstrated in Table 4. On one hand it enables us to use a smaller � , 
which saves storage. On the other hand it reduces the portion of time that is spent on orthogonalizations and the 
Rayleigh-Ritz process. 

9. Concluding Remarks 
The new method is based on a modified interlacing theorem which forces the Rayleigh-Ritz approximations to 
move monotonically toward their limits. The current presentation concentrates on the Krylov information matrix 
(3.2)-(3.4), but the method can use other information matrices. The experiments that we have done are quite en-
couraging, especially when calculating peripheral clusters. The theory suggests that the method can be extended 
to calculate certain non-peripheral clusters, but in this case we face some difficulties due to rounding errors. 
Further modifications of the new method are considered in [3]. 

References 
[1] Bai, Z., Demmel, J., Dongarra, J., Ruhe, A. and van der Vorst, H. (1999) Templates for the Solution of Algebraic Ei-

genvalue Problems: A Practical Guide. SIAM, Philadelphia. 
[2] Bauer, F.L. (1957) Das Verfahren der Treppeniteration und verwandte Verfahren zur Lösung algebraischers Eigen-

wertprobleme. Zeitschrift für angewandte Mathematik und Physik ZAMP, 8, 214-235. 
http://dx.doi.org/10.1007/BF01600502 

[3] Dax, A. Restarted Krylov Methods for Calculating Exterior Eigenvalues of Large Matrices. Tech. Rep., Hydrological 
Service of Israel, in Preparation.  

[4] Demmel, J.W. (1997) Applied Numerical Linear Algebra. SIAM, Philadelphia. 
http://dx.doi.org/10.1137/1.9781611971446 

[5] Golub, G.H. and Van Loan, C.F. (1983) Matrix Computations. Johns Hopkins University Press, Baltimore. 
[6] Horn, R.A. and Johnson, C.R. (1985) Matrix Analysis. Cambridge University Press, Cambridge. 

http://dx.doi.org/10.1017/CBO9780511810817 
[7] Parlett, B.N. (1980) The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs. 
[8] Reinsch, C.H. (1971) Simultaneous Iteration Method for Symmetric Matrices. In: Wilkinson, J.H. and Reinsch, C.H., 

Eds., Handbook for Automatic Computation (Linear Algebra), Springer-Verlag, New York, 284-302. 
[9] Rutishauer, H. (1969) Computational Aspects of F. L. Bauer’s Simultaneous Iteration Method. Numerische Mathema-

tik, 13, 4-13. http://dx.doi.org/10.1007/BF02165269 
[10] Rutishauser, H. (1970) Simultaneous Iteration Method for Symmetric Matrices. Numerische Mathematik, 16, 205-223. 

http://dx.doi.org/10.1007/BF02219773 
[11] Sorensen, D.C. (1992) Implicit Application of Polynomial Filters in a k-Step Arnoldi Method. SIAM Journal on Matrix 

Analysis and Applications, 13, 357-385. http://dx.doi.org/10.1137/0613025 
[12] Stewart, G.W. (1969) Accelerating the Orthogonal Iteration for the Eigenvalues of a Hermitian Matrix. Numerische 

Mathematik, 13, 362-376. http://dx.doi.org/10.1007/BF02165413 
[13] Stewart, G.W. (2001) Matrix Algorithms, Volume II: Eigensystems. SIAM, Philadelphia. 
[14] Trefethen, L.N. and Bau III, D. (1997) Numerical Linear Algebra. SIAM, Philadelphia. 

http://dx.doi.org/10.1137/1.9780898719574 
[15] Watkins, D.S. (2007) The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods. SIAM, Philadelphia. 

http://dx.doi.org/10.1137/1.9780898717808 
[16] Wilkinson, J.H. (1965) The Algebraic Eigenvalue Problem. Clarendon Press, Oxford. 
[17] Wu, K. and Simon, H. (2000) Thick-Restarted Lanczos Method for Large Symmetric Eigenvalue Problems. SIAM 

Journal on Matrix Analysis and Applications, 22, 602-616. http://dx.doi.org/10.1137/S0895479898334605 
[18] Yamazaki, I., Bai, Z., Simon, H., Wang, L. and Wu, K. (2010) Adaptive Projection Subspace Dimension for the 

http://dx.doi.org/10.1007/BF01600502
http://dx.doi.org/10.1137/1.9781611971446
http://dx.doi.org/10.1017/CBO9780511810817
http://dx.doi.org/10.1007/BF02165269
http://dx.doi.org/10.1007/BF02219773
http://dx.doi.org/10.1137/0613025
http://dx.doi.org/10.1007/BF02165413
http://dx.doi.org/10.1137/1.9780898719574
http://dx.doi.org/10.1137/1.9780898717808
http://dx.doi.org/10.1137/S0895479898334605


A. Dax 
 

 
89 

Thick-Restart Lanczos Method. ACM Transactions on Mathematical Software, 37, 1-18. 
http://dx.doi.org/10.1145/1824801.1824805 

[19] Zhang, F. (1999) Matrix Theory: Basic Results and Techniques. Springer-Verlag, New York. 
http://dx.doi.org/10.1007/978-1-4757-5797-2 

http://dx.doi.org/10.1145/1824801.1824805
http://dx.doi.org/10.1007/978-1-4757-5797-2

	A Subspace Iteration for Calculating a Cluster of Exterior Eigenvalues
	Abstract
	Keywords
	1. Introduction
	2. Interlacing Theorems
	3. The Krylov Information Matrix
	4. Treating a Non-Peripheral Cluster
	5. Acceleration Techniques
	5.1. Power Acceleration
	5.2. Using a Shift
	5.3. Polynomial Acceleration
	5.4. Inverse Iterations

	6. Orthogonal Iterations
	7. Restarted Lanczos Methods
	8. Numerical Experiments
	9. Concluding Remarks
	References

