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Abstract 
This paper will discuss the current viewpoint of the vacuum state and explore the idea of a “natu-
ral” vacuum as opposed to immutable, non-degradable vacuum. This concept will be explored for 
all primary quantum numbers to show consistency with observation at the level of Bohr theory. A 
comparison with the Casimir force per unit area will be made, and an explicit function for the spa-
tial variation of the vacuum density around the atomic nucleus will be derived. This explicit func-
tion will be numerically modeled using the industry multi-physics tool, COMSOL, and the eigen-
frequencies for the n = 1 to n = 7 states will be found and compared to expectation. 
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1. Introduction 
The current viewpoint of the quantum vacuum, or vacuum state, is that it is an immutable, non-degradable state 
for all observers and systems with no structure or variation. The concept of the vacuum state is typically intro-
duced as a ground state of a harmonic oscillator, so the viewpoint that it is immutable is reasonable. How can 
the vacuum, being the ground state of a harmonic oscillator, be anything other than “zero” for all observers? 
What if, however, the vacuum could be posited to be a plenum that can be shown to be degradable, and has the 
capability to support particle-vacuum or particle-particle interactions that allow lower energy, ground states? It 
is known from experimental observation that the vacuum can exhibit characteristics that can best be associated 
with a degraded vacuum in the form of the Casimir force [1]-[10]. The Casimir force arises as a result of a geo-
metric conducting boundary in the form of two plates being placed in close proximity to one another such that 
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the geometry of the cavity can preclude the ability for certain wavelengths of light from being present in one di-
rection. The integral of the spectrum of vacuum fluctuation frequencies between the two plates has a different 
starting point compared with the integral of the spectrum of vacuum fluctuation frequencies outside of the plates. 
The difference between these two integrals is what is considered to be responsible for the manifestation of this 
force. In this scenario, the vacuum state between the two plates is considered to be at a lower state than the va-
cuum state on the outside of the plates, or the toy vacuum model harmonic oscillator is at a lower state than the 
“zero” state outside of the plates. Perhaps this is illustrating a deficiency in the way in which the vacuum state is 
described and understood. The Casimir force strongly indicates that the vacuum is degradable; however, this 
concept is at odds with the idea of a zero state of a harmonic oscillator, so perhaps a prudent path to explore is to 
consider the concept that the quantum vacuum is a bit more “natural” than a toy harmonic oscillator and can 
have spatial and temporal variations, and to see if this mutable quantum vacuum identifies with any inconsisten-
cies with observation. 

2. Vacuum “Density” 
The idea of a vacuum “density” expectation value will be explored by first starting with the Bohr formula that 
relates allowed energy levels to the primary quantum numbers. The energy for the thn  primary quantum num-
ber level of the hydrogen atom is given by the Bohr formula in Equation (1). 
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The allowed “orbit” radius for this energy level is shown in Equation (2). 
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Equation (3) shows the energy relationship with the primary quantum number for the thn  level associated with 
a hydrogen-like atom with the atomic number Z. 
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The allowed “orbit” radius for the energy level for any atom with atomic number Z is: 
2

11
,  5.29 10 meters, 1, 2,3,Z n

nr n
Z

−= × =                          (4) 

The historic perspective used in the development of the above relationships was that of the electron being in 
“orbit” around the nucleus in a quasi-classical sense. It is appropriate to think of these energy states as a wave 
function [11], so one can calculate an average “density” of this energy state by smearing the energy over a 
spherical region encapsulated by the allowed radius for that state (see Equation (5)). 
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The average density for hydrogen is calculated for the n = 1 to n = 7 states in Table 1. 
The question can be raised on what the calculated value for the average “density” really means—does it really 

indicate a perturbation (rarefication or densification) of the quantum vacuum, or is it just a number that has no 
physical interpretation? To help consider this question, an equation can be fitted to the radius and density data 
presented in Table 1 and the result is shown in Equation (6). 
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2.1. Casimir Discussion 
Equation (6) shows that the density value is dependent on 41 r , which is a similar dependency to the Casimir 
force. At this point, the equation should not be viewed as a real continuous function; rather, it should be consi-
dered as a function that can only be used with the allowed, discrete values for the radius as input values. Recall 
that the Casimir force per unit area is ( 21 c  added for unit consistency): 

2

2 2 4

1 1 π
240

F c
Ac c d
=

                                     (7) 

One can use Equation (7) to calculate a Casimir “density” value for the hydrogen primary quantum numbers 1 - 
7 by equating the distance, d, to twice the allowed orbit radius, 2r. In a sense, the electron establishing a “boun-
dary” at this radius could be envisioned as setting up some sort of boundary condition that mimics a Casimir 
cavity of sorts. These values are calculated and compared to the average density with a ratio provided in Table 2 
(again Casimir force per unit area is multiplied by 21 c  for units consistency). 

Table 2 shows that the values will be equal if there is a factor of 1/3 added to the Casimir force per unit area × 
21 c . As a short side discussion to help possibly provide an explanation for the 1/3 factor, consider the 

Friedmann equation: 

( )24π 3
3

a G c P
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In order for there to be a universe that is accelerating as evidenced by observation, the equation of state for the 
vacuum, 2P w cρ=  must be such that 2 3P cρ< − , or 1 3w < −  [12]. If the equation of state of the quantum  
 
Table 1. This table shows the derived “density” of a given energy state n, with Z = 1. The primary quantum number n is only 
varied from 1 to 7 here. 

n ( )Radius m  ( )eVE  ( )JE  ( )3kg mρ  

1 115.29 10−×  13.60 182.176 10−×  53.905 10−×  

2 102.11 10−×  3.40 195.440 10−×  71.525 10−×  

3 104.76 10−×  1.51 192.418 10−×  95.952 10−×  

4 108.46 10−×  0.85 191.360 10−×  105.959 10−×  

5 91.32 10−×  0.54 208.704 10−×  119.997 10−×  

6 91.90 10−×  0.38 206.044 10−×  112.325 10−×  

7 92.59 10−×  0.28 204.441 10−×  126.774 10−×  

 
Table 2. This table compares the derived “density” of a given energy state n, with Z = 1 to the Casimir density for a cavity 
with a separation distance of 2 nr . The Casimir column is the Casimir force per unit area multiplied by 21 c . The ratio 
column is the Casimir column value divided by the ρ  column value. 

n ( )Radius m  ( )3kg mρ  ( )3Casimir kg m  Ratio  

1 115.29 10−×  53.91 10−×  41.16 10−×  2.96 

2 102.11 10−×  71.53 10−×  74.51 10−×  2.96 

3 104.76 10−×  95.95 10−×  81.76 10−×  2.96 

4 108.46 10−×  105.96 10−×  91.76 10−×  2.96 

5 91.32 10−×  101.00 10−×  102.96 10−×  2.96 

6 91.90 10−×  112.33 10−×  116.88 10−×  2.96 

7 92.59 10−×  126.77 10−×  112.00 10−×  2.96 
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vacuum is just such that 1 3w ∼ − , this might explain the need for the addition of a factor of 1/3 in Table 2. It 
could be posited that the predicted altered ground state of the vacuum around the hydrogen nucleus resulting 
from the presence of the “orbiting” electron may be responsible for helping establish the stable energy state and 
preclude the “orbiting” electron from radiating down to the nucleus. An approach similar to this was also suc-
cessfully explored in [13]. Equipped with this insight, one can combine Equation (5) and Equation (7) to yield 
Equation (8) 
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The significance of this equation is that it indicates that the calculated “density” expectation value using the 
Bohr relationships for the energy and radius may have physical meaning as opposed to just a calculated number. 

Consider the Casimir force (and Casimir equation) as it has been explored in the lab to date by numerous ex-
perimentalists with the work done by Steven Lamoreaux in 1996 establishing convincing experimental evidence 
of the phenomenon [2]. The Casimir force equation is used in practice to assess the force developed for a given 
geometry associated with a real test article that will be studied in the laboratory. When the force per unit area 
equation is applied to the real test article being studied in the lab, the equation provides a number that really 
does have physical meaning as evidenced by the real force that is measured during the study of the test article. 
The state of the quantum vacuum between two plates that establish a Casimir cavity is perturbed (rarified) as a 
result of the plates precluding certain vacuum fluctuation modes from being manifested in the cavity. The pres-
sure inside the cavity is less than the pressure outside of the cavity. 

Since the “density” using the Bohr relationships has been shown to make predictions of the energy density 
around the hydrogen nucleus that are identical to the modified Casimir force per unit area equation, this may in-
dicate that these numerical values do have physical meaning and are not just a numerical calculation with no ba-
sis in nature. To be explicit, these values may indicate that the quantum vacuum around the hydrogen nucleus is 
not an immutable and non-degradable medium with no variation or structure, rather the vacuum appears to have 
a perturbation around the hydrogen nucleus that exhibits a strong dependency on 41 r . 

What if one considers the scenario when the atomic number Z is varied? The course is similar to the above 
treatment for hydrogen, except the Bohr relationships used are the equations with the Z dependency included. 
For this discussion, the primary quantum number n will be spanned from 1 to 7, and the atomic number Z will be 
spanned from 1 to 7, which corresponds to hydrogen, helium, lithium, beryllium, boron, carbon, and nitrogen 
respectively. The expectation value for the “density” is shown in Figure 1 for each atomic number. The ob-
served “density” is determined using Equation (5), and the Casimir “density” is determined using Equation (9): 
 

 
Figure 1. Perturbation of the Vacuum—derived “density” plotted for n = 
1 to n = 7 for Z = 1 through Z = 7. The bottom line labelled Z = 1 
represents hydrogen, and labels for the points representing n = 1 and n = 
7 have been added. The Casimir values are also plotted as hollow circles. 
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A trend line has been added to each series to visually link each set of primary quantum numbers together for a 
given atomic number Z, and help illustrate the 41 r  dependency. A mark is plotted for each combination of Z 
and n for the “density” expectation value. The modified Casimir force per unit area value is also calculated for 
each point with the inclusion of Z in the numerator of the equation as shown in Equation (9), and is plotted as an 
open circle. The figure shows that as the atomic number Z increases, the curves trends upward, and the 1n =  
state progresses to the left as it should. For higher atomic numbers, the perturbation of the quantum vacuum is 
slightly higher than for lower atomic numbers. 

2.2. Continuous Density Function 
To this point, the discussion has been about the expectation value for the “density” of the quantum vacuum for a 
given primary quantum number with no consideration of substructure or variation within the given spherical re-
gion. The interpretation is that the predicted “density” is an isotropic state throughout the orbital defined by the 
corresponding allowed radius. Since it was just shown that the expectation value for the density at each allowed 
orbit radius is dependent on 41 r , it is reasonable to expect that there is a more continuous representation of the 
density of the quantum vacuum that varies continuously over the radial distance from the nucleus. This conti-
nuous function can be found by establishing the requirement that the volumetric integral of the density (multip-
lied by 2c ) is equal to the energy level allowed for each primary quantum number. The differential element to 
integrate is a thin spherical shell element that starts at the “radius” of the proton and continues to the allowed ra-
dius associated with the target quantum number: 

( ) ( )2 2 0
4d 4π d , ,

A
E r c r r r

r
ρ ρ= =                         (10) 

where the term 0A  is a proportionality constant that is to be determined to ensure that the continuous function 
will yield the energy level for each quantum number. The integral to solve is simple enough (neglecting the con-
stant of integration): 

0

2 20
02

0

1 14πd 4π .nr

r
n

A
E c r A c

r rr
 

= = − − 
 

∫                       (11) 

The term 0r  is the effective “radius” of the proton, and nr  is the allowed radius of the quantum number n. 
There are three options to use for the proton radius in this calculation. The first option is to use the charge radius 
of the proton which has a measured value of 0.88 fm [14], the second is to use the Compton wavelength of the 
proton which is 1.32 fm, and the third option is to use the historical Rutherford empirical equation, 

1
3

0R R Z=  
where 0 1.2 fmR = , and Z again is the atomic number yielding a radius of 1.2 fm for the hydrogen nucleus. The 
third option of 1.2 fm will be used for the remainder of this treatment. Using this yields a value for 0A  of 

512.312 10−× . The continuous density function for the quantum vacuum is shown in Equation (12) and includes 
the necessary dependency on the atomic number Z: 
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2 51
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2.312 10 .Zr
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=                             (12) 

A plot of this function for hydrogen is shown in Figure 2. Rather than being a series of step functions stepping 
down from a large value for n = 1 to a small value when n = 7 as was previously the scenario in the isotropic 
view, this curve is now a continuous function with slight shifts at the allowed radii which could be construed as 
soft boundaries between the energy levels. So rather than the density of the quantum vacuum being a uniform 

5 33.9 10 kg m−×  over the entire spherical region defined by the Bohr radius for n = 1, it starts out considerably 
higher just outside the nucleus and tapers down to 10 32.95 10 kg m−×  at the Bohr radius. On average, it is 

5 33.9 10 kg m−× , but it varies continuously over radial distance r. 
If the vacuum is indeed not an immutable and non-degradable medium, but rather a medium that can vary, as 

first evidenced by direct observation of the Casimir force, what can be said about what has been developed in  
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Figure 2. Continuous function of the vacuum perturbation for hydrogen: 
this function was used in the COMSOL analysis discussed in Section 2. 

 
this discussion? A thing to note is that the integral of the perturbation of the quantum vacuum around the nuc-
leus for a given atomic number Z and quantum number n is exactly equal to the energy level of the electron in 
that state. The energy level of the electron is a function of its potential energy and kinetic energy. Does this 
mean that the energy of the quantum vacuum integral needs to be added to the treatment of the captured electron 
as another potential function, or is the energy of the quantum vacuum somehow responsible for establishing the 
energy level of the “orbiting” electron? The only view to take that adheres to the observations would be the lat-
ter perspective, as the former perspective would make predictions that do not agree with observation. It was 
shown earlier that the perturbation of the vacuum around the nucleus appears to have characteristics very similar 
to that of the Casimir force per unit area, and since the Casimir force per unit area is negative; the integral of the 
vacuum perturbation would also be negative. So for n = 1, Z = 1, the energy for the captured electron is −13.6 
eV, and likewise, the integral of the vacuum perturbation is −13.6 eV. 

2.3. Longitudinal Vacuum Waves 
If the quantum vacuum is indeed not a static immutable medium, can be locally perturbed as the above assess-
ment indicates may be the case, and that this perturbed medium can be shown to be related to the binding energy 
of trapped electrons, what other characteristics might the medium have that should be considered? If the quan-
tum vacuum is a sea of vacuum fluctuations consisting of virtual photons and virtual fermions (e.g. elec-
tron-positron pairs and others), then it may be useful to study the types of wave modes that are possible for this 
medium that has a 41 r  density dependency. The discussion will be specific to acoustic wave modes, as solu-
tions to acoustic wave modes in a spherical region with soft boundaries are determined using the Helmholtz eq-
uation, and will yield wave modes with mathematical forms that are identical to the electron probability wave 
functions. A couple of points need to be made before proceeding. First, acoustic modes in air are longitudinal 
waves that propagate as a result of collisional process between the neutrals that make up the air. Acoustic wave 
modes in a plasma medium are not communicated by means of collisional process, rather the longitudinal wave 
propagates as a result of the charged particle motion being relayed to other charged particles by means of the in-
termediary electric field. Second, consider an acoustic mode analog that looks like one of the three 2p orbitals as 
shown in Figure 3 [15]. 

In the acoustic case, the mode has two areas of maximum and minimum pressure separated by a region of 
neutral pressure that is defined by the nodal surface. In an acoustic mode, particles oscillate from the high pres-
sure region to the low pressure region where they will reflect back again as the wave cycle oscillates. The par-
ticles are at their slowest, minimal displacements from reflection, and spend the most time in these extreme 
pressure regions, whereas they are at their fastest and largest displacements when they cross the nodal surface 
(or surfaces depending on mode). If one were to “mark” a particle that is a member of the acoustic continuum 
medium and try and “find” that particle or observe that particle at a particular moment in time, the odds are  
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Figure 3. Plot for the Z = 1, 2p orbital from orbital viewer software. 
 
higher that the particle will be found within the high pressure lobes and lower that the particle will be found at 
the nodal surface. This is a classical analogy to the probability function that determines the likelihood of ob-
serving an electron (in a particular state) at some point around the nucleus. 

The vacuum density function for hydrogen defined by Equation (12) and plotted in Figure 2 can be modelled 
and studied using the high fidelity industry tool, COMSOL Multiphysics. The vacuum medium can be modelled 
as a virtual plasma consisting of predominantly electron-positron ephemeral pairs. Although there will be a 
spectrum of other fermion-antifermion particle pairs, the dominant members of the medium at any given time 
will be the -e e− +  pairs. The speed of sound in a plasma can be calculated using Equation (13) [16]. 

e
s

kT
v

M
=                                     (13) 

The way this equation is applied to a classical plasma is that the eT  is the temperature of the electrons, and 
M is the mass of the ions. In the initial consideration of the hydrogen atom, the mass of the proton will be used 
for M. It should be noted that it is likely that M will be a lower mass value that is representative of either 
relativistic -e e− +  pairs, or heavier charged fermion-antifermion pairs. The “average” temperature of the quan-
tum vacuum modelled as a virtual plasma within a given energy state around the hydrogen nucleus will be set 
equal to the equivalent kinetic temperature of the orbiting electron at that state. In this view, the real electron at 
the n = 1 state has a thermal speed of cα . The temperature corresponding to this thermal speed is found from 
the equipartition theorem using the relationship 21 2 3 2e em v kT= , or ( )21 3ekT m cα=  for the n = 1 case. 

A possible source of longitudinal waves is the hydrogen nucleus. Continuing with the quasi-classical view-
point, the electron in the n = 1 state is “orbiting” around the proton at an average distance of the Bohr radius 
( )115.29 10 m−×  with an orbital speed of cα . Similarly, the proton is oscillating around the electron-proton 
system center of mass at the same frequency and it acts as a longitudinal wave source for the surrounding quan-
tum vacuum medium. The frequency of this oscillation can be considered the eigenfrequency of the longitudinal 
wave associated with this quantum state. When running a COMSOL acoustic analysis of this system, the objec-
tive is to find the COMSOL-determined acoustic resonance frequency for each of the seven primary quantum 
number states (spherical acoustic modes defined by their corresponding Bohr radii) and compare it to the target 
frequency determined using the electrons orbital frequency. The target frequencies for the primary quantum 
numbers are given in Table 3. 
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Since this phase of the analysis is centered on finding the spherical acoustic modes for all of the primary 
quantum numbers, a 2D axisymmetric model was used. This allowed for very fine mesh size when studying the 

1n =  mode. Figure 4 shows a close-up of the innermost region roughly defined by the Bohr radius, 
115.29 10 m−× . The mesh size for this region of the model was set to one picometer within the spherical region 

defined by the Bohr radius. 
 

Table 3. This table shows the “orbital” frequency for the n = 1 to n = 7 states for hydrogen, 
and the sound speed. Thermal velocity is in m/s, orbital frequency is in Hz, and sound speed 
is in m/s. 

n Thermal vel Orbital freq Sound speed 

1 62.19 10×  156.5808 10×  29,476 

2 61.09 10×  148.2260 10×  14,738 

3 57.29 10×  142.4373 10×  9825 

4 55.47 10×  141.0283 10×  7369 

5 54.37 10×  135.2646 10×  5895 

6 53.65 10×  133.0467 10×  4912 

7 53.12 10×  131.9186 10×  4210 

 

 
Figure 4. Close-up of COMSOL 2D axisymmetric model. 
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Figure 5 shows the eigenfrequency associated with the spherical acoustic mode that falls within the n = 1 
spherical region of the model. Note that the quantum vacuum density used in the COMSOL analysis is the con-
tinuous curve defined by Equation (12), and there are no “hard” boundaries in the model. The picture on the left 
of Figure 5 is the view from the outer extents of the model, and the picture on the right is a close-up of the mode 
with a cutaway depicting the intensity distribution of the mode. 

This analysis result shows that this eigenfrequency is 145.3944 10 Hz× , whereas the hope was to find that 
this frequency was at 156.5808 10 Hz× . In order to ensure that the eigenfrequency falls at the target value, the 
sound speed model will need to be scaled up by a factor of 11. This means that all of the sound speeds listed in 
Table 3 will be an order of magnitude higher. This also requires that the mass in the denominator of Equation 
(13) is not the proton mass, but an effective mass of 15.2× that of the electron. It should be noted that in [17] 
[18], the authors determined that in order to accurately predict the permittivity, 0 , and permeability, 0µ , of the 
vacuum of space arising as a result of quantum vacuum fermion pair fluctuation interaction with propagating 
photons, the quantum vacuum would need to routinely produce fermion pairs in a relativistic condition with a 
mass factor of 31.9. A scaling factor of 11 was used for all subsequent COMSOL analysis to find eigenfrequen-
cies representative of the seven primary quantum numbers for the hydrogen model. 

Figure 6 shows the expanded view of the COMSOL 2D axisymmetric model used for finding eigenfrequen-
cies. The model mesh sizing is provided to the right of the model picture, and the dense mesh sizing is apparent 
as the elements become unresolvable at the resolution of the figure below the primary quantum number, n = 6. 

Table 4 presents the longitudinal mode eigenfrequencies for the n = 1 to n = 7 orbitals. For each row, the ex-
pected value is listed in the left column, and the COMSOL eigenfrequency value is provided to the right along 
with a % error. For a primary quantum number, the expected value is the frequency that the proton would oscil-
late about the system center of mass that consists of the proton and the orbiting electron. Figure 7 shows the ei-
genfrequency solution plots that correspond to those recorded in Table 4. 

3. Conclusions 
This paper has explored the idea of the quantum vacuum not being an absolute immutable and non-degradable 
state, and studied the ramifications of the quantum vacuum being able to support non-trivial spatial variations in 
“density”. These considerations showed no predictions that were contrary to observation, and in fact duplicated 
predictions for energy states associated with the primary quantum number. An explicit function of vacuum den-
sity spatial variation was derived such that it also predicted correct energy levels for the primary quantum num-
bers, and provided a simple acoustic model that could be numerically studied using the multi-physics software 
tool, COMSOL. This study showed that the quantum vacuum can support longitudinal wave modes with mode 
 

  
(a)                                                     (b) 

Figure 5. COMSOL analysis results for n = 1 eigenfrequency: panel (a) shows the model out to the n = 6 orbital, and panel 
(b) shows a close-up view of the n = 1 solution. 
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Figure 6. COMSOL 2D axisymmetric model: element sizes for n = 1 to n = 7 is 1 pm, 2.5 pm, 5 pm, 10 pm, 
25 pm, 50 pm, and 50 pm respectively. In this figure, the mesh size is too dense to be discernable for n = 5 
and lower. Figure 3 shows the mesh for the n = 1 and n = 2 regions. 

 
Table 4. This table shows the predicted “orbital” frequency and the COMSOL analysis eigenfrequencies for 
the n = 1 to n = 7 states for hydrogen. Orbital and COMSOL frequency values are in Hz. 

n Orbital freq COMSOL freq %error 

1 156.58 10×  156.25 10×  −4.98 

2 148.23 10×  148.23 10×  0.05 

3 142.44 10×  142.38 10×  −2.48 

4 141.03 10×  141.01 10×  −1.59 

5 135.26 10×  134.98 10×  −5.36 

6 133.05 10×  133.48 10×  14.28 

7 131.92 10×  132.13 10×  11.16 

 
shapes and frequencies commensurate with proton oscillation about the center of mass of the electron-proton 
“rotating” system associated with the primary quantum numbers. The spin-orbit coupling mode shapes asso-
ciated with the p, d, and f orbital shapes are also viable acoustic wave mode solutions, and will be non-degenerate 
with slightly different frequencies, and hence, energies. It is a matter of future work to fully explore the p, d, and 
f orbital mode shapes using the explicit vacuum density function with a 3D model of sufficient resolution. The 
2D approach was used for computational speed while maintaining fine mesh size. Some examples of the 
COMSOL results from a 3D model of a classical spherical resonance system with isotropic air medium are 
shown in Figure 8. In the process of searching for the n = 1 to n = 7 primary quantum number eigenfrequencies 
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Figure 7. COMSOL analysis results of the acoustic “natural” vacuum model The orbital shells (dark lines) can be counted, 
but the n = 1 radius is quite small as seen from the top left thumbnail that depicts the COMSOL eigenfrequency solution for 
that orbital. 
 

 
Figure 8. Acoustic eigenmodes for air in a 9-in diameter spherical isotropic air cavity with soft wall boundary. A detailed 
analysis and experiment measuring acoustic frequencies of a ringing basketball was performed and documented in [18]. 

 
using the 2D COMSOL model, some solutions mapped to the non-spherical, but axisymmetric electron orbitals 
from the p, d, and f families. Three examples are provided in Figure 9. These results suggest that the analytical 
methods used in this paper that were successful at the Bohr level, can be expanded to yield solutions that exhibit 
the full wave characteristics of QED associated with the Schrödinger wave equation: 
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Figure 9. 2D Axisymmetric model results that capture axisymmetric acoustic solutions like 2p, 3d, and 4f orbitals (m = 0). 
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There are a number of approaches detailed in the literature that seek to develop different interpretations or 
understandings of the origin of the wave equation, and we will only touch on few of the concepts in closing. The 
orthodox view is of course the Copenhagen interpretation which, in short, does not seek to assign any classical 
nature to the wave equation by itself, and rather only considers the wave’s statistical impact on configuration 
space [19]. The de Broglie-Bohm theory [20] posits the existence of a guiding global wave equation (known as 
the pilot wave) in a purely classical world and probabilistic quantum nature only arises as a consequence of the 
influence of this pilot wave on the classical world. Stochastic interpretations can be viewed as essentially fully 
classical interpretations of the wave equation that arises as a result of interaction with a pervasive classical ze-
ro-point radiation field (vacuum fluctuations) [21] [22]. Most recently, a paper was put forth that articulates 
another formulation in the debate known as a Many Interacting Worlds [23] formulation. In the MIW view, the 
world we live in is completely classical, but the equations of motion include a repulsive quantum force term that 
originates as a result of the interaction between N number of classical worlds that are close in configuration 
space (N can be finite or infinite), and the wave equation is an emergent characteristic in the limit of this fully 
mechanical theory. In our approach discussed in this paper, the ground state of the quantum vacuum has been 
shown to possibly exhibit structure and spatial variation that depends on the boundary conditions present, and 
this dynamic variation can be successfully modelled in a quasi-classical (if not fully classical) sense with 
COMSOL. Indeed, the wave nature of the electron orbitals within the hydrogen atom possibly has a quantum 
vacuum longitudinal wave mode origin explanation. 

The paper will close with the following thought experiment: if the vacuum around the nucleus can be consi-
dered more of a “natural” vacuum as opposed to an immutable ground state with absolutely no spatial variation, 
and if there are ephemeral fermion/antifermion pairs dominated by electron-positron pairs that create and anni-
hilate with a density that increases significantly as one moves closer to the nucleus, what is so special about the 
orbiting electron that allows it to be a “real” electron out of this vacuum soup? Perhaps it is not a case of uni-
queness, but a case of non-uniqueness. Consider the following: a room full of paired square dancers progresses 
through the dance moves smoothly as called by the caller, and they occasionally change partners when in-
structed. What if there was an additional solitary dance partner of a given gender introduced to the ranks of this 
evenly matched group? And the rule is established that when a trade call is issued, the free dancer will couple to 
the nearest available dance partner of the opposite gender, and the previously paired dancer that misses out is 
now the free dancer until the next trade call is issued. As the evening progresses, nearly every dance partner of 
the gender that had the extra dancer has had a period when they were the “unique” solitary dancer. In an ana-
logous way, perhaps the “real” electron is also “unique”. In one instance, the “real” electron collides with a po-
sitron vacuum fluctuation elevating the now un-paired electron vacuum fluctuation to the “real” state. This real 
electron continues in its real state for a brief period until it too collides with a positron vacuum fluctuation, ele-
vating the next un-paired electron vacuum fluctuation to the “real” state. This process continues ad infinitum, 
and the “real” electron is not unique, and rather it is non-unique in that the “real” descriptor is associated with 
the state, not the individual electron. So if the “real” electron is simply a unique state of the underlying natural 
vacuum, an unmatched dance partner in the sea of dancers, then the probability wave functions for the electron 
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states may be a dual representation of the longitudinal acoustic wave modes that arise as a result of the dynamics 
of this natural vacuum. 
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