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Abstract 
 
We consider an ill-posed problem-fractional numerical differentiation with a new method. We propose Fou-
rier truncation method to compute fractional numerical derivatives. A Hölder-type stability estimate is ob-
tained. A numerical implementation is described. Numerical examples show that the proposed method is ef-
fective and stable. 
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1. Introduction 

In this paper we shall consider the problem of stably 
calculating the fractional derivative of a function f  
given in ,  pL R
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for . Such problem is frequently encountered 
in many practical contexts [1-3]. It is well known that 

 is a formal solution of the Abel integral equa-
tion. 
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That is very important in various areas of mechanics, 
spectroscopy, computerized tomography [2]. The process 
of numerical fractional differentiation is well known to 
be an ill-posed problem [1-3], and it has been discussed 
by many authors, and a large number of different solu-
tion methods have been proposed. For references we 
refer the reader to [1-5] and references therein. Finite 
difference approaches for numerical differentiation have 
been used, for example, in [6-9]. However, these ap-
proaches require knowledge of a bound of the second or 
third derivatives of the function under consideration that 
are not always available. Furthermore, there exist infi-
nitely many functions that do not have bounded sec-  

ond derivatives at all. The same situation occurs also in 
numerical fractional differentiation [2]; one requires a 
high smoothness of the functions under consideration that 
does not always exist. In the present paper, as an alterna-
tive way of dealing with fractional numerical differentia-
tion, we introduce a new regularization method, i.e., 
Fourier truncation. We simply analyze the cause of ill- 
posedness of fractional numerical differentiation and 
then propose the method. The idea of Fourier truncation 
method is very simple and natural: since the ill-posed-
ness of fractional numerical differentiation is caused by 
the high frequency components, we cut off them. Actu-
ally, such a similar idea of solving numerical differentia-
tion has occurred in [10,11]. We can easily find this fact 
by studying [10,11] in frequency space. However, Fou-
rier truncation method is more direct, natural and simple. 

2. Regularization in the Fourier Domain 

In this section we simply analyze the ill-posedness of 
fractional numerical differentiation and discuss how to 
stabilize the numerical derivaties. We set a function  

   pf x H R  which is a Soblev space, p  . Let 

f  be the Fourier transform of f , i.e., 

   1ˆ d .
2π

i xf f x e x
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
          (2.1) 

Now we consider the  -th order derivative of func-
tion f . Taking the Fourier transform, we have 
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From the right hand side of (2.2) or (2.3), we know 
that i

    can be seen as an amplification factor of  

 f̂  . Therefore, when we consider our problem in  

 L R2 , the exact data function  f̂   must decay rap-
idly as   . But in the applications the input data 
 f x

 

 can only be measured and never be exact. We 
assume, say that, the measured data function 

 2f x L R   satisfies 

,f f                (2.4) 

where   denotes - norm, the constant 2L 0   
represents a noise level. Thus, if we try to obtain frac-
tional numerical derivatives, high frequency components 
in the error are magnified and can destroy the solution. In 
this sense it is impossible to solve the problem using 
classical numerical methods and requires special tech-
niques to be employed. In the following, we will propose 
our regularization strategy to deal with the ill-posed 
problem. However, before doing that, we impose a priori 
bound on the input data (this is necessary in solving 
ill-posed problems), i.e., 

,
p

f E p ,             (2.5) 

where  is a constant, 0E 
p

 denotes the norm in 
Soblev space  pH R  defined by 
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Note that (2.2) or (2.3), since the ill-posedness of the 
problem is caused by the high frequency components, a 
natural way to stabilize the problem is to eliminate all 
high frequencies and instead consider (2.3) only for 

max  , where max  will be seen that it exists as a 
regularization parameter. Then we get a regularized frac-
tional derivative 
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where max  is the characteristic function of the interval 
 max max,  , i.e., 
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In the following sections we will derive an error esti-
mate for the approximate derivative (2.7) and discuss 
how to compute it numerically. 

3. Error Estimate 

In this section, we derive a bound on the difference be-
tween the derivatives (2.3) and (2.7). We assume that we 
have an a priori bound on the exact input data. 

p
f E  

(See (2.5)). The relation between any two regularized 
solutions (2.7) is given by the following lemma. 

Lemma 3.1. Suppose that we have two regularized 

derivatives     1R f x
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Proof. From the Parseval relation we get 
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 and 1 2f f    , we obtain 
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From Lemma 3.1 we see that the derivative defined by 
(2.7) depends continuously on the input data f . Next, 
we will investigate the difference between the derivatives 
(2.3) and (2.7) with the same exact f . 

Lemma 3.2. Let  f x  and  be the de-

rivatives (2.3) and (2.7) with the same exact data 
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f ,  
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 Suppose that 
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Proof. As in Lemma 3.1 we start with the Parseval re-
lation, and using the fact that the derivatives coincide for 

 max max,    we get 
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Now we use the bound 
p

f E ,and as before we  

have 
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which leads to the error bound 

    
1

.p pf R f E
 

  


     

Now we are ready to formulate the main result of this 
section: 

Theorem 3.3. Suppose that    f x  is given by (2.3)  

with exact data f  and that  is given by   R f   x 
(2.7) with measured data  f x . If we have a bound 

p
f E , and the measured function  f x  satisfies  
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Proof. Let  be the derivative defined by 
(2.7) with exact data 
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f . Then by using the triangle 

inequality and the two previous Lemmas we get 

             
    

 
1

2 .p p

f R f f R f

R f R f E

 


 


 


      

      
 



 

From Theorem 3.3, we find that (2.7) is an approxima-
tion of the exact derivative  xf  . The approximation 
error depends continuously on the measurement error. 

Remark 3.4. In our application 
p

f  is usually un-
known, therefore we have no the exact a priori bound E. 
However, if we select 
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where the constant C  depends on , ,
p

p f . This 
choice is helpful in our realistic computation. 

4. Numerical Implement 

(2.7) numerically. Given a vector F  containing samples  

from f  on an equidistant grid  1
,
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where the sequence  1
2

2

ˆ
n

nj
j

f



are the discrete Fourier  

coefficients, and we have assumed that is even. The n  
pudiscrete Fourier coefficients can be com ted by taking 

the FFT of the vector F . Thus we can approximate the 
derivative operator (2.7 s follow: 
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where is the Fourier matrix [9], and is a diago-L  
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  
nal ma x corresponding to differentiation of trigono-
metric interpolant, but where the frequency components 
with maxj  are explicitly set to zero. Thus the di-
agona s of l element   are 
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where j  
an

are defined as in (4.1). The product of L and a 
vector c  be computed using the Fast Fourier Transform 
(FFT) which leads to an efficient way to compute the 
derivative (2.7). When using the FFT algorithm we im-
plicitly assume that the vector F  represents a periodic 
function. This is not realistic in our application, and thus 
we need to modify the algorithm. A discussion on how to 
make the function “periodic” can be found in [12]. 

5. Numerical Examples 

For verifying the effect of the proposed algorithm, a 
smooth function and a non-smooth function will be 
tested in various cases. In the numerical experiment, we 
always fix 0 1x  . For an exact data function  f x , 
its discrete noi ion is 

 

sy vers
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The function “

 

 randn  ” generates arrays of random 
numbers whose e are normally distributed with lements Here we discuss how to compute the regularized solution 
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mean 0, variance 2 1  , and standard deviation 1  , 
“ ( ( ))randn size f  s an array of random s 
th ize as 

“return entrie
at is the same s f . In our computations, we al-

ways take 4097N   (If e take N = 100,513,1025, , 
we can also  satisfactory result.)The derivative 
errors are measured by the weighted 2L -norms defined 
as follows: 
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