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Abstract 
The path of a light’s signal is one and the same in the universal space regardless of the inertial 
frame by which it is identified. However, only one frame can be taken stationary and identified 
with the universal space while all other frames are moving. The direction of the path of a light’s 
pulse in a moving frame is determined in terms of its direction in the stationary one; the result is 
utilized to explain stellar aberration and show that the tilted direction in the moving frame de-
pends only on its velocity. The aberration increment vector is introduced and employed to deter-
mine the apparent position of a star at each point of the earth orbit. Aberration in an earth satel-
lite relative to the geocentric frame is presented. The direction’s change of a light beam between 
graded inertial frames promotes explaining aberration in an earth’s satellite in parallel to stellar 
aberration on earth. 

 
Keywords 
Direction’s Change of Light Rays, Stellar Aberration, Aberration in a Satellite, Aberration 
Increment, Graded Inertial Frames 

 
 

1. Introduction 
In earlier works [1] [2] the fundamentals of the theory of universal space and time (UST) were presented. Ac-
cording to the UST, time intervals in an inertial frame S are essentially measured by corresponding spatial inter-
vals travelled by light signals. Equivalently, the geometric distance R OB=  between two points B and O in S 
is measurable by the time duration T R c=  (or geometric time) of a light trip B S O S∈ → ∈ , which is the 
same as the duration of the light trip O S B S∈ → ∈ . The latter simple relation which is valid only when B and 
O are stationary in S, puts geometric time and length on equal footing as equivalent measures of the same dis-
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tance. The physical, or universal space, can be identified by one arbitrary inertial frame S (or s), which is consi-
dered stationary while any other inertial frame s (S) is moving relative to S (s); and a light’s trip thus follows the 
same path in the universal space whether identified by S or s [1]. 

The light path is seen in the moving frame tilted from its direction in the stationary frame by the aberration 
angle. In the heliocentric frame the direction of the earth’s velocity, due to its orbital motion, keeps changing, 
resulting in every received starlight continuously changing its direction in the geocentric frame. The latter fact is 
manifested in a periodic change in the apparent position of distant stars throughout the year. The phenomenon of 
the annual apparent motion of celestial objects about their locations, named stellar aberration, was discovered by 
Bradley in 1727 [3] [4], who also explained it employing the corpuscular model of light [3] [5]. One can also 
account for aberration in terms of light’s waves traveling through the ether, provided the ether remains com-
pletely undisturbed by the earth’s motion [6]. Bradley’s explanation of stellar aberration however, proved in-
adequate since it couldn’t account for the negative results of Airy Experiment [4]. 

The following items summarize the goals that we seek in this work and the plan of its presentation. 
 We start by an outline of the structure and relevant results of UST theory. 
 Find the relation between the path of a light’s pulse in the stationary and moving frames. 
 Utilize the relation that we found to explain the aberration phenomenon and obtain a new expression for 

stellar aberration angle. Although different from Bradley’s and the relativistic expressions, our formula is in 
accord with experiment results and it determines the aberration angle at each instant of the year. 

 The concepts of the aberration increment and aberrated vector are introduced and used to determine the ap-
parent motion of a given star and the direction at which the telescope should be pointed at various times of 
the year. 

 The direction’s change of light beams between graded inertial frame is introduced and employed to quantify 
aberration in an earth’s satellite. 

Basics and discussions of stellar aberration can be found in many textbooks and articles [3]-[8]. 

2. Universal Direction of a Light’s Ray 
Let S be an inertial frame in which a source of light b is moving at a constant velocity u, and s be another inertial 
frame in standard configuration with S and co-moving with b. We found in [1] that a pulse of light emanating 
from ( )atb s B S∈ ∈  and received by the conjugate observers ( )andO S o s∈ ∈  follows the same path in the 
universal space whether identified by S or s. The pulse’s path is realized within each frame, S or s when consi-
dered stationary, as propagating along the same vector –e  which is identified by ( )OB OB ob ob  when S 
(s) is the stationary frame [1], i.e. 

,R r− = =e R r                                    (2.1) 

where R ( )r  is the geometric radius vector of the point (b at B) in S (in s) when stationary. The relation (2.1) 
implies that the direction of the radius vector of (b at B) as measured within the stationary frame, S or s, is the 
same one thing. If e is specified in a basis of unit vectors of S or s (when stationary) then the directional angles 
are the same in both frames [1]: 

, .S s S sθ θ= ∅ = ∅                                   (2.2) 

This shows that no matter was the magnitude of the source’s velocity in S, or equivalently, regardless of the 
frame S in which the source b was viewed, the direction of the light’s path as observed within S is identical to its 
direction as observed within the frame s in which the source b is stationary (the word “within” here implies that 
the frame concerned is considered stationary). This means that all observers conjugate to o, each within his 
frame, are in accord with the direction’s measurements obtained by o, and consequently with each other. There-
fore, the direction of the path of a light’s pulse, as measured within each inertial frame, is independent of the 
relative velocity between the source and the receiver; the same values of the directional angles are obtained by 
all inertial conjugate observers, each within his inertial frame (Figure 1). The latter statements manifest the 
absolute character of the path direction of light. 

In the rest of this section we brief some basic concepts and results of UST that is relevant to our current work. 
Suppose that at an instant 0t = , corresponding to b s∈  occupying the point B S∈ , light emanates from  

b s∈ . The light arrives at O S∈  (and hence at the contiguous observer o s∈ ) at an instant t. Assuming that 
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the geometric time distance between O S∈  and B S∈  is T R c= , then the pulse arrives at O (and o) at an 
instant t related to the geometric time T by the scaling transformation [2]: 

( )
2 2

2

cos 1 sin
,

1
t T T

β θ β θ
β θ

β

+ −
= ≡ Γ

−
                         (2.3) 

where ( ),θ = ∠ u OB , u cβ = . The factor ( )Γ ,β θ  is called the scaling factor. 
It was shown [1] [2] that when the pulse arrives at O, i.e. at the instant t, the moving object b occupies a posi-

tion b S′∈  at distances Bb utγ′ =  and b O ctγ′ =  from B and O respectively, where 21 1γ β= −  (Figure 
2(b)). The pulse follows the path cT=BO e  in S and a path in s connecting the present position of b with o, but 
since the frame s is moving in S the latter path is identified by Lctγ′ =b O e  in S, where Le  is the unit vector of 
′b O . I.e. in the moving frame s light follows the path ( ) ( )at atb b S o s O S′∈ → ∈ ∈ . 
Note that if the pulse emanates from B, then as before, the pulse follow BO  in S and b O′  in s. In both case 

we have Ob Bb OB′ ′− = , or ( )Lt c u cTγ + =e i e , which can be written as 

2
.

1
L t Tβ

β
+

=
−

e i e                                      (2.4) 

Taking the cross product of both sides with e  we obtain 0L β× + × =e e e i , which gives sin sin 0δ β θ− + = , 
where ( ), Lδ ≡ ∠ e e . Dividing Equation (2.4) by t and employing (2.3) we get 
 

 

( )atb s B S∈ ∈

( )ato s O S∈ ∈

φ

θ

i

j

k

 
Figure 1. The pulse follows one and the same path (in red) in 
the universal space whether identified by S or s. 

 
 B Tcγ β′ − b B Tcγ β b′

McTeγ cte

iss Uni

δ δ
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(a)                            (b) 

Figure 2. (a) The pulse path is bo  in s and ′B o  in S when 
s is stationary; (b) The pulse path is BO  in S and ′b O  in s 
when S is stationary. 
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( )2
,

Γ ,1
L β

β θβ
+

=
−

e i e                                   (2.5) 

or 

( ) ( ), π ,LE β θ β −  + =  e i e                                (2.6) 

where 

( ) ( )
2

Γ ,
,π

1
E

β θ
β θ

β
− =

−
                                 (2.7) 

is the Euclidean factor [2]. 
In the UST theory, time is an absolute entity and hence the duration of a light trip is the same in all inertial 

frames, but its direction and spatial length may differ. Therefore, if S is the universal frame, the duration of the 
trip ( ) ( )at andb B S O S o s∈ → ∈ ∈  in both frames (S and s) is t, whereas T is its geometric time length in S. If B 
is the source of light, then T is the duration of the trip in both frames and of course it is geometric length in S. In 
both cases, ctγ  is the spatial length of the concerned trip as viewed in the moving frame s. 

If the frame s is chosen the universal frame (stationary), then in the first case the time duration of the trip 
( )( )at andb s B S o s O S∈ ∈ → ∈ ∈  is t in both frames, and its geometric length in s is ct. If B is the source of light 

then the duration of the trip ( )( )at andB b o s O S→ ∈ ∈  is T in both frames. The geometric length of both trips 
(of course in s) is ct. The length of the second trip in s is cTγ  (Figure 2(a)). 

In parallel to the relations (2, 4 - 6) we have when s is stationary 

2
.

1
M T tβ

β

−
=

−

e i e                                    (2.8) 

( )
2

Γ , .
1
M β

β θ
β

−
=

−

e i e                                  (2.9) 

( ) ( ), ,ME β θ β− =   e i e                              (2.10a) 

or 

( ) ( )21 , π ,M Eβ β θ β= − − +e e i                          (2.10b) 

which all are obtained through replacing Le  by Me  and β  by –β  (or θ  by π θ− ). In (2.10b) we utilize 
the fact that ( ) ( ) ( )2, π , π 1 1E Eβ β θ β− = −  which results from (2.7) and ( ) ( )Γ , Γ , π 1β θ β θ− =  [1]. Cross-
ing both sides of any relation (2.8 - 10) by e  yields sin sinc uδ θ=  which determines the angle between the 
pulse path as seen in S and s. As it should be, the same angle ( ) ( )( ), or ,L Mδ δ∠ = ∠ =e e e e  occurs whether 
the pulse emerges from b at B or from B at b; however, the first (second) angle is realized when S (s) is the uni-
versal frame. 

3. The Ray’s Direction in a Moving Frame—Aberration Angle 
Consider a parallel beam of light propagating in the universal frame S parallel to the direction ′e . The path of a 
narrow beam (say a ray) is determined in S by two points and ;B S O S∈ ∈  we assume the ray propagates in 
the direction   ′BO e . Let M be an inertial frame in standard configuration with S and moving at a velocity 

v=v i  in S. The question is, how is the vector BO seen in M? 
The path of the ray in M is also determined by two points in M. Let m be a point in M and assume that when at 

B S∈  a pulse of light emanates from m M∈ . The pulse is received by a point in M that is contiguous to 
O S∈ , call it o M∈ . When the pulse arrives at o M∈  (and O S∈ ) the point m M∈  occupies the position 
m S′∈ . Therefore, in the moving frame M the beam is seen propagating along m O′ . In down to earth language, 
the whole situation will not change if we envisage the beam (or the directed segment BO) as a thin straight tube 
through which a liquid, or a current of any nature, flows down (from B to O) at any velocity; the tube is seen 
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tilted in M to the position m O′ . According to Section 2 the sides of the triangle OBm′  are 

1 2 2, , , 1OB R cT Bm vt Om ct v cγ γ γ − ′ ′= = = = = −  
                (3.1) 

Thus the direction of the ray is observed in M tilted from a fixed direction OB  in the universal space S by an 
angle ( ),OB Omδ ′= ∠  determined by 

sin sin sin sinor .
Bm Om vt ct
δ θ δ θ

γ γ
= =

′ ′
 

which yields 

sin sinv
c

δ θ=                                    (3.5) 

where ( ) [ ], 0, πOXθ ≡ ∠ ∈OB  is the angle between the vector velocity v  of m, or the velocity of the moving 
frame M, and the fixed direction OB  (Figure 3). The angle δ  is called the aberration angle. The velocity 

v=v i  of M in S, the fixed direction OB  in S, and the tilted direction ′Om  all lie in a plane called the aber-
ration plane. The tilted direction ′Om  in S is obtained through tilting the fixed direction OB in S in the aberra-
tion plane towards the vector velocity of M by the aberration angle. 

The source of light b (a star for instance) can be seen by a telescope, with ocular and objective lenses r and o 
respectively, only if the telescope ro is set along the direction ′om , which amounts to tilt the telescope from the 
fixed direction OB , in the aberration plane, by the aberration angle δ  in the direction of the motion (Figure 
4). 

4. Stellar Aberration 
Consider a “distant” star b, in the sense that the radius of the earth’s orbit is negligible in comparison with the 
distance between the star and the sun. In this context, the phrase “the vicinity of the sun at some instant 0T ” will 
mean the region of space containing the sun and the earth and whose dimensions remain negligible in compari-
son with the distance of b from the sun throughout a long period of time. In the stationary inertial frame 
S NXYZ≡  with origin at the sun “N”, the motion of b, as seen from the vicinity of N, has no observable effect 
on its location in S during a relatively long period of time (centuries), and in particular, on the latitude angle Θ , 
between Nb  and the ecliptic, which remains almost unchanged. Rays from b received by all S observers in vi-
cinity of the sun are practically parallel, and the star b appears to all these observers at the same altitude Θ . Let 
M Exyz≡  be a reference frame co-moving with the earth in its orbital motion, and whose axes remain parallel 
to the axes of the inertial frame S. i.e. geocentric frame. 

All S-observers (in vicinity of the sun) see the rays from the star b throughout the year coming along the  
 

 

v tγ
( )atm B m S′∈

δ

θ

( )ando O

c tγ

v
 

Figure 3. The same beam is seen along OB in S and ′Om  in 
the moving frame M. 
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Figure 4. In order to see the star b, a telescope in M 
with ocular o must points along om'. 

 
negative direction of the vector e  which is the unit vector of Nb . For a geocentric observer, which is moving 
around the sun, the direction of the ray received is tilted from its direction in S in the momentary aberration 
plane by the aberration angle δ , where 

sin sinv
c

δ θ=                                      (4.1) 

and θ  is the angle between the fixed direction Nb  in S and the momentary orbital velocity v  of the Earth 
around the sun. Therefore, a star b is seeable by terrestrial telescope ro only if it is tilted in the aberration plane 
from the fixed direction Nb  in S by the aberration angle δ . 

The vector velocity tv=v e  of the earth around the sun, with te  is the unit tangent vector to the earth’s or-
bit, rotates approximately uniformly in S and in the geocentric frame M, with an angular velocity 2π rad yearω = . 
There follows that the aberration plane containing this rotating vector, the fixed direction e , and the tilted di-
rection ro, rotates about Nb in S and about Eb in M with angular velocity 2π rad yearω = . We choose the axes 
of S so that the Z axis is perpendicular to the ecliptic and the star b is the XZ plane. The zero of timing is chosen 
to correspond to the closest position 0E  of the earth to the star, i.e. when earth is on the X-axis, and thus its 
velocity is perpendicular to the XZ plane. In either frame, S or M, and within the approximations imposed by the 
meaning of “distant star”, the unit vector e  of the negative direction of the incoming ray and the tangent vector 

te  of the earth orbit are (Figure 5) 

( )cos ,0,sin= Θ Θe                                    (4.2a) 

( )1 1cos π ,sin π ,0 sin ,cos ,0 .
2 2t t t t tω ω ω ω    = + + = −    

    
e                  (4.2b) 

where we assume in writing (4.2b) that the earth orbit is approximately circular. The cosine of the angle 
( ), tθ ≡ ∠ e e  between the earth’s vector velocity and the negative direction of the incoming ray is 

cos cos sin .t tθ ω= ⋅ = − Θe e                                (4.3) 

Identifying sinδ  by δ , we get from (4.1) 

( ) ( )
2 2

2 2 2 2 2 2sin 1 cos sin 1 cos sin ,v vt
c c

δ δ ω ϕ   ≈ = − Θ = − Θ   
   

               (4.4) 

where tϕ ω=  is the polar angle in the ecliptic of the radius vector NE  connecting the sun N and the earth E, 
i.e., ( )0 ,ϕ = ∠ NE NE . For a given star the altitude angle Θ  is fixed, and the relation (4.4) determines the  
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( ), te eθ = ∠
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te

tϕ ω=
N 0E

Θ

 
Figure 5. Because the star b is too far, Nb and Eb are essen-
tially parallel. The true position of b is along the same direc-
tion𝑒𝑒 in the heliocentric and geocentric frames S and M. 

 
aberration angle δ  in terms the polar angle ϕ  of the earth’s position at its orbit in the ecliptic, or equivalent-
ly, at any instant throughout the year. The angle between two lines of sight separated be six months period is 

( )1 22 22 2 1 cos sinv
c

δ ϕ= − Θ                               (4.5) 

By (4.5) the aberration angle attains its maximal values 

maxe v cδ =                                      (4.6) 

for sin 0ϕ = , which corresponds to 0 or πϕ ϕ= = , and its minimal values 

min maxsin sine e
v
c

δ δ= Θ = Θ                               (4.7) 

for 1 3π or π
2 2

ϕ ϕ= = . 

Substituting for v and c in (4.6) by 299792 km sc ≈  and 29.87589 km sv ≈  we obtain the value 
max 20.555"e v cκ δ≡ ≈ =  for the aberration constant, which is about 0.06"  far from the generally accepted 

value 20.49551"κ = . Recall that we obtained our value for κ  on assuming that the earth orbit is circular, 
while in reality the eccentricity of the elliptical earth orbit varies in cycle extending to hundreds thousands of 
years [9] from 0.0034 to 0.058; it is currently 0.0167. Provided the orbits are approximately circular, the aberra-
tion constants maxeδ  and maxpδ  for another planet p are related by 

max

max

pe e

p p e

rv
v r

δ
δ

= =                                   (4.8) 

where ( )and andp p e ev r v r  are the planet’s (the earth’s) velocity and distance from the sun. 
Recalling that the telescope in s is tilted by δ  towards the earth’s orbital velocity vector, the observed alti-  

tude of the star is highest for 1 π
2

ϕ =  and lowest for 3 π
2

ϕ = . The altitude of the star at 0ϕ =  or πϕ =   

remains unchanged because the telescope is tilted horizontally (by maxeδ ). 
Two Special Cases: (i) For ( )π 2Θ = ± , which corresponds to the line of sight to the star b is perpendicular 

to the ecliptic, we have π 2θ = , and both Equations (4.1) and (4.4) reduce to v cδ = . 
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(ii) The distant star b is in the ecliptic: Setting Θ 0=  in (4.4) we obtain 

sin cos cos .v vt
c c

δ δ ω ϕ≈ = =                              (4.9) 

The aberration occurs in the ecliptic attaining its maximal absolute value (4.6) at 0, π,ϕ =  and vanishes  

( )0δ =  for 1 3π, π.
2 2

ϕ =  i.e. the maximum value occurs when the line of sight to the star is perpendicular to  

the earth’s velocity and minimum when the earth directly approach the star or recedes from it. 

5. The Aberration Increment and Aberration Direction 
The aberrated direction is the momentary direction along which the star is seen from Earth. Being in the aberra-
tion plane, its unit vector A  is a linear combination of the fixed direction e  and the unit Earth’s velocity te . 
The aberration increment = −A eδ  is of length δ  given by (4.5), lies in the aberration plane, and makes an 
acute angle with earth’s velocity te . In the bases ( )ijk  of the unit vectors of the frame M Exyz≡  we have 

( )cos sin cos sint t tα β α β ω β ω α= + = Θ− + + Θe e i j kδ                 (5.1) 

Since δ  is small, the aberration increment δ  can be considered perpendicular to the fixed direction e  of 
the star; it is specified by determining the parameters α  and β  so that ⊥ eδ  and δ=δ . Utilizing (4.5) 
we get ( ) ( )sin cosΘ, ,v c t v cα ω β= =  and hence 

( )2sin Θsin ,cos ,sinΘcosΘsinv t t t
c

ω ω ω= −δ                        (5.2) 

The aberration vector δ  is what should be added to the direction e  to obtain the aberrated direction 
= +A eδ  along which the star is seen in M. The aberrated direction A is normalized to the second order in δ , 

for, ( )2 2 2 2 22 1 1 0 .A e δ δ δ= + ⋅ + = + = +eδ  In order to see the star, a telescope of length l should be pointing 
to represent the vector ( )l + eδ . 

Two particular independent directions of δ  correspond to the following cases: 

(i) At ( )10 and year . . 0 and π
2

t t i e ϕ ϕ= = = =  we have 

( ) ( ) ( )0 0,1,0 πv
c

= = −δ δ                                 (5.3) 

which shows that, when the Earth’s velocity is perpendicular to the line of sight to b, the telescope is tilted hori-
zontally in the direction of motion by v cδ = . 

(ii) For 1 3π and π
2 2

ϕ =  we have 

( )21 3π sin Θ,0,sinΘcosΘ π
2 2

v
c

   = − = −   
   

δ δ                         (5.4) 

As the z-component is positive for 1 π
2

ϕ =  and negative for 3 π
2

, the telescope is tilted upward at the first 

place and downward at the second. 
It is convenient to decompose the aberration increment into a horizontal (east-west) and “vertical” (north- 

south) components, h f= +δ δ δ , where 

( )2cos , sin Θsin sinΘcosΘsin .h f
v vt t t
c c

ω ω ω= = − +j i kδ δ                   (5.5) 

It is clear that the triad { }, ,h ve δ δ  is orthogonal (whenever andh fδ δ  are not zero). The vector fδ  can 
be written in the form 
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( )sinΘsin sinΘ cosΘ sinΘsinf
v vt t
c c

ω ω= − + ≡i k fδ                     (5.6) 

where f is a unit vector defined by the quantity in the parentheses. It is clear that f is perpendicular to e  and j 
and ( ), ,j e f  is an orthonormal proper basis. The horizontal and vertical aberration increments at each instant 
of the year are summed up by the formula 

( )cos sinΘsinv t t
c

ω ω= +j fδ                              (5.7) 

From the parametric representation ( ) ( )cos , sinΘsin ,h fv c t v c tδ ω δ ω= =  the aberration increment dis-
plays the ellipse 

( ) ( )

22

2 2 2
1.

sin Θ
fh

v c v c

δδ
+ =                                (5.8) 

Likewise, the aberrated vector = +A e δ  draws the same ellipse. 
Aberration in Graded Inertial Frames: 
When S and M are equally inertial the star is seen in each frame when taken universal along the same direc-

tion e . If S(M) is universal, which implies that the other frame is moving, the line of sight to the star in M (S) is 
tilted from e  by the aberration angle ( )δ δ− . 

The aberrated direction in the geocentric frame M is determined with reference to a fixed direction in the he-
liocentric frame S. But it is known [10] [11] that our sun is revolving about the center of the galaxy at about 8 
times the earth’s orbital velocity and making a full round in about 230 million years (a galactic year) [10] [11]. 
As observed from the sun, the aberration increment vector concerning a extragalactic object is given by an equa-
tion like (5.2) in which v is replaced by 8v and 82π rad 230 million years 2.73 10 rad year .ω −≈ ≈ ×  The aber-
rated vector of an extragalactic object traces during a galactic year an ellipse that is 8 times larger in both di-
mensions (which amounts to v replaced by 8v in (5.8)). The aberrated vector A which points to the apparent po-
sition of the extragalactic object in the heliocentric frame S is practically fixed at a direction 0A  for thousands 
of years, and the annual aberration (observed from the earth) determines the apparent position of the extragalac-
tic object relative to 0A  (symbolized earlier by e ). 

In reality no frame is exactly inertial, but there are graded inertial frames in which one frame is more inertial 
than another. For instance, the set of non-rotating frames with origins at the center of mass of, the galaxy (G), 
the solar system (S), the earth-moon system (M), an earth satellite, is graded. Indeed, the motion of S can be 
counted uniform for thousands of years, whereas the duration of uniformity of earth’s motion in S ranges from 
minutes to hours depending on the required degree of accuracy. The apparent position 0A  of a celestial object 
b in the heliocentric frame S works as a true fixed direction e  to which is referred the apparent position mA  
of the same object b in M. Moreover, the apparent position mA  in M can be considered for few hours as a con-
stant position 0mA  to which we refer the apparent position of b in an Earth’s satellite. The deviation of the mo-
tion of a frame from uniformity during the period at which it is taken inertial is either undetectable, or its effect 
on the results of the experiment is negligible. 

6. Observing Aberration from an Earth’s Satellite 
Suppose that a satellite is orbiting the earth in a low circular orbit that lies in the ecliptic. During the orbital pe-
riod τ  of the satellite, say 2 hoursτ < , the geocentric frame M Exyz≡  is almost stationary, and the posi-
tion of our distant star b appears fixed in M. This defines an approximately fixed direction 0mA  (or ′e ) in M 
along which the star b is seen for two hours. Now, an argument parallel to that presented in section 4 can be car-
ried out here, with the earth replacing the sun and the satellite replacing the earth, leading to an aberration angle 
in the satellite frame given by 

sin sinsat
sat sat

v
c

δ θ=                                  (6.1) 

where satv  is the orbital velocity of the satellite relative to M Exyz≡  and satθ  is the angle between the neg-
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ative direction of the incoming ray and the momentary vector velocity of the satellite in M. Equation (6.1) can be 
written in the form 

2 2sin 1 cos sinsat
sat sat sat

v
t

c
δ δ ω≈ = − Θ                          (6.2) 

where satω  is the satellite’s angular velocity, sat satt ϕ ω≡ , and the zero of time is chosen when the satellite is 
in the plane Exz . After half a period the velocity of the satellite in M reverses direction, with it the aberration 
angle, resulting in an angle 2 satδ  between the two lines of sight from the satellite to b separated by half a pe-
riod. The latter takes its maximum maxs satv cδ ≈  (the satellite aberration constant) when measured for  

10 and
2

t t τ= =  and its minimum ( )min sins satv cδ = Θ  when measured for 1 3and .
4 4

t tτ τ= =  Since π
2

θ =  

for 0t =  and 1
2

t τ= , the constant of aberration for a satellite with velocity earth7.5 km s 4,satv v≈ ≈  is 

max max
1 1 20.555" 5.139"
4 4s eδ δ= ≈ × ≈ . 

The apparent motion of the star b repeats itself once a year when observed from the earth, and 365 24 τ×  
times per a year when observed from our satellite. The repetition in the second case is quasi-periodic, in the 
sense that it holds about a varying fixed direction. The first apparent motion is approximately periodic through-
out centuries or perhaps thousands of years. 

7. Conclusion 
The UST theory provides a neat explanation of the stellar aberration phenomenon that highlights its indepen-
dence from the velocity of the light source. By introducing the concept of the aberration increment vector we 
were able to find an approximate formula for the apparent position of the celestial object at each moment of the 
year. The concept of graded inertial frames makes it clear why annual stellar aberration depends only on the ve-
locity of the earth relative to the heliocentric frame. Employing the same concept enables us to treat aberration 
when observed from a satellite in parallel to its treatment when observed from the earth. 
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