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Abstract 
In this paper, we prove the relationship between selection expectation and support function by a 
new method. 
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1. Introduction 
The studies of random geometrical objects can go back at least to the famous Buffon needle problem [1]. Then 
the theory of random sets first study in the book by Matheron [2], who formulated the exact definition of a ran-
dom closed set and developed the relevant techniques. The recently published book by Molchanov [1] is highly 
interdisciplinary and unites a number of mathematical theories and concepts for stochastic geometry, which has 
witnessed a rapid growth (see, e.g., [3]-[12]). 

The relationship between random sets and convex geometry has been thoroughly explored within the stochas-
tic geometry literature; see, e.g. Weil and Wieacker [13]. The main techniques stem from convex and integral 
geometry; see Schneider [14], Gardner [15] and Schneider and Weil [8]. The support function is one of the most 
important concepts in convex geometry. The goal of the present paper is to discuss a new approach for the rela-
tionship between selection expectation and support function, which has played an essential role in proving the 
strong law of large numbers for random compact sets [4]. 

The organization of this manuscript is as follows. In the next section, we set notations and give preliminaries. 
In the last section we will prove the relationship between selection expectation and support function by a new 
method. 
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2. Notations and Preliminaries 
We consider the d-dimensional Euclidean space d  equipped with its usual inner product , , norm ⋅ , the 
unit sphere 1dS −  and the unit ball B. 

Let   denote the family of all nonempty, compact subsets of d , c  denote the subfamily of   which 
are also convex. 

For 1, dK u S −∈ ∈ , the support function [14] [15] of K is defined by 

( ) { }, max , .h K u x u x K= ∈                                (1) 

Obviously, for K, cL∈ , 

( ) ( )if and only if , , .K L h K u h L u⊆ ≤  

Hence a convex body is uniquely determined by its support function. 
In order to show that a sequence of the sets of nonempty, compact subsets converges to another set of non-

empty, compact subsets. One must define the distance between two sets. It motivates the following definition. 
For ,K L∈ , Hausdorff metric (Hausdorff distance) [14] [15] between K and L is defined as 

( ) { } ( ) ( )
1

, min 0   ,   sup , , .
nu S

K L K L B L K B h K u h L uρ λ λ λ
−∈

= ≥ ⊆ + ⊆ + = −             (2) 

Then   turns into a separable, locally compact metric space. 
The point dx ∈  is a convex combination [14] [15] of the points 1, , d

mx x ∈  , if there are numbers 
1, , mλ λ ∈   such that 

( )1 1
1

,  0 1, , , 1.
m

m m i i
i

x x x i mλ λ λ λ
=

= + + ≥ = =∑   

The set of all convex combinations of any finitely many elements of A is called the convex hull of A and is 
denoted by coA. 

The family of closed subsets of d  is denoted by  . Let us fix a complete probability space ( ), , PΩ F  
which will be used to define random elements ([1] [16]). 

A map :X Ω→   is called a random closed set if, for K ∈ , 

( ){ }: .X Kω ω ≠ ∅ ∈ F                                  (3) 

It is natural to define random open sets as complements to random closed sets, so that :Y Ω→   is called a 
random open set if its complement cX Y=  is a random closed set. 

Therefore we can regard a random set X as a measurable map defined on an abstract probability space 
( ), , PΩ F  and taking values in the collection  . 

A random set X is called simple, if there exists a finite measurable partition 1 2, , , nA A A  of Ω  and sets 
1 2, , , nF F F ∈   such that ( ) iX Fω =  for all ,1 .iA i nω∈ ≤ ≤  
A random set X is called approximable if X is an almost sure limit of a sequence of simple random sets. 
Similarly, a random set X with almost surely compact values is called a random compact set. 
The norm X  of a random set X is the real random variable associating the distance from the origin to every 
( )X ω , i.e. 

{ }sup , .X x x X= ∈                                   (4) 

A random vector :x Ω→  is a selection of X if ( ) 1P x X∈ = . 
A∈F  is an atom in probability space ( ), , PΩ F , if ( ) 0P A >  and for any A′∈F  with A A′ ⊆ , either 
( ) ( )P A P A′ =  or ( ) 0P A′ = . The probability space is said to be non-atomic if no such A exists. 
The space   of closed sets (and also the space   of compact sets) is non-linear, so that conventional 

concepts of expectations in linear spaces are not directly applicable for random closed (or compact) sets. 
Following Artstein and Vitale [4] in adapting the Aumann [16] integral, the expectation of X is defined by 

{ } is a selection of   and .EX Ex x X E x= < ∞                          (5) 

Remark: 1) Selection expectation (also called the Aumann expectation), which is the best investigated con-
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cept of expectation for random sets. Since many results can be naturally formulated for random closed sets in 
Banach spaces. 

2) We cite an example to illustrate the meaning of selection expectation. If X is a simple random compact set, 
i.e. 

11     ,
mA m AX K K= + +   where , i iK A∈ ∈F  and 

iA  is the characteristic function of iA , then 

( ) ( )1 1    .m mEX P A K P A K= + +  

3) EX ∈  is equivalent to .E X < ∞  
4) Moreover, if the probability space ( ), , PΩ F  is nonatomic, then coEX E X=  (see, for instance, Artstein 

[3] and Aumann [16]). 

3. Selection Expectation and Support Functions 
Now we are ready to prove the main result in this section. 

Theorem ([1], p. 159, Theorem 1.26). If ( ), , PΩ F  is nonatomic, then the selection expectation of X is the 
unique convex closed set EX satisfying 

( ) ( ) 1, , ,   for all .nEh X u h EX u u S −= ∈                            (6) 

Proof. One of two probability spaces contains the atoms which may lead to the fact that two independent and 
identically distributed random compact sets may have different selection expectations. Therefore if iX  is non-
constant, we can pick appropriate probability space such that the probability space is nonatomic. 

Note that if X is a random compact set, then ( ),h X u  is random variable. 
For :X Ω→ , there exists a sequence of simple random compact sets nY X→ . Then we can infer that 

.nEY EX→  

Let 
1

1     ,n nn mn

n n
n mA A

Y K K= + +   where , n n
i iK A∈ ∈F  and n

iA
  is the characteristic function of  

( ) 1n
i nA i m≤ ≤ . From the definition of Hausdorff metric, the continuity and the linearity of the support function 

and (5), it follows that 

( ) ( )

( )
( )
( ) ( ) ( ) ( )
( )( ) ( )( )
( ) ( )

1

1

1

1

1

1

1 1

1 1

1 1

, ,

    ,

,    ,

,     ,

, ,

, ,

    

n nn mn

n nn mn

n nn mn

n n

n n

n

n

n n
mA A

n n
mA A

n n
mA A

n n n n
m m

n n n n
m m

n n n
m

Eh X u Eh Y u

Eh K K u

E h K u h K u

Eh K u Eh K u

P A h K u P A h K u

h P A K u h P A K u

h P A K P A K

←

 = + + 
 
  = + +     

 = + +  
 

= + +

= + +

= + +
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( )
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It follows that 

( ) ( ) 1, , ,    for all .nEh X u h EX u u S −= ∈                              □ 
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