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Abstract 
We look at the price of the European call option in a quanto market defined on a filtered probability 
space ( ), , , Ω   when the exchange rate is being modeled by the process { }= 0expt tE E H  
where tH  is a semimartingale. Precisely we look at an investor in a Sterling market who intends 
to buy a European call option in a Dollar market. The market consists of a Dollar bond, Sterling 
bond and and Sterling risky asset. We first of all convert the Sterling assets by using the exchange 
rate tE  and later on derive an integro-differential equation that can be used to calculate the 
price on the option. 
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1. Introduction 
This paper considers the European call option in the Black-Scholes market when the exchange-rate is a semimar- 
tingale. Specifically, we consider a problem of a Dollar investor seeking to invest in a Sterling market. Theory 
of exchange rates has been widely discussed (see [1]-[4]). Exchange rates change with time due to a number of 
factors, such as changes in fiscal and monetary policies, interest rate differentials between two countries usually 
resulting in revaluation or devaluation of currency. The main challenge is to construct a model which captures 
the dynamics of exchange rate and its effect when investments are made in different currencies. A number of 
models have been developed which are being modified to accommodate reality. Generally, exchange rate 
models fall into two major categories: Those that treat the dynamics of exchange rate as a continuous process 
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and those treat exchange rates as processes with jumps. The Black-Scholes model is the most celebrated non- 
jump model whose dynamics are modelled by the stochastic differential equation d d dt tE t Wλ σ= +  where tE  
is the exchange rate, λ is the drift parameter, σ is the volatility parameter and Wt is a Wiener process. This model 
assumes the logarithmic exchange which follows Brownian motion with drift. Using this as a benchmark model,  

other models were developed, for example, a model given by the equation { }1 2 2
0 exp 1t t tE E t W Wλ ρσ ρ= + + −   

where { }1 1 2 2

0
, 1t t t

t
W W Wρ ρ

≥
+ −  is a pair of correlated Brownian motions with correlation co-efficient ρ and  

1
tW  is Brownian Motion driving the given asset prices [2]. It is known that jump-diffusion models are more 

realistic for studying the dynamics of exchange rates [3]. Dating back from the introduction of jump-diffusion 
process by [4] [5] as a tool for modelling the prices of options based on more general processes of underlying 
asset returns, jump-diffusion processes have also been widely used in modelling the dynamics of exchange rates. 
Empirical evidence based on simple jump-diffusion models suggests that jumps really form significant com- 
ponents of foreign exchange rate processes [1] [3]. As such, it is reasonable that both empirical and theoretical 
studies of exchange rates under uncertainty should allow for the presence of discontinuities explicitly. There has 
been a wide use of jump-diffusion processes to model financial time series to reflect discontinuities of asset 
returns. Some of the most well known jump-diffusion models for the dynamics of foreign exchange include: 1) 
Merton’s Jump Model, 2) Conditional Heteroscedasticity and Jump model and Mean-Reversion, Conditional 
Heteroscedasticity and Jump model. The Merton’s Jump Model is given by the stochastic differential equation 

( ) ( )0d d d ln dt t t tE t W X pλ α σ α= − + +  where Et is the exchange rate, λt is the instantaneous expected return, σ 

is the instantaneous volatility of the asset’s return subject to the Poisson jump not occurring, Wt is the Gauss- 
Wiener process, ( )tp α  is a Poisson process which is independent and identically distributed over time, α is 
the intensity parameter of Poisson distribution, tX  is the random jump size with 0tX ≥  and ( )d tp α , d tW  
are statistically independent. This model explicitly allows for the presence of asymmetric lognormal jumps to 
the exchange rate. 3) The Conditional Heteroscedasticity and Jump model, is described by the stochastic dif- 
ferential equation ( ) ( ) ( )0 1d d d ln dt t t t tE t E W X pλ α σ σ α= − + + + , which is an extension of Merton’s model 
and allows for conditional heteroscedasticity in addition to jumps. 4) Lastly, the Mean-Reversion, Conditional 
Heteroscedasticity and Jump model, described by the differential equation  

( ) ( ) ( )0 1d d d ln dt t t t t tE E t E W X pλ β α λ σ σ α= − − + + +  where ( )0ln ,tX iidN α ν . This model has a linear 
drift term in Et which makes it possible to capture the mean-reversion feature of the underlying process in 
addition to conditional heteroscedasticity and asymmetric jumps. The aim of our work is to provide further 
evidence for appropriateness of jump models. We do that by formulating an exchange rate model in terms of the 
general semimartingale on filtered probability space ( ), , ,Ω    to model the dynamics of the exchange rate 

( )0 expt tE E X=  where ( ),tX Sem∈   . Our approach leads to general formulae which capture both the 
continuous and jump-diffusion cases models depending on whether 0tX∆ = , the continuous model or 

0tX∆ ≠ , the jump diffusion one. The approach utilizes the specific market model called the Black-Scholes 
Quanto model, in other words, we consider products denominated in a currency other than those in which they 
are traded. Our prime interest is to price the claim CT, which in our case is the European call option, in this market 
when the dynamics of the exchange rate is being modelled by the general semimartingale as described above. 

2. The Model 
We consider the quanto market model consisting of Dollar bond ert

tB = , Sterling bond eut
tD = , Sterling 

risky asset price { }0 expt tS S t Wα σ= +  and the Exchange rate { }0 expt tE E H=  on the filtered probability  
space ( ), , ,Ω    where S E= ∨   , and { }, 0S S

t t= ≥  , ( ): 0S
t uS u tσ= ≤ ≤  is the natural filtra-  

tion generated by the stock price process while { }, 0E E
t t= ≥  , ( ): 0E

t uE u tσ= ≤ ≤  is the natural 
filtration generated by the exchange rate process.   describes information about prices and the exchange rate 
revealed to investors. We assume that the probability space ( ), , ,Ω    satisfies the usual conditions i.e the 
σ-field   is  -complete and every t  contains all  -null sets of  . tW  is the Brownian motion in- 
dependent of tH  and ( ),tH Sem∈    i.e tH  is a cadlág process that admits the decomposition 

0t t tH H A M= + +  where tA ∈  (a process of bounded variation), 0 0A =  and t lockM M= ∈ . For a 
dollar investor in the quanto market defined in this problem, we want to find what is the price of the European 
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call option having strike price K and strike time T?  

Converting into Dollars 
Since our asset is in Sterling, we need first of all to find the Dollar equivalent of this asset. For convenience sake 
we let 0 0 1S E= = . tY  be the dollar value of the Sterling asset price given by  

t t tY E S= ⋅                                           (1) 

Define  

{ }exp .t tY X=                                         (2) 

where  

.t t tX t W Hα σ= + +                                       (3) 

tX  is a semimartingale since it is the sum of two semimartingales tt Wα σ+  and tH . This in turn implies 
that tY  is a semimartingale. Let  

( ) ( )expt t tY f X X= =  

Then, using Ito’s formula for semimartingales [6] [7], the dynamics of the dollar value for the Sterling risky 
asset is  

ˆd dt t tY Y X−=                                         (4) 

where  

( )
0

1ˆ e 1 .
2

Xc s
t t st s t

X X X X∆

< ≤

= + + − − ∆∑                             (5) 

(see Appendix). Let t t tX t W Hα= + +  so that t t tX V H= +  then t t tX V H∆ = ∆ + ∆  and  

.c c c
t t tX V H= +  

tV  being a semimartingale has the form  

0 .v
t t tV V A M= + +                                       (6) 

It is important to take note that superscript v  in v
tM  is used to stress that v

tM  is the martingale part for 
process tV  which in this case  

.v
t tM Wσ=                                          (7) 

Since v
tM  is a local martingale, it can be decomposed as  

v vc vd
t t tM M M= +                                       (8) 

where vc
tM  is the continuous part and vd

tM  is the discontinuous part of v
tM . For more details and a proof of 

Equation (8) see [8]. Since 0tWσ∆ = , we have 0vd
tM = . From Equation (6), we have c

tV Wσ= . Similarly if 
we let c

tH  to be the continuous martingale part of tH  then  
c c
t t tX W Hσ= +                                       (9) 

Now, using the bilinear property of sharp bracket process [9], we obtain  

2

2

2

, 2 , ,

,

.

c c
t t

c c c
t t t

c c
t

c
t

X W H

W W W H H H

t H H

t H

σ

σ σ

σ

σ

= +

= + +

= +

= +

                        (10) 
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We further note that  

[ ] ( )

( )( ) ( )
0

t

t t t

t

t t

V V V

t W t W

t t W W

µ σ µ σ

µ µ σ σ

−

−

−

−

−

∆ = −

 = + − + 

= − + −

=

 

This is true because μt, and σWt are continuous processes. It then follows that  

.t tX H∆ = ∆                                         (11) 

Substituting Xt and Equations (3), (10), (11) into Equation (5) we have  

( ) ( )2

0

1ˆ e 1 .
2

Hc s
t t t st s t

X t W H t H Hα σ σ ∆

< ≤

= + + + + + − − ∆∑                     (12) 

Similarly, let Zt be the dollar value of the Sterling bond given by  

{ }exp .t t t tZ E D ut H= ⋅ = +  

Let  

( ) e .ut Ht
t tZ g ut H += + =                                    (13) 

It clearly follows that  

( ) ( ) ( )

( ) ( )

0
0 0

0

1e e d e d
2

e e e .

s s

s ss

t tus HX us H c
t s s

us H us Hus H
s

s t

Z us H us H

us H

− − −−

− −− −

+ +

+ ++

< ≤

′ ′′′= + + + +

 ′
+ − − ∆ + 

 

∫ ∫

∑
                  (14) 

Noting that  

( ) ( ) ( )
( ) ( )

.

s s s

s s

s s

s

us H us H us H

us us H H

H H

H

−

−

−

−

−

∆ + = + − +

= − + −

= −

= ∆

                             (15) 

Note that Equation (15) follows because us is a continuous function so that us us−= . The continuous 
martingale part of sus H+  is  

( ) ,c c
s sus H H+ =  

Hence  

( ) .c c
s s

us H H+ =  

Zt can now be written as  

( )0
0 0

0

1e e d e d
2

e e e .

s s

s ss

t tus HH us H c
t s s

us H us Hus X
s

s t

Z us H H

H

−−

− −

+ +

+ ++

≤ ≤

= + + +

 + − − ∆ 

∫ ∫

∑
 

Its differential form, the dynamics of the dollar value of the Sterling bond can be written as  
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( )

( ) ( )

( )

0

1d e d e d e e e
2
1e d e d e e e
2

1e d e 1
2

t t tt t

t t tt tt

t s

ut H ut H ut Hut H ut Hc
t t tt

ut H ut H ut Hut H ut Hut H c
t tt

ut H us Hc
t st s t

Z ut H H H

ut H H H

ut H H H

−− − −

−−− − −

−

+ + ++ +

+ + ++ +∆ ++

+ ∆ +

< ≤

= + + + − − ∆

= + + + + − ∆

  = + + + − − ∆   
∑

 

Which can be written as  
ˆd dt t tZ Z K

−
=                                          (16) 

where  

( )
0

1ˆ e 1
2

Hc s
t t st s t

K ut H H H∆

< ≤

= + + + − − ∆∑                           (17) 

And 

e .tut H
tZ −
−

+=  

For our analysis, we need to express the decompositions ˆ
tX  (Equation (12)) and ˆ

tK  (Equation (17)), in 
stochastic integral form, hence we use the random measure of jumps. 

In our case, we have  

t t tX V H= +                                          (18) 

And from Equation (10) we have  
2
1

c c
t t

X t Hσ= +  

Hence, process of bounded variation ( )B φ  can be express as  

( ) ( ) ( ) ( ) 0 0 0 0,  t t t tB A D t D H V X Xφ φ φ α φ= + = + = + =                      (19) 

where A is as defined in Equation (6) and D is the process of bounded variation for the semimartingale Ht. We 
can express these results in canonical form by using the random measure of jumps (see [7]). From Equation (5),  

( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

0

0

0

1ˆ e 1
2
1 e 1
2

1 e 1
2
1 e 1 .
2

Xc s
t t st s t

c x
t t

c c x
tt t

c c x
tt t

X X X X

X X x

X B X X x x x x

X B X X x x

µ

φ φ µ ν φ µ µ

φ φ µ ν φ µ

∆

< ≤

= + + − − ∆

= + + − −

= + + + + − + − + − −

= + + + + − + − −

∑



  

 

            (20) 

Now, if we assume that ( )( e 1 *x
locxφ µ− − ∈ , then  

( ) ( )( )
( )( ) ( ) ( ) ( )

( ) ( )

0

0

1ˆ e 1
2

e 1

e 1

c c x
t tt t

x

c x
t t

X X B X X x

x x

X B X

φ φ ν

φ µ ν φ µ ν

µ ν

= + + + + − −

+ − − − + −

= + + + − −



 



                         (21) 

where  

( ) ( )( )1 e 1 .
2

c x
t t t

B B X xφ φ ν= + + − −                                (22) 

Now if we substitute Equations (9) (10) and (19) into Equation (21) we obtain  
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( ) ( )0
ˆ e 1c x

t t t tX H G W Hσ µ ν= + + + + − −                           (23) 

where  

( ) ( ) ( )( )21 e 1 ,
2

c x
t t t

G t D t H xα φ σ φ ν= + + + + − −                        (24) 

i.e.  
*ˆ ˆ

t t tX X G= +                                          (25) 

where *ˆ
t locX ∈  and tG  is a predictable process. Similarly from Equation (13)  

If we set t tK ut H= +  with *φ  as a truncation function, we have c c
t tK H= ,  

c c
t t

K H= , 0 0K H=  and together with Equation (17),  

( ) ( )0
ˆ e 1c x

t t tK H R H µ ν= + + + − −                               (26) 

where  

( ) ( )( )* *
1 e 1 .
2

c x
t t t

R ut D H xφ φ ν= + + + − −   

This means the dynamics in our market model are modeled by the equations can also be presented by the 
eququations  

d
ˆd

ˆd

t

t t t

t t t

rdt

Z Z dK

Y Y dX
−

−

=

=

=

B

                                        (27) 

where ˆ
tX  and ˆ

tK  are as defined in Equations (21) and (26) respectively. Before we proceed we need to show 
that our market model defined by the system of Equation (27) does not entertain arbitrage opportunities.  

3. Arbitrage 
A question we must ask before we proceed is whether the market (27) allows arbitrage opportunities or not. In 
this market, an investment strategy or portfolio is a predictable process  

( ) 3, ,ψ ϑ ϕ θ= ∈                                      (28) 

Such that  

{ }2 2 2
0

d   a.s  
T

s s s sϑ ϕ θ+ + ≤ ∞∫                                  (29) 

, ,t t tϑ ϕ θ  denote the fractions of total wealth invested in B, Z, and Y respectively at time t. The condition in  
inequality (29) ensures that the integrals 

0 0
d d

t t
s s s sZ Yϕ θ+∫ ∫   make sence and are is a martingales.  

Let  

    0t t t t t tV Z Y t Tψ ϑ ϕ θ= + + ≤ ≤B                               (30) 

be the worth the worth process. We need to know if our portfolio ψ  is self-financing. A portfolios is 
self-financing if tVψ  can also be written as  

( ) 0 0 0 0
d d d

t t t
s s s s s sV t V Z Yψ ψ ϑ ϕ θ= + + +∫ ∫ ∫B                            (31) 

or in differential form, if  

( )d d d d .t t t t t tV t Z Yψ ϑ ϕ θ= + +B                                (32) 

Equations (31) and (32) imply that the portfolio is self-financing if changes in the value of the portfolio on an 
infinitesimal interval are due entirely to the changes in value of assets and not to an injection (or removal) of 
wealth from outside. 
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To show that our portfolio is self-financing, we use Lemma (5.1.3) in [2]. According to [2], ψ  is a self- 
financing portfolio if  

( ) 0 0 0
d d

t t
s s s sV t V Z Yψ ψ ϕ θ= + +∫ ∫                                     (33) 

where ( ) ( )e rtV t V tψ ψ−= , the discounted value of the wealth process.  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

d de

e e d

e e d d d

e e e e d d

e e e d e d

e e d e e d

rt

rt rt

rt rt
t t t t t t t t t t t

rt rt rt rt
t t t t t t t t t

rt rt rt rt
t t t t t t t

rt rt rt rt
t t t t t t t

V t V t

r V t V t

r Z Y r Z Y

r Z Y Z Y

r Z r Y Z Y

r Z Z r Y Y

ψ ψ

ψ ψ

ϑ ϕ θ ϑ ϕ θ

ϑ ϕ θ ϑ ϕ θ

ϕ θ ϕ θ

θ θ ϕ ϕ

−

− −

− −

− −

− − − −

− − − −

=

= − +

= − + + + + +

= − + + + + +

= − − + +

= − + − +

=

B B



( ) ( )d e d ert rt
t t t tZ Yθ ϕ− −+

 

This means  

( ) ( )
0 0 0

d d e d e

d d ,

rt rt
t t t t t

t t
t s s s s

V t Z Y

V V Z Y

ψ

ψ ψ

θ ϕ

θ ϕ

− −= +

= + +∫ ∫



   

                                 (34) 

Satisfying Equation (33). Hence ψ  is a self-financing portfolio. If in additional to this to (34), { } [ ]0,t t T
Vψ

∈
  

as defined in Equation (34) above is lower bounded, then tψ  is said to be admissible. It is written as 0ψ ∈ . 
If tψ  is not admissible, it is not hard to construct doubling strategies, that is, a portfolio that attains 

arbitrarily large values of wealth with probability one when t T= , starting with zero initial capital at 0t = , a 
situation we are avoiding. We first of all show that in this market, tψ  is an admissible strategy. The dynamic 
d tZ  for the dollar value of the sterling bond is given by the equation  

( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( )

ˆd d
1d d d d e 1 d e 1
2
1d d d d e 1 d e 1 d
2

t t t

c c x x
t tt t

c c x x
t tt t

Z Z K

Z u t dD H H x

Z u t D H H x

φ µ ν φ µ

φ µ ν φ µ

− −

−

−

∞ ∞

−∞ −∞

=

 = + + + + − − + − −  
 = + + + + − − + − −  ∫ ∫

   

Similarly, the dynamic d tY  for the dollar value of the Sterling risky asset is given by the equation  

( )

( ) ( )( ) ( )( )

( )

( ) ( ) ( )( )

2

2

ˆd d
1d d d d d
2

1 d d e 1 d e 1
2

1d d d d d
2

1 d e 1 d e 1 d
2

t t t

c
t t tt

c x x
t

c
t t tt

c x x
t

Y Y X

Y t D W H t

H x

Y t D W H t

H x

α φ σ σ

µ ν φ µ

α φ σ σ

µ ν φ µ

−

−

−

∞ ∞

−∞ −∞

=

= + + + +
+ + − − + − − 

= + + + +
+ + − − + − − ∫ ∫

   

From Equation (30)  

( )e rt
t t t t tV Z Yψϑ ϕ θ−= − −                                     (35) 

Since the portfolio ψ  is self-financing (Equation (32)), then  
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( )

( )( )

( ) ( ) ( ) ( )( )

( ) 2

d d d d
d d d

e d d d

d d d
1d d d d e 1 e 1 d
2

1 1d d d d d
2 2

t t t t t t

t t t t t t

rt rt
t t t t t t t

t t t t t

c c x x
t t tt t

c c
t t t tt t

V t Z Y
r t Z Y

re t V t Z Y Z Y

rV t r Z t r Y t

Z u t D X H d x

Y dt C W H t X

ψ

ψ

ψ

ϑ ϕ θ
ϑ ϕ θ

ϕ θ ϕ θ

ϕ θ

ϕ φ µ ν φ µ

θ α φ σ σ−

−

∞ ∞

− −∞ −∞

−

= + +

= + +

= ⋅ − − + +

= − −

 + + + + + − − + − −  

+ + + + + + +

∫ ∫

B
B

( ) ( ) ( )( )e 1 d e 1 dx x xµ ν φ µ
∞ ∞

∞ −∞

 − − + − −  ∫ ∫
 

Then  

( )
( ) ( ) ( ) ( ) ( )( )

( ) ( )

( ) ( ) ( )( )

2

e d e d

1e d d d d e 1 d e 1 d
2

1e d d d d d
2

1 d e 1 d e 1 d
2

rt rt
t t

rt c c x x
t t tt t

rt c
t t t tt

c x x
t

V r V t

Z u r t D H H x

Y r t C W H t

H x

ψ ψ

ϕ φ µ ν φ µ

θ α φ σ σ

µ ν φ µ

−

−

− −

∞ ∞−

−∞ −∞

−

∞ ∞

−∞ −∞

−

 = − + + + + − − + − −  
+ − + + + +

+ + − − + − − 

∫ ∫

∫ ∫

 

This means the differential form of of the dynamics of the discounted wealth process is  

( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )2

d e

1d d d d e 1 d e 1 d
2

1 1d d d d d d e 1 d e 1 d
2 2

rt
t

c c x x
t t tt t

c c x x
t t t tt t

V

Z u r t D H H x

Y r t C W H t H x

ψ

ϕ φ µ ν φ µ

θ α φ σ σ µ ν φ µ

−

−

−

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

 = − + + + + − − + − −  
 + − + + + + + + − − + − −  

∫ ∫

∫ ∫

 

Hence the discounted wealth process will be  

( ) ( ) ( ) ( ) ( )( )

( ) ( )

( ) ( ) ( )( )

0 0

2
0

e
1e d d d d e 1 d e 1 d
2

1e d d d d d
2

1 d e 1 d e 1 d
2

rt
t

t rs c c x x
s s ss s

t rs c
s s s st

c x x
s

V

V Z u r s D H X x

Y r s C W H s

H x

ψ

ψ ϕ φ µ ν φ µ

θ α φ σ σ

µ ν φ µ

−

−

−

∞ ∞−

−∞ −∞

−

∞ ∞

−∞ −∞

 = + − + + + + − − + − − 
 

+ − + + + +


+ + − − + − − 


∫ ∫ ∫

∫

∫ ∫
 

From the above equations, ( )e rt V tψ−  is a lower bounded process. It follows that ( )V tψ  is lower bounded 
implying that ψ  is an admissible strategy.  

Definition 1 A portfolio 0tψ ∈  is called arbitrage if  

0 0, 0  and  > 0 > 0.T TV V Vψ ψ ψ = ≥                                   (36) 

Since the portfolio ψ  in our market is admissible, we really claim there are no arbitrage opportunities in the 
market. The following discussion is a build up towards the proof to justify this claim.  

3.1. Converting Yt into a Martingale 
Our stock price process as described in Equation (27) is a semimartingale. To use the martingale approach, we 
need to convert the price process into a martingale by finding another probability space *  equivalent to our 
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probability   so that Yt becomes a martingale. Now we consider our price process  
ˆd dt tY Y X−=                                            (37) 

(see Equation (27)). ( )t t
Y X=   and with Equation (2), we can say  

( )e   0tX

t
X t T= ≤ ≤                                        (38) 

This means our price process is a local martingale iff ( )( )e tX

t
X  is a local martingale. Now e tX  ( ( )t

X ) 
becomes a local martingale through the change of probability measure theorem for semimartingales i.e. we find 
another measure *

   under which Yt becomes a martingale. To achieve this, we consider the following: 
Suppose we have the triplet ( ), ,B C ν  for a semimartingale X under measure   what are the triplets 

( )* * *, ,B C ν  for semimartingale under a new probability measure * ?  
Using the Gisanov’s Theorem for semimartingales,  

( )( )*

*

*

1 ,

,

B B C x

C C

β φ ν

ν ν

= + ⋅ + −

=

= ⋅







                                  (39) 

where β  satisfies the equation  

( ),c cY X Y Cβ−= ⋅                                         (40) 

And ( ), ,t xω=   is defined by the equation  

= X
YM
Yµ
−

 
  
 



                                           (41) 

where ( ) ( ),d ,d dX
XM t x

µ
µ ω ω=   is the positive measure on [ ] [ ]( ) ( )( )0, , 0,T TΩ× × ⊗ ⊗     de- 

fined by  

( ) ( )X
X

T
M W W

µ
µ=                                         (42) 

where ( ), ,W W t xω=  is a nonnegative function on [ ]0,TΩ× ×  (for   see [8]). X
YM
Yµ
−

 
  
 



   is, by  

definition, the XM
µ
 -a.s unique  -measurable function   with property  

( )=X X
YM V M V
Yµ µ
−

 
 
 

                                        (43) 

For all non-negative  -measurable functions ( ); ,V V t xω= . This means that under measure * , the semi- 
martingale process X̂  evolves according to the equation  

( ) ( )* *
0

ˆ e 1c x
t t t tX X G W Hσ µ ν= + + + + − −                              (44) 

where  

( ) ( ) ( )( )* * 2 *1 e 1 ,
2

c x
t t t

G B t H xφ σ φ ν= + + + − −                           (45) 

And  

( ) ( ) ( ) ( )( )* * *1 ,c
t tt tB B W H xφ φ β σ φ ν= + + + −                           (46) 

*
0

d
t

t t sW W c sβ= − ∫  is a * -Brownian motion [10]. 

We start by finding the values β and   for our case. To do this we first find c
tY , the continuous martingale 

part for the risky asset process Yt, as described by Equation (2). Using Itó’s formula for semimartingales, we 
have  



E. R. Offen, E. M. Lungu 
 

 
295 

( ) ( )
( ) ( )

( )( ) ( )

2
0 0

0

2
0 0

0

1e 1 e d d d e d d
2

e e e d ,d

11 e d d e d d
2

e e e

t t s s s s

s s s s s s

s s s s

s s s s s s

H W t H W s H W s c
s s s

H W s x H W s H W s X

H W t H W s c
s s

H W s x H W s H W

H W s H s

x s x

D s H s

σ α σ α σ α

σ α σ α σ α

σ α σ α

σ α σ α σ

σ α σ

µ

φ α σ

− −

− − −

− −

− − −

+ + + + + +

+ + + + + + +

+ + + +

+ + + + + +

= + + + + +

+ − −

= + + + +

− −

∫ ∫

∫ ∫

∫ ∫

∫ ∫





( )( ) ( )

( ) ( )( )( )
0 0

d ,d

e d d e d ,ds s s s

s

H W s H W sc
s t

x s x

H W x s x

α

σ α σ α

φ µ

σ φ µ ν− −

+

+ + + ++ + −∫ ∫ ∫


 

It is easy to see that the continuous part of the semimartingale e t tH W tσ α+ +  is given by  

( ) ( )0
e = e d dt t s t

cH W t H W t c
t tH Wσ α σ α σ−+ + + + +∫                               (47) 

Hint: in our calculations, we have made use of Equation (2) and the canonical decomposition of the semi- 
martingale hence the differential form of tX  in our case can be written as  

( ) ( ) ( ) ( )( )d d d d d d d .c
t t ttX D t H W x x xφ α σ φ µ ν φ µ= + + + + − + −∫ ∫ 

                   (48) 

From Equation (47) and using properties of conditional quadratic variation process for stochastic integrals 
with respect to semimartingales  

( ) ( )0

0

0

, e , e d d ,

e d

e d

t t s s

s t

s s

cX W t X W tc c c c c
t t t tt

H W t c
s s

H W t

Y X H W H W H W

H W

C

Y C

σ α σ α

σ α

σ α

σ σ σ

σ

−

−

−

+ + + +

+ +

+ +

−

= + = + +

= +

=

= ⋅

∫

∫
∫

              (49) 

Now  

( )
0

e ds sH W tY C Cσ αβ β − + +
− ⋅ = ∫                                   (50) 

We can deduce from equating Equations (49) and (50), that Equation (40) can only hold if 1β ≡ , which is 
adopted as our choice of β  in this study. From the Equation (43) given by  

( )X X
YM V M V
Yµ µ
−

 
= 

 
    

And the Equation (42) which simplifies below  

( )
( ) ( ) ( )

( ) ( )

( ) ( ){ }( )
( ) ( )

( )

0

0

( )
0

0

0

, , ,d ,d

e , , ,d ,d
e

e , , 1

e , , ,d ,d

e

s s

s s

t
t

X

T

T t X

t

H W t
T X

H W t

H
t H

t T

T x

x

Y YM V V
Y Y

Y
V t x t x

Y

V t x t x

V t H

V t x t x

M V

µ

σ α

σ α

ω
ω

µ

µ

ω
ω µ ω

ω

ω µ ω

ω ω

ω µ ω

−

− −

−

+ +

+ +

∆
∆ ≠

≤ ≤

   
=   

   

 
=  

  
 

=  
 
 = ∆  
 =   

=

∫ ∫

∫ ∫

∑

∫ ∫























 

We arrive at a choice of   given by  
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e .x=                                             (51) 
Hence from Equation (46)  

( ) ( ) ( )( )* * *e 1 .c x
t tt tB B W H xφ φ σ φ ν= + + + −                             (52) 

Now under *   

( ) ( ) ( ) ( )* *ˆ ˆ ,loc loct t
X X∈ ⇔ ∈                                  (53) 

(see [8]) 
From Equation (44),  

( ) ( )* * 0loctX G∈ ⇔ =                                     (54) 

But in our case, to really achieve the case * 0G = , we make the following assumption: The process { }>11 ex
x ν  

has bounded variation. Provided this assumption holds and that the conditions of lemma (2.13) in [11] are 
satisfied, then  

( ) ( ) ( ) ( )( )* * 2 *1ˆ e 1 0
2

c x
loc t t

X B t H xφ σ φ ν∈ ⇔ + + + − − =                    (55) 

It is also important to take note that from the assumption we have made and lemma (2.13) in [11] above, tX  
is exponentially special i.e. e tXS =  is a special semimartingale. Now  

( ) ( ) ( )* *ˆ ˆ
loc t locX X∈ ⇔ ∈                                   (56) 

(see [12]) and from Equation (55) 

( ) ( ) ( ) ( ) ( )( )* * 2 *1 e 1 0
2

c x
loc tt t

X B t H xφ σ φ ν∈ ⇔ + + + − − =                      (57) 

From Equation (38)  

( ) ( ) ( ) ( )( )* * 2 *1e e 1 0
2

X c xt
loc t t

B t H xφ σ φ ν∈ ⇔ + + + − − =                      (58) 

This means that under *   

( ) ( )*
0

ˆ ˆ e 1c x
t t t tX X H W Hσ µ ν= = + + + − −                              (59) 

Which is a martingale process. 
This means that since our market has an equivalent local martingale measure *

  then by by the First 
Fundamental Theorem of Asset Pricing, there is no arbitrage in our market model ([13]).  

3.2. Equivalent Local Martingale Measures (ELMM) 
In our previous section (section 3.1), we have proved the existence of ELMM *  and hence that the market is 
arbitrage free. But the question we really need to ask is whether or not *  is a unique measure.? One of the 
major problems of financial markets with jumps is that they are typically incomplete. The martingale measure 

*  is no longer unique as compared to complete market situation and in this case different martingale measures 
*  lead to different strategies. There are more than one ELMM, in fact infinitely many. The question is that 

which one of them should one use in the pricing formula. To answer our question it turns out that there is a 
minimal entropy martingale measure *

  such that the optimal strategy for   can be computed in terms *
 . 

The following discussion gives the definition of minimal martingale measure.  

Minimal Relative Entropy Martingale Measure (MEMM) 
Let ( )S  be a set of all equivalent martingale measures of tY .  

Definition 2 *
  is said to be minimal entropy martingale measure (MEMM) of tY  if it satisfies the follow- 

ing formula  
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( ) ( ) ( )* *   H H S≤ ∀ ∈       

where ( )*H    is the relative entropy of * , which is given by the following formula  

( )
*

* *
* *

dlog d if  
d

otherwise
H Ω


= 
+∞

∫ 

                                 (60) 

(see [14] [15]). 
The relative entropy measures the minmal departure from a given measure  . The relative entropy ( )*H    

is always non-negative and ( )* 0H =   is equivalent to * =  . 
The minimal martingale measure *

  is uniquely determined as discussed in [14] [15]. 
Let ( ) 3, ,ψ ϑ ϕ θ= ∈  be as defined in Equation (28). We assume that the process ( )0t t T

ϑ ϑ
≤ ≤

=  is pre- 
dictable while ( )0t t T

ϕ ϕ
≤ ≤

=  and ( )0t t T
θ θ

≤ ≤
=  are adapted. Hence Equation (37) takes the form  

*ˆd dt t tY Y X−=                                          (61) 

where tY  is now a martingale. 
Now solving (61) above gives  

( )*ˆ
t t t

Y Y X−=                                          (62) 

where   is the Dolĕans Dade stochastic exponential.  

( ) ( ) *ˆ* * * *

0

1ˆ ˆ ˆ ˆexp 1 e .
2

c Xs
t t st t s t

X X X X −∆

< ≤

 = − + ∆ 
 

∏  

Now  
*ˆ c c
t t tX W Hσ= +                                        (63) 

And  
*

2

ˆ ,c c c
t tt

c
t

X W H W H

t H

σ σ

σ

= + +

= +

 

 

(see Equation (10)). Hence  

( ) ( )

( ) { }( ) ( ) { }( )

* * e 1

e 1 ; e 1 ;

c x
t t t

c x x
t

X W H

H t t

σ µ ν

µ ω ν ω

∆ = ∆ + ∆ + ∆ − −

= ∆ + − × − − ×∫ ∫


                       (64) 

(for ( ) ( )e 1x µ ν∆ − −   compare with Equation (13), page 666 in [7]) 
Hence  

( ) ( ) ( ) ( ) *2 *
0

0

1exp e 1 1 e
2

Xc x c t
t t t t tt

s t
Y Y X W H t H Xσ µ ν σ−

−∆

< ≤

 = + + + − − − + + ∆ 
 

∏              (65) 

The process tY , in Equation (65) above, is a martingale and it is under a new probability measure * . This 
equation marks one of the major contributions of this study to the the theory option pricing through martingale 
approach in the sense that it accommodates both continuous and jump cases. In the situation where 0H∆ = , 
then 0µ ν= =  and Equation (65) becomes  

( )2
0

1exp
2

c c
t t t t t

Y Y X W H t Hσ σ−
 = + + − + 
 

                             (66) 

which is the continuous and most familiar case, while if 0H∆ ≠  then we have a jump case. The equation 
brings with it the convenience of converting the stock price into a martingale whenever we are using a 
martingale approach as in any of the cases, the process of converting the process into a martingale, simplifies to 
mere calculation of 0H∆ ≠ , µ  and ν  and substitute into Equation (65).  
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3.3. The Price of European Call Option 
We now come to the question fundamental of this study. 

How much should the investor be willing to pay for a European call option at t = 0 in the case where Yt is a 
semimartingale process as defined in Equation (65)?. We extend the theorem which was given in [16].  

Theorem 1 Let *ˆ
tX , with its canonical decomposition as shown in Equation (59) above, be a process with 

independent increment, and assume that tu , yu  and yyu  exist where ( ) ( )*
, t T tu t Y Y K + = −  

  . Then the 

following integro-differential equation holds:  

( ) ( ) ( )( ) ( ) ( ){ } ( )2 *
0

1 ˆ, d , d , 1 , , d ,d 0
2

t c
s s yy t s s s y s ss

u s Y s u s Y Y H u s Y x u s Y u s Y Y x s xν− − − − − −

∞

− −∞

 + + + − + = 
 ∫ ∫      (67) 

Proof. Before we proceed, we take note of the following:  

( )* * 2 *ˆ ˆ, 1 , c c
t t t t t t t t t tt t

Y Y X Y Y Y Y X Y Y X− − − −∆ = ∆ = + ∆ = + ∆ =  

This means that *ˆd dt t tY Y X−=  where  

( ) ( ) ( )( )* *ˆ ˆd d e 1 d ,d d ,d .c x
t tX X t x t xµ ν

∞

−∞
= + − −∫   

The theory of pricing of the European call option (see [17]) and the Markovian property of tY , the value of 
the European call option at time T is given by 

( ) ( ), e , .rT
T TV T Y u T Y−=     

where ( ), tu t Y  is given by  

( ) ( )*
, t T tu t Y Y K + = −  

    

□ 
But how do we evaluate the value ( ), tu t Y  in our case. By using the Markovian property of tY  we applying 

Ito’s formula to ( ), tu t Y  and obtain  

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( )

*

d ,
1, d , d , d , , ,
2
1, d , d , d , 1 , ,
2
1, d , d , d
2

, 1 , ,

t

c
t t y t yy t t t y t tt

c
t t y t yy t t t t y t t tt

c
y t t t yy t t

t t y t t

u t Y

u t Y t u t Y Y u t Y Y u t Y u t Y u t Y Y

u t Y t u t Y Y u t Y Y u t Y X u t Y u t Y Y X

u t Y Y u t Y t u t Y Y

u t Y x u t Y u t Y Y

− − − − −

− − − − − −

− − −

− − −

−

∞

−∞

= + + + − + ∆

= + + + + ∆ − + ∆

= + +

+ + − +∫ { } ( )d ,dx t xν−


 

( )
( )

( ) ( ) ( )( ) ( ) ( ){ } ( )

( ) ( ) ( )( ) ( ) ( ){ } ( )

0

2 *
0

2 *
0

,

, d

1 ˆ, d , d , 1 , , d ,d
2

local martingale
1 ˆ, d , d , 1 , , d ,d
2

t

t
y t

t c
s s yy t s s s y s ss

t c
s s yy t s s s y s ss

u t Y

u s Y Y

u s Y s u s Y Y X u s Y x u s Y u s Y Y x s x

u s Y s u s Y Y X u s Y x u s Y u s Y Y x s x

ν

ν

−

− − − − − −

− − − − − −

∞

− −∞

∞

− −∞

=

 + + + + − + 
 

=

 + + + + − + 
 

∫

∫ ∫

∫ ∫





 

Now using the fact that a predictable local martingale with finite variation starting at zero is zero (theorem 
leads us to the equation i.e.  
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( )

( ) ( ) ( )( ) ( ) ( ){ } ( )2 *
0

d ,

1 ˆ, d , d , 1 , , d ,d
2

0

t

t c
s s yy t s s s y s ss

u t Y

u s Y s u s Y Y X u s Y x u s Y u s Y Y x s xν− − − − − −

∞

− −∞

 = + + + − + 
 

=

∫ ∫   

4. Examples 
4.1. Example 1: Continuous Case 
Suppose t tH W tδ γ= +  

From Equation (3),  

( )t t tX t W Wα γ σ δ= + + +                                       (68) 

where tW  is the Brownian Motion on the same stochastic basis ( ), , ,Ω    as Brownian Motion tW  and 
that these Brownian Motions are correlated with correlation co-efficient ρ. Obviously, from Equation (68),

0tX∆ = .  

( ) ( ) { }( ); ( , \ 0 0.d
k kU I X U Uµ ω ω= ∆ ∈ ∈ =                              (69) 

Note that U, as it is defined in Equation (69), is an element of Borel sets which do not have a 0 element. Since 
0tX∆ =  and 0 cannot be an element of U justifies Equation (69). 

It follows that  

( ] ( ) ( )0,
1

; ; 0
n

X X
kn

k
U Uµ ω µ ω

=

= =∑                                   (70) 

Similarly  

( ) ( )( )( )1; . 0n n nU X U a sν ω ω−= ∆ ∈ − =                               (71) 

From Equations (39) and (51)), under measure * ,  
* 0 e 0xν ν= ⋅ = ⋅ =                                        (72) 

And 0µ ν− = . Hence from Equation (64)  

( ) { }( ) ( ) { }( )*ˆ e 1 ; e 1 ;

0

x x
tX t tµ ω ν ω∆ = − × − − ×

=
∫ ∫  

Hence * * *ˆ c
t t tX W Wσ δ= +  , ( )* 2 2ˆ c

t
X tσ δ= +  and ( )* 2 2ˆd dcX tσ δ= + . Using theorem (1) with 

0x =  and 0ν =  leads to equation  

( ) ( ) ( )2 2 2
*

1, d , 0
2t t t yy tu t Y t Y u t Yσ σ− −−+ + =                              (73) 

And hence (from the same theorem)  

( ) ( ), e ,rT
T TV T Y u T Y−=                                     (74) 

4.2. Example 2: Process with Jump 
Suppose in our model, the exchange rate is not continuous and is modeled by the stochastic differential equation  

( )* * *d d d e 1 dtt t t tE E t E W E Mϕα σ− − −
 = + + −                              (75) 

where *tW  is the  -Brownian Motion process, Mt is the compensated  -martingale process associated with 
the Poisson process Nt (with intensity  ) i.e. t tM N t= −  and is independent of the Brownian motion Nt. We 
choose tϕ  to be a Gaussian process with independent increments, independent to both *tW  and Nt. We let 
( )tϕ η=  and ( ) 2

tϕ τ= . Assume that * 0σ > , 0τ > , η ∈ . We further assume that *tW  is inde- 
pendent of Wt where Wt is the Brownian motion as defined in Equation (3). 
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To find out what our Xt and *ˆ
tH , are in this case we first of all solve our equation.  

( )* * * *
d 1 d e 1 d .

2
t

t t
t

E
t W M

E
ϕα σ σ

−

 = + + + − 
 

                          (76) 

Using Itó’s formula for processes with jumps, we let  

( )logt tY E=  

( ) ( )

( )( ) ( )

( )( )

2 2
*2

2 2
* * * *2

* * * *

1 1 1 1d log d d log log e 1 d
2

1 1 1d d e 1 d d log e log d
2

e1 d d e 1 d d log
2

t t t t t t t
t tt

t t t t t t t t t
t t

t t

E E E t E E E N
E EE

E t E W E M E t E E N
E E

E
t W N t

ϕ

δ φ

ϕ
ϕ

σ

α σ σ

α σ σ λ

−−

− −−

− − − − − −

− −

−

   
= + − + − − −        

 
 = + − − + − + −    

 

 = − + + − − + 
 

( )

( ) ( ) ( )

( )

* * * *

* * * *

d e 1 d

1 d d e 1 d e 1 d d e 1 d
2
1 e 1 d d d
2

t
t t

t

t t t t

t t

N N
E

t W N t N N

t W N

ϕ

ϕ ϕ ϕ

ϕ

α σ σ λ ϕ

α σ λ σ ϕ

−

−

− −

 = − + + − − − + − − 
 
 = − − − + + 
 

 

From which we obtain  

( )2
* * *

1log e 1
2t t tE t W Nϕα σ λ σ ϕ = − − − + + 

 
 

And  

( )2
0 * *

1exp e 1 .
2t t tE E t W Nϕα σ λ σ ϕ = − − − + + 

 
                         (77) 

Hence from Equation (77), we obtain tH  given by  

( )2
* *

1 e 1 .
2t t tH t W Nϕα σ λ σ ϕ= − − − + +  

Clearly, 0 0H =  (since 0 0 0W N= = ). From Equation (2), we obtain  

{ }

( )
0 0

2
0 * * *

exp

1exp e 1
2

t t t

t t t

Y E S t W H

Y t W W Nϕ

α σ

α α σ λ σ σ ϕ

= + +

  = + − − − + + +  
  

                    (78) 

From (78) we obtain the process of the form  

( )2 2
* * * *

1 1 e 1
2 2t t t tX t W W Nϕα α σ σ λ σ σ ϕ = + − − − − + + + 

 
                     (79) 

Equation (79) yields the sharp bracket process for tX  of the form  

* *
c
t t tX W Wσ σ= +  

And hence under measure *
 ,  

( ) ( ) ( )( )*
* * 0

ˆ e 1 d ,d d ,d
t x

t t tX t W W s x s xα σ σ µ ν
∞

−∞
= + + + − −∫ ∫                       (80) 

Clearly *ˆ
tX  (80) is a process with independent increments (as it is the sum of processes with independent 

increments), hence we can find a deterministic function tc , a deterministic measure-valued function tK  and a 
deterministic increasing function tL  such that ( ) ( )d dc

t tt
X c Lω ω= , ( ) ( ) ( ) d ,d d dt tt x K x Lν ω=  (Jacod 
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and Shiryaev [8]). *ˆ
tX  is also a Lèvy process , we can choose tL t= , c to be a constant and ( )dK x  (the Levy 

measure) (see section). In addition, ( ) ( )d dK x F x= ⋅  where ( )tN=   and ( )dF x  is the distribution of 
the jump size of less than 1, i.e. from this we can deduce that the expected number of jumps, in time interval 1 is 
  and the jump size is distributed according to F. If we let e 1t xϕ − =  then ( )ln 1t xϕ = + . Since tϕ  is a 
Gaussian process with ( )tϕ η=  and ( ) 2

tV ϕ τ= , Then  

( )
( )( )2

2

ln 11d .exp
2π

x
F x

η

ττ

 + − = − 
  

 

And  

( ) ( )

( )( )2

2

d

ln 1
exp

2π

K x F x

x η

ττ

= ⋅

 + − = ⋅ − 
  



  

From Equation (80),  

( )*
* * *

ˆ
t t t tX W W tσ σ σ σ= + = +  

And  

( )*
*

ˆd = d
t

X tσ σ+                                     (81) 

Hence from theorem (1), ( ), tu t Y  is found by solving the equation  

( ) ( ) ( )

( )( ) ( ) ( ){ }

2 2 2
*

1, d ,
2

, 1 , , 0

t t t yy t

t t y t t

u t Y t Y u t Y

u t Y u t Y u t Y Y

σ σ

ϕ ϕ ϕ

− − −

− − − −

+ +

+ + − + =
                         (82) 

And  

( ) ( ), e ,rT
T TV T Y u T Y−=  

4.3. Example 3: Ht a Cumulative Process 
We consider a situation where the exchange rate is { }0 expE E h Z=   where tW  and tZ  are independent 
processes. In this case tH h Z=  . This means that  

.t t tX t W Hα σ= + +  

In this case  
ˆ c c

tX W h Zσ= + 

   

This means that  

2 2

2 2

ˆ

2 , ,

2 ,

c c
t

c c c
t t t

c c
t t

c
t

X W h Z

W W h Z h Z h Z

t W h Z h Z

t h Z

σ

σ σ

σ σ

σ

= +

= + +

= + +

= +



  

 



 



 

Hence Equation (80) becomes  

( ) ( ) ( )( )*
0

ˆ e 1 d ,d d ,d
tc x

t tX t W h Z s x s xα σ µ ν
∞

−∞
= + + + − −∫ ∫

                      (83) 

This means ( ), tu t Y  is the solution of the integro-differential equation  
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( ) ( ) ( )
( )( ) ( ) ( ){ } ( )

2 2 2
0

1, d , d
2

, 1 , , d ,d 0

t c
s s yy t s t

s s y s s

u s Y s u s Y Y t h Z

u s Y x u s Y u s Y Y x s x

σ

ν

− − −

− − −

∞

−−∞

 + +


+ + − + =


∫

∫





                  (84) 

With  

( ) ( ), e , .rT
T TV T Y u T Y−=  

5. Discussion 
Equation (73) compares well with Equation (82) in the sense that (82) without the term  

( )( ) ( ) ( ){ }, 1 , ,t t y t tu t Y u t Y u t Y Yϕ ϕ ϕ− − − −+ − +                            (85) 

Gives Equation (73). This means that Equation (85) is the contribution of the jump to the price of the option. 
The effects of the jumps on the price of the the option can be easily observed from this Equation (82) through 
the role ϕ , which is the jump parameter in this equation. For example in the case where 0ϕ = , we 

( )( ) ( ) ( ){ }, 1 , , 0t t y t tu t Y u t Y u t Y Yϕ ϕ ϕ− − − −+ − + =  

Hence Equation (82) is reduced to Equation (73) which is a continuous case. This can be further justified from 
the definition of our ϕ . ( )ln 1 xϕ = +  and hence 0 0xϕ = ⇔ =  i.e. 0ϕ =  if 0X∆ = , justifying why case 
(2) in section (4.2) is reduced to case (1) in section (4.1) and at the same time confirming why Equation (82) 
degenerates to equation (73). We also take note that the co-domain of the function ( )x xϕ→  is [ )0,∞ . This 
means ϕ  is not taking negative values hence has a positive effect to the value of the option. The positive effect 
of ϕ  is in the sense that as far as  

( )( ) ( ) ( ){ }, 1 , , > 0,t t y t tu t Y u t Y u t Y Yϕ ϕ− − − −+ − +   

In Equation (82), the increase in ϕ  will mean the increase in the price of the option In the same vein,   
depends on ϕ  as ( )ϕ =   hence we expect > 0  as ϕ  takes positive values. This means   has a 
positive effect in Equation (82), emphasizing the effects of ϕ . 

We also take note that expression (85) is also equal to zero if either 0ϕ =  (the case which we have just 
discussed), 0=  (the same case since 0=  (in our case) if and only if 0ϕ = ) or if  

( )( ) ( ) ( ), 1 , , 0,t t y t tu t Y u t Y u t Y Yϕ ϕ− − − −+ − + =  

A case which can be handled numerically.  

6. Conclusion 
The method gives the general method of calculating the price of the option in the sense that it accommodates 
both continuous and processes with jumps. When 0tX∆ = , we are talking of continuous processes as shown by 
example 1 and when 0tX∆ ≠  we are talking of processes with jumps. This can provide a more general way of 
finding the price of an option. 
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Appendix 
Then, using Ito’s formula for semimartingales (Protter [6]), we have  

( ) ( ) ( )

( )

0

0

0 0
0

0 0
0

1e e d e d e e e
2

1e e d e d e e e
2

s s s s s

s s s s s

t tX X X X X Xc
t s ss s t

t tX X X X X Xc
s ss s t

Y X X X

X X X

− − − −

− − − −

≤ ≤

≤ ≤

 ′ ′′ ′= + + + − − ∆ 
 

= + + + − − ∆

∑∫ ∫

∑∫ ∫
                (86) 

And in differential form, this can be expressed as  

( )

( )
0

1d e d e d e e e
2
1e d e d e e e
2

1e d e d e e 1
2

1e d e 1
2

ˆd ,

t t t t t

t t t t t t

t t t t

t s

X X X X Xc
t t tt

X X X X X Xc
t tt

X X X Xc
t tt

X Xc
t st s t

t t

Y X X X

cX X X

X X X

X X X

Y X

− − − −

− − − − −

− − −

−

+∆

∆

∆

< ≤

−

= + + − − ∆

= + + − − ∆

= + + − − ∆

 = + + − − ∆  

=

∑
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